
Design space navigation as a collaborative aid

C. Petrie
MCC Enlcrprise lntcgration Division

3500 West Balcones Ccntcr Drive
Austin TX 78759

USA

Abstract

The Rcdux~ scrw, r is a.n agent, with no doma.in-specific knowledge, tha.1 provides
generic coordination services to distributed design systems. The coordina.l.ion
is accoml)lished I)y a. "’wrapl)er" tech0fiqm, requiring rela.tiw,ly litqh, om~diliea.tion
of oxisting ~tgell|,s. Yel. the coordination services signili(:a,ntly oxletn(t l, he usual
"a,sk/tell" a.gent prol,ocols. These a,(lva,nl, a,ges ~re obtaine(I I)ec~uls(, the server
I)a.s(,d on a sil|lple a,n(I ubiquitous sez¢r(’h-ba,se(I model of (lesigll (le(!isions.
Ib’du;r, ~ services ~tlld the mapping to existing agents a,re illustrat(,(l l)y exl)erielwe
with the FirstLink (listributed design system.

This work was partially fi,n(ted by Navy contract N00014-92-J- 1833.

107

From: AAAI Technical Report WS-93-07. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

1 Introduction
The FirstLink project in the Stanford Center for Design Research is sponsored
by Lockheed in order to develop a distributed system to design cable harnesses
for aircraft[2]. The design domain is typical of the generic configuration task.
but also tackles tough geometric modeling problems. The iltitial prototype of

the distributed design system has a simple agent interaction model that we are
augmenting with R, cdux~[4], all agent irnplementing a subset of the full Redux

model described in [3].
The Redux model is based upon AI problem solving notions of search spaces.

The central idea of using Redux~ as a coordination facilitator is that the domain-
specific agents performing the distributed design depth-first search ~L shared design
space. Each agent is exploring a part of that spa(,e. Any design d~,(’ision made I)y
a.ny one agent (’art alter that space, affecting the positions of th(, oth(,r a.g(,iH,s,
as masses affect each other by warping i)hysical space. By notifying agents of their
position changes, and causes, Rcduxt performs a coordination service, allowing the
agents to adjust to each other’s changes.

We illustrate this notion with different aspects of design search in this paper.

However, we will not emphasize Redux terminology or search notions. First:, that
has been done elsewhere[4]. Second, it is important that these sear(’h notions map
onto engineering design process concepts. In Section 2, we discuss how the Redux
and FirstLink models map. The significance of this is that the search notions
do map. And, we show how the notions are used for important coordination
services. But the engineering design terms will be emphasized and are intended
to be sufficient for understanding without more precise definition of the Redux
terminology.

2 BASE Agent Interaction

Let us call the initial FirstLink agent interaction model the "BASE" model. Each
domain-specific agent sends "publlsh/request" types of messages to a C, entral N-
ode(CN) that is a generic agent that facilitates and mediates communications.
Each domain-specific agent has a set of capabilities according to the tasks it can
perform. Each task has a set of inputs and outputs, both of which are called design
featm~es. Given all of the vahms of all of the inpt,t features for a task, a.n agent
nlay then produce values for the task o|ltt)llts.

In a "backward chaJning" sequence of messages, one agent, say Al, will want
to perform task T~ and need all of the inputs for that task. Al will send request-
feature messages to CN for each of these. Each agent has previously registered its
capabilities with the CN. Thus the ON knows which of these inputs is an output
of the task of some other agent, say task 7~ of agent, A2. A value for this feature

108

is then requested I¥om ..42 by CAr, unless ,42 Ires previously supplied tim nee&,d
feature value. If CN already knows the value, it simply suplfiies it to An with a
feature-data message. But a rt’que.~t-feature’ message kicks off a similar process for
task 7~ by A2

When A2 has completed task T2k, it notifies CNof the availability of the output
feature values with a publish-features message. For each output that matches sonde
input of any other agent, such as Al, the CN will send A! a notif.q-ncw message
with the new set or features. Tlnen At will request tim valu(~s of the features tlm.t
matcln any of its task inl)uts for which values not yet known. Notice that if An had

not previously l)een working on some matching task It, the notify-new message
will provoke it to do so. Thus the overall computation may procee(I in a "forward
chaining" fashion also.2

A2 publish-features C N
feature = Output(T~)

C N notif.u-new , A1
= lnput(Tii)

A1 t~equest-feature , C N

when known

(Y /calure.data , A n
) ,,k(ulpul(2)~ { I’ n.pul(T~)},.u

wlmn unknown
C N 7,equest-featurc , A2

_"fon’wa.rd ,
chaining’

_"backwaD;d
chaining’

Figure 1: BASE Interaction Model

’Fine entire protocol sequence is ilhnstrated in Figure I. This protocol represents
the current state of the FirstLink system. In addition, when tim CN is notified

that a feature value has changed, any agent for which that feature is an input is
notified to recompute the appropriate task; all previous outputs of that agent an,d

task are considered invalid.
We would like to be able to map tide Redux ontology onto existing design a-

gents. The hypothesis is that the Redux model of design is sufficiently ubiquitous
that the ontology can be retroactively "wrapped around" the existing agents and
messages. In fact, we can make the simple translation for terms and semantics

’-’This overall design is duo to Andrew Conru.

109

shown below:

FirstLink
Task ~1’~

Feature
Output value

Input value

Red u x

Goal: to do "r~
Assignment Variable
Assignment
Dependent Assignment

publish-fealu~rs make (lecision
()utput(7~) with ;lssignnie, nl,

l+tolffy-new establish goal
Input(T() to perform ~7

request-feature dependent assignment
kl --+ C’N between A1 and A2

¯ 6 7~C N --+ A2 for ! i,

’[’hus, by allowing the Redux~ agent to listen to the sanle messages that go
through the CN, the former can convert these to the Re(lux ontology a.n(I seman-
tics. Change in feature values is handled tile sanle way by Redux’ as by the CN,

given this BASE model with no enrichment. The siguificance of this initial mat)-
ping is that Redux~ can shadow the existing system, performing the same filnctions
with the same messages.

3 Enriching the Model

Ilowever, tile BASE model of [,’irstLink interactions is not suf[icient for colla.I)ora-
tire design. There are several components of the design process this nlodel does
not address. Here we show that some of these are addressed by viewing the design
process as the coordinated search of the design space. Tile first design process
component we consider is subtasking.

3.1 Subtasking

If one task of aa agent requires one or more subtasks to be accomplished by other

agents before the supertask is done, a distributed design system should notify the
owner of the supertask when all of the subtasks have been completed. An example
subtask tree, taken from FirstLink, is shown in Figure 2. In AI search terms, the

satisfaction of subgoals needs to be propagated up the su bgoal tree(s) in the search
space. In concurrent engineering terms, the supertask isn’t completed until tile
sul)ta~sks are.

This basic design search control function is uot present in the BASE protocol.
It is also not a part of the basic KQML[1] protocol lbr distributed agents. This

110

is an excellent task for a generic StlAI)E[5] facilitator such as a Rcdux’ agent.
As shown by the small double-lined arrows in Figure 2, R.edu:r,’ propagate, s the
completion of tasks up the subtask tree. This is especially important, when the
tasks are performed by different agents. In this example, agent Aj nee<Is to know
when agents A2 and A3 have completed tasks ,r~ and "rJ respectively.*2 "3,

Goal satisfaction, or task completion, is one dimension of the design search

space that agents need to track. A second is whet|mr or not a task is iu pt~./rcs.~.
In search terms, this is whether or not a. goal has been re(luted. I¢.cdux’ tracks this

i)rogress of a task. Notice that a designer need not be notified when he makes
decision to work on a task: that the task is then in progress is to be expected. The
designer needs to know if and when that is no longer the case; there is unexpected

los.; of pro(jlvss.
So Redux’ tells an agent not only when a task is complete, but also when there

is progress loss becaus(, of the decision of some other agent or some new fact.
For example, the (’lamping configuration may no longer work if some other agent
changes the cable geometry. This represents a loss of progress in the design. The
designer must reattack the task of clamp configuration. Not only does A3 need to

be notified of this, but A1 needs to know tasks T~ and T~ are no longer completed
as previously thought. That is, there is also completion los.sa.

It may be that some design task is simply impossible to a(’complish in the
current state of design. Suppose, for example, the design cannot I)e Itroofe(I with
the rurrent clamping conliguration, llcdu:r’ not only records such a bh,ck, but notes
which decisions may need to be revised and which other tasks may be affected.

In the example, the block of task ,vJ by agent A2 means that A~ may have to"2
redetermine design features used to perform task T~2, which may affect the way
agent A3 has performed task 7"31.

l"inally, it. can also happen that given subtask becomes sulg:rfluous because
the SUl)ertask has l)een discarded. Whenever a. sl,I)ta,sk no longer has any wdid
juslilication, the owner of the sul~task should I)e nolilied. The task of delermining
clamping Ior a. cable branch will no longer be necessary if that I)ranch has been
eliminated by the cal)[e topology manager. In search terms, goal validity, or inva-
lidity, must be propagated down the subgoal tree(s). Redu.T~ also tracks this third

search (limension, notifying the agents affected. This can also affect (lesign feature
assignments, sin(’e those generated for a SUl)erfluous task I)ecome redundant.
examl)le, a l)articular clamp may no longer I)e required.

ah, fact, since there is no completion loss with<)ut loss of I)rogn’ss, notilications of the lal.l.er an"
surpresscd by notifications ()l’ the former.

111

7’:
Select

Solution

com
,2
1

Select
(:on tiguration

T? T:
Select ~ Verify
Jackets ~ t>ath

,1
2

Proof
Design

block

’Ill
CotLfigure
Claml)s

108,q

Figure. 2: Sul)l,a.sl¢ Tree

3.2 Decision Revision

Ill Redux.I, tasks lose progress and completion, or become superfluous because
of decision revision. A design decision is a decision to accomplish a task in a
particular way (perhaps involving subtasks). The subtask tree in Figure 2 was
developed by a series of decisions. An example is shown in Figure 3 in which task
/,2v was not the only result of the decision. The particular configuration to be
selected uses solid copper cable, which is a. design feature va.hw, ba.sed on initial
specifications.

task |

~ ion

i

] Use solid copper cable
I

featu~v value assignment
subtask

Figure 3: A Decision

If the decision is revised, the task is no longer in progress until n. new ,I,.cisim,

112

is made. If a decision is revised, its subtasks become superfluous, and so do all

the ones "below" them. Decisions may be revised during design for a variety of
reasons. Perhaps a planned part is not in stock; e.g., there is not enough copper
cable. This is a contingency that invalidates the decision to use the part. in
search terms, this path has been rejected, as well as all of the paths below it. For
concurrent engineering, one agent stating a fact such as the unavailability of a
part may invalidate a second agent’s decision. The latter must be notified, and

the effects of the decision revision propagated to other agents.

The rationale for the decision may also change. For instance, the agent in
charge of the parts catalog updates the cost of the part, making it more expensive
than previously believed by another agent that made a decision to use the part.
Such change present designers with possible opportunities to improve the design.
Perhaps old stock of twisted copper is actlrally cheaper now and should be used.

Or perhaps not. It is important that Redux~ notify the designer agent of the
need to reconsider the decision, but, unlike the case of contingencies, not auto-
matically retract the decision, possibly undoing much design work for little or no
gain. In any case, this is another type of change in the shared search space that
may need to be propagated among agents.

3.3 Constraints

In the Redux model, design decisions lead to exactly two kinds of results: su I)t~ks
and/or assignmeut of design feature values, as shown in Figure 3. Design feature
value assignments that have been decided have a status similax to subtasks. They
may become "invalid" because the decision that generated them has beell revised.
In all cases, the designer will want to know the status of the design features, as
well as the subtasks. Redux~ will certainly track this status, but such change can

also affect design rationale in an important special case.
Uonstraint violations occur when feature value assignments conflict. A con-

straint violation may involve as many agents as made the decisions that led to
the design features that are in conflict. Each agent needs to be notified of the
problem. A distributed system must identify the underlying decisions, and their
makers, and then assist in the resolution of the conflict. ’[’he special (:as(, involves

revision of a revisiou.
Suppose that two agents are involved in a conflict. It is (letfided that the

first agent will revise his/her decision. Perhaps that agent chooses to use more
expensive shielding for a cable thai. the second agent wants to route near a heat
source. This is illustrated in Figure 4, where decision D~ of agent A1 conflicts

with decision D~ of A2. Decision D] is retracted and decision D~ is made instead.
Now suppose A2 later independently reroutes the wire away from the heat. The

assigned placement of the cable next to the engine is invalid. The constraint no

113

longer applies. Redux~ will notify A1 that the heat shielding is no longer needed.

Route

Cable

ShieldingT~ItD~",Select

] Next to engine

I
1 1 constraint oiolation

............. .!.t
i Use standard insl.

Use heat shielding

Figure 4: A Decision Revision

In this last example, Redux~ is notifying the designer that he/she is going
down one path in the design space and has forgotten the path originally chosen,
which now should be reconsidered. Redux~ makes the assumption that the designer
prefers the first choice over the second and would like to know if ever it becomes

again available.

4 Summary

The general case, with subtasking and design features, is that agents interact
through a design space. The design decisions of one agent may change the glob-
al positioning of another agent within this space. By notifying each agent of
unexpected changes, and answering questions about location in this space, the
distributed system can help the agents coordinate their actions.

ReduxI assumes that tasks are initially neither in progress nor completed. In
fact, it assumes no action has yet been taken, so no constraint violations or blocks
exist. It will accept no decision for which a contigency already exists or with an
invalid rationale. Thus, the sort of changes that will cause notifications are task

completion, completion or progress loss, superfluous tasks, constraint violations,
blocks, and invalid decision rationales. These are ~11 unexpected changes in the
design space.

114

Finally, we note that Redux’ functions as a central node with the other Firstl,in k
agents but with no understanding of the cable harness design domain. It can never-
theless coordinate domain-specific agents, because it works with tile Redux model
of the design process to which each FirstLink agent conforms. This conformation
was not designed into the agents. It results simply because the search-based model
is generic to at least the configuration design domain. Thus Redux’ messages can
be "wrapped" around the existing design decisions with minimal modification of
the existing code.

References

[1] Finin, T., McKay, D., and]~¥itzson, R., "An Overview of KQM-
L: A Knowledge Query and Manipulation Language," Technical
Report, Computer Science Dept., U. of Maryland, 1992.

[2] Park, H., M. R. Cutkosky, A.B. Conru and S-H Lt~, "An Agent-
Based Approach to Concurrent Cable Harness Design," Tech Re-
port CDR 19930217, Center for Design Research, Stanford Uni-
versity, Stanford, CA, 94305.

[3] Petrie, C., "Constrained Decision Revision," Proc. AAAI-92. Al-
so MCC TR EID-414-91, December, 1991.

[4] Petrie, C., "The Redux’ Server," Proc. Internat. Conf. on Intelli-
gent and Cooperative Information Systems (ICICLe), Rotterdam,
May, 1993. Also MCC TR EID-001-93, January, 1993.

[5] Tenenbaum, J., J. Weber, and T. Gruber, "Enterprise Integra-
tion: Lessons from SHADE and PACT," Enterprise b~tegration
Modeling, C. Petrie, ed., MIT Press, October, 1992.

115

