
Computer supported collaborative engineering

D. Sriram
Intelligent Engineering Systems Laboratory

Dcpm’tmcnl of Civil and Envirtmmcnt,’d l::nginccring
Mas.~lchu.,~ctt~ hmtilulc ¢ff’l’cchnology

C;unbridgc MA 02139
USA

! Inlroduclion

l:.ngineering projects, in general, involve a large nun)bcr of components and the interaction of
multiple technologies. The components included in tile product are decided in an iterativc
design process. In each iteration, interfaces and interface conditions among these components
are designed with slack to account for potential variations created when the components and
interface values become better known. Iteration proceeds towards increasing detail; design
personnel may change, and their numbers expand with increasing level of detail. This is trt,e lot
both large systems and small systems.

The above m u lli-faceled tlature of engineering problems demands considerable comm t, nication
and coordination between various participants. Hence we view, engineering as a collaboratiw’
process. Ill other words, research ill compt, ter-aided engineering should strive to address
various issues involved in the collaborative nature of engineering product development.

I will illustrate our view with an example. During a leclt,re on case-based design, I asked tile
sit,dents in my class to design an aircraft engine that uses an alternative source of energy (i.e..
tliffcrcnt than the sources t,setl in ctnrrenl commercial aircraft). ! :list) gave them a list 
tlcviccs, such as winthllill.’~, electrical reelers, etc. Mal~y of them came up with designs that
logically made sense (e.g.. attach a windmill to the aircraft propeller), but will never work
because tile designs violated other concerns, such as the laws of thermodynamics (for an
cxpkmalion, see Spalding and Cole’s book on thermodynamics). Hence, engineering design
involves an interplay belween various disciplines. My experience in condt, cting protocol
studies at several industrial situs further reinforced my view about the collaborative nature of
enginecring design.

1 bclie\e that computer.~ could play a significant role ill facilitating collaboration among
engineers. One could envision a framework where several agents, where each agent could bc
viewed as a combination of a huma~l and a comptJter, participate in a design process through a
shared workspace. This could bc viewed as a collaborative agent-based framework. In this
paper I will di,,,cuss the v~,’ious research issues that need be addressed by engineers, computer
scientists, m:magers, psychologists to realize the collaborative agent-based framework.

2. Research Isst,cs

117

From: AAAI Technical Report WS-93-07. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved. 



personnel. We believe that tile following resemch areas will need to be addressed (see Figure
I).

1. Frameworks

Negotiation/
Constraint

Designer

, Design I~:llionalc (I)ala Models)
,:: .:.:::,-
¯ i~i~b. ..::::::."

::::’:::::.,.,;:¢

Design Agents

Fabricator

’:::

::~i~i."

i!iiiii~.

). (.’Olliln ilOlit’alion

Archilett

Organization and

Figure 1: Research Issues for Computer-aided Collaborative Engineering



i. Frameworks, which deal with problem solving architectures.

2. Represent:ilion Issues, which deal with the development of product models needed for
c()mnlunicating int’ornlation across disciplines.

3. Organizational Issues, which investigate strategies for organizing engineering activities h)r
effective utilization of computer-aided tools.

4. Negotiation/Constraint Management Techniques, which deal with conflict detection and
resolution between various agents.

5. Transaction Managenlen! Issues, which deal with the interaction issues between the
agents and the central communication medium.

6. Design Methods, which deal with techniques utilized by individual agents.

7. Visualization Techniques, which include user interfaces and physical modeling techniques.

8. Design Rationale Records, which keep track of the justifications generated during design
(or other engineering activities).

9. Interfaces between Agents, which support intbrmation transfer between various agents.

10. Communication Protocols, which facilitate the movement of objects between various
applications.

3 Frameworks: Coml)uler Architectures

Computer architectures deal with problem solving architectures. Most of the current work in
this area utilizes a variation of the Blackboard architecture, developed in AI. Other types of
architectures are reported in the proceedings of the workshops on distributed AI.

Over the past five years we have been working on a computer-based architecture called DICE
(Distributed and Integrated environment for Computer-aided Engineering) which is aimed 
addressing the coordination and communication problem in engineering. Essentially, DICE
can be envisioned as a network of agents or Knowledge Modules (KMs) which communicate
through a shared workspace: we call this shared wo,’kspace a Blackboard. In DICE, an agent is
viewed as a combination of a user and a computer. Interfilce modules, p~xwided at the agent
level, will map the representations used by the agents to the shared workspace and vice versa.
Agents (or KMs) in DICE are categorized into: Strategy, Specialist, Critic, and Quantitative
KMs. The Strategy KMs help the Control Mechanism in the coordination and communication
process. The Specialist KMs perform individual specialized tasks of the design and
construction process. The Critic KMs check various aspects of the design process, while the
Quantitative KMs are mostly ,’algorithmic CAD tools. The shared workspace (Blackboard) 
divided into three partitions: Solution. Coordination, and Negotiation partitions. A large part of
the shared workspace is being implemented as an object-oriented database. The key
components of this database arc: Storage Manager, Object Manager, Transaction Manager, and
Query Manager.

119



4 Product Modeling: SHARED Information Model

A basic issue in developing collaborative engineering systems is the representation of the
product information which supports sharing. This product information should include not only
the geometric data of the physical parts of the product and their relationships but also non--
geometric information such as details on functionalities of tile parts, constraints, and design
inlent. Requirements fbr such a design representation are:

* Support for multiple levels of abstraction and different functional views. This is needed
to allow a top-down design process which involves tile refinement of levels of functional
abstraction into physical parts;

* Support of multiple levels of geometric representation. Geometric and topological
information are an important part of design. However, at different stages in the design process,
different levels of geometric representations might be required; and

* Management of constraints. Constraints between tile different representations and
abstractions during evolution of the design should be properly managed. Constraint
management facilities help in maintaining the integrity and consistency of the database.

Besides, the representation should be reasonably general, hence allowing for the addition of
new abstractions or physical components without requiring extensive changes. Furthermore,
there is the requirement for mapping it onto a distributed database environment, which
supports persistency and concurrenl access in the shared workspace.

Our work aims at providing a fl’amework for representing product information in a shared
workspace which supports the requirements outlined above. The focus is on the development
of general concepts such as geometric representations and abstractions of general properties
such as concepts of "compositional" hierarchies of systems and components. These can be seen
as primitives in ot,r model, which is called SHARED.

SllARED is a tool kit/fi’amewo,’k for developing environments which need to model,
manipuhlte, and communicate design inl’ormation between distributed cooperating applications,
while supporting coordination between them. The SHARED tool kit is based on the SHARED
information model which provides generic information structures needed tor modeling product
information through various design stages and fi’om different functional views. SHARED also
provides various services which are required by cooperating design applications. These
include persistency, integrity checking, querying, transaction management, and notification
services. Hence, the SHARED information model, together with the support services
embedded in the SHARED framework presents a powerful system which should reduce the
amount of work needed for developing environments for cooperative product development.

5 Organization and Process Models

l:’rotocoi studies on how engineers work together in groups (both large and small systems)
could help us develop a language (with all the necessary vocabulary) that forms the basis for
all collaborative engineering activities could be developed. Another important focus of these
studies could be the investigation of strategies for organizing engineering activities tot"
effective utilization of computer-aided tools.

120



We ,’tre conducting protocol studies on team design. These studies are being conducted over an
extended period of time on designers working on real world problems, i.e., these designs will
go through the engineering product life cycle. In another related work, we showed how an
existing design can be reverse engineered through the use of collaborative specialists. A
much larger effort at the MIT’s Center for Coordination Science involves the development of
a process handbook, which aims "to develop theoretical foundations, as well as a computer-
based tool, that will aid in the design and analysis of both business processes and
organizational structures."

6 Negotiation and Constraint Management

6.1 Negotiation

In large engineering projects, conflicts can occur either due to interfilce constraint violations or
due to contradictory modifications of a single object, For example, a HVAC engineer may
decide to place pipes at a cerl:|in location. However, an architect may also decide to place a
beam at the same location. These conflicts can only be detected once the two designs have been
generated "rod sufficient constraint propagation and/or modeling has been performed. Another
type of constraint violation occurs when an engineer makes changes to a partial solution
generated by another engineer. The two participants may or may not have similar roles in the
system. For example, two architects may disagree on the location of the walkway, or the
HVAC engineer might want to change the depth of a beam posted by the a structural engineer
in ordex" to put some pipes through it.

We have identified two types of techniques to address the negotiation problem: constraint
relaxation and goal re-specification. The first attempt to negotiate involves traditional
constraint relaxation techniques and implements a technique called compromise bargaining.
Assuming that the conflict is due to constraint violations of certain design parameters, the
system can act as a third party and offer compromise values to each party until an agreement is
reached. In order to allow this scheme to ftmction properly, each value posted on the
Negotiation Blackboard has to be accompanied by a constraint. Each constraint must specify
the range of possible values. These constraints can be either soft or hard constraints.

The second set of techniques involves the redefinition of design goals. The KMs (agents) are
asked to negotiate on a more abstract plane. It is considered that the set of conflicting
constraints are the concrete expression of an abstract hierarchy of goals. At the root of this
hierarchy is the goal of designing and constrt|cting the artifact for which the design team has
been set up. Each participant develops his/her own hierarchy of personal goals. By helping
the KMs find an agreement goal and developing a common set of more detailed goals, the
system achieves integrative ,’lgreement.

6.2 Constraint Management

Constraints are continually being added, deleted and modified throughout the development of a
new product. For example, the initial set of specifications may be augmented, changed and/or
refined as the design progresses. The resulting constraint set may contain conflicting and/or
unrealizable requirements. The management of these constraints throughout the evolving
design is a non-trivial task. The constraints are often numerous, complex and contradictory
(see Serrano’s doctoral thesis at M.I.T. for more discussion about the role of constraints in
engineering design). In complex engineering problem solving, where form, function and
physics interact strongly, it is difficult to: I) keep track of all relevant constraints and

121



parameters, and 2) understancl tile basic design relationships and tradeoffs. Effective tools for
constraint vuamlgement will facilitate good engineering; constraint management tools also aid
in the negotiation process.

We are implementing a system -- called COPLAN -- which uses plmming techniques to solve
constraint satisfaction problems (CSPs). A plmmcr is used as a top-level control process,
guiding the search for It solution aml producing an :lfq~rol~riate soh~tion plan when tile
problem is solvable. The CSP is described by a goal. Usually the goal states which constr,’fints
should be satisfied but is more generally a list of assertions that should be true in the final
world. The planner produces a non-linear plan at an abstract level where the different steps
needed to achieve the goal are partially ordered. At the bottom level, numerical and symbolic
methods are chosen in the order defined by the plan. The execution of a phm consists in
executing the above procedure. This is very efficient in the case where one wants to vary a
parameter over It certain range and to study its influence on other values for a given CSP.

7 Transaction Management

Collaborative engineering environments require a flexible framework for concurrency
management of highly interleaved and interactive transactions. Traditional database
management systems tend to control concurrency and maintain database consistency using the
notions of atomicity and serializability of transactions. Serializability is founded on the
assumption that individual concurrent transactions run oblivious to each other and do not
interact in the middle of their execution. By enforcing serializability, the DBMS ensures a
consistent database state irrespective of tile nature of the transactions.

Though serializability is adequate (and even desirable) for financial applications, since
CAD/CAE transactions are often of long duration, it is higMy inappropriate for such work
because it inhibits information sharing and may result in reduced concun’ency and intolerably
long waits. Collaborative engineering, is based on the notion that units of work nttdst interact,
so that the results are usable together. Besides, in engineering design the notion of data
"correctness" is more relaxed and is application or context specific, i.e., it depends on the
nature of the design operations. Serializability is thus too limiting a correctness criteria for
such work, and hence more flexible concurrency control protocols need to be used. Special
considerations are therefore necessary for the design of a more flexible and efficient transaction
management system which allows a group of cooperating transactions to arrive at a complex
design without being forced to wait over a long duration, and enables collaboration among
design groups.

We have developed and prototyped a transaction framework for facilitating and coordinating
collaborative engineering activities using object-oriented databases. The key features of our
transaction managernent model inchnde: transaction nesting and grouping with partitioned
dataspaces for encapsulation of non-serialized data sharing, exploitation of application
semantics to ensure data consistency, communication facilities, and version management for
parallelism and documentation of design evolution.

122



8 Agents

Agents perform specific tasks, For example, a conceptual design agent generates a preliminary
design. Most of the current work is focused on the development of generic design and planning
shells, that form part of the design and planning agents. These shells tend to be domain
independent and incorporate certain problem solving methodologies, e.g., case-based
reasoning, hierarchical refinement, constraint propagation, qualitative reasoning, etc. Key
issues in the development of design shells are:

1. Problem Solving Support. What kinds of problem solving techniques (e.g., hierarchical
refinement, qualitative reasoning, first principles reasoning, etc.) need to be incorporated in the
shell?

2. Representation. How does one represent structure, ftmction, behavior, geometry, design
rationale, etc.’?

3. Index and Retrieval.. What schemes are required for using function, structure, sub-graph
matching, behavior, etc., for indexing and retrieving past designs?

4. Data Quality. How is the fuzzy engineering data represented and processed?

We are developing a shell -- called CONGEN -- for supporting various kinds of design
activities. CONGEN supports the hierarchical refinement and constraint propagation problem
solving techniques. A design rationale and intent model (DRIM), a comprehensive knowledge-
base, and a case-based reasoner are being incorporated. Other agents that we have developed
over the years are: 1) GHOST and BUILDER for scheduling construction projects; and 2)
DATON for detailed design of steel structures.

9 Visualization of Engineering Information

Engineers make extensive use of diagrams (images) to convey their ideas. They also like to see
scientific information (or data) to be conveyed by visual diagrams (images). Hence computer-
based systems for engineering should have the ability to: 1) recognize and understand
diagrams, and 2) generate diagrams. The study and development of the methodologies required
to provide above capahilities in a computer program falls under the reahn of Visual
Languages. Visual languages can be classified into: 1) Visual Information Processing
Languages (VIPL), and 2) Visual Programming Languages (VPL). In VIPL, the objecL,; that 
displayed on the screen (by the engineer) have inherent visual meaning, i.e., the object has
some semantic meaning associated with it. The task here is to map these objects into their
semantic content. An example of VIPL is spatial reasoning about engineering objects. On the
other hand in VPL, the visual diagrams are generated on the screen from scientific (or
otherwise) data and it is left to the engineer to extract the semantic meaning of these diagrams,
e.g., current work on solid modeling. It is also important to realize that these visual languages
should be portable. Hence, they should be developed in an environment that is portable across
a variety of hardware, such as the X Window system, which is rapidly gaining acceptance as
~111 iildtislry slandlil’d.

123



Our work is focused on the following areas:

I. Symbol to Structure Mapping. Various design alternatives are mapped fl’om a symbol
space to a geometry space.

2. Interpretation of Engineering Drawings. Tile semantic content of engineering drawings is
extracted in the form of design objects and relationships between these design objects, in an
appropriate agent’s space (or view).

3. Geometric Modeling. Geometrical information lbrms an important part of the information
about a product. Solid modeling captures the "complete" representation of 3D solid objects.
However, in design, objects usually evolve fl’om sketchy form of lower dimensionality during
the conceptual stage to complete 3D models at the detail design stage. It is important that this
evolution of design objects be captured, not only for preserving possible geometric constraints
of these early design decisions on later designs, but also to allow communication of concepts
during the early design stages. The later is especially important for cooperative product
development. The non-manifold geometric representation scheme provides a uniform
paradigm for representation and naanipulation of mixed-dimensional models. This makes it
suitable for capturing the design ew)lution. We have implemented an object-oriented non-
manifold geometric modeler--GNOMES -- for capturing geometrical information at various
stages of design. GNOMES is utilized by our SHARED information model.

10 Design Rationale

One problem with current design practice is the lack of information about engineering
decisions. Hence, any future CAE tool should incorporate techniques to encode design rationale
about both the overall process and the individual choice points.

The design rationale and intent model (SHARED-DRIMS), which is being developed as a part
of our DICE initiative, provides a methodology for encoding design rationale and intent both
at the individual design agent and the shared workspace levels. In particular, SHARED-
DRIMS helps the engineer to document the lbllowing: intent evolution; artifact evolution;
relationships between intents and between intents and artifacts; and negotiated rationale from
multiple agents. The key advantage of our model is that it provides a complete picture of the
design rationale to agents participating in the collaborative engineering activity.

I 1 Data Mapping and Query Processing

in a collaborative environment, agents may work with different representations. Hence, there
is a need f’or translation of information (both syntactic and semantic mappings) between the
shared workspace and local applications. Further, facilities are needed for status checking and
monitoring; for communication between the shared workspace and users; and for
c(x~rdination. We are working on tools for integrating heterogeneous applications. Our tools
perform both syntactic and semantic translations between the shared workspace and local
applications, In addition, facilitates for distributed query processing are being incorporated.

124



12 Communication Frameworks

f;omnlunication is an important prerequisite for the success of any cooperative work. It is
required for tile coordination, negotiation and cooperative development of engineering ideas.
There are several ways to address this problem.

1. Electronic Message System. At the simplest level electronic mail could be used for
communication.

2. Electronic Video/Audio Conferencing System. This would allow conferencing between
users who are geographically separated. Users should be provided with a shared window
which displays the information of a shared workspace on their individual displays. The shared
window could allow users to edit and process the information of the shared workspace
dynamically. An important use of the conference system will be in negotiation.

Research into how pet)pie communicate should help us address the above issues,. We have
developed and demonstrated a framework lk)r cooperative user interfaces.

13 Summary

In this paper, I have espoused a view that engineering is a collaborative process. The future
of computers in engineering will depend on how effectively we can build tools for
collaborative activities. 1 believe that the development of a collaborative agent-based
architecture should be undertaken. This would involve a close cooperation between computer
scientists (databases, Ai, communications, visual information processing), psychologists
(negotiation. conflict resolution), managers (organization), and engineers (domain).

Six years ago, we have embarked on the development of a set of tools for supporting
collaborative engineering activities. The main contributions of this venture -- the M.I.T. DICE
project -- are:

1. An object-oriented blackboard architecture (DICE) that supports persistent objects
(Publication: Sriram, D., Logcher, R., Groleau. N., and Cherneff, J. , DICE: An Object

Oriented Programming Environment for Cooperative Engineering Design, Technical Report
IESL-89-03, IESL, Dept. of Civil Engineering, M. I.T., 1989 IAlso appeared in AI in
Engineering Design, Tong, C. and Sriram, D., (editors), Academic Press, 19921).

2. An object-oriented knowledge-based building tool (COSMOS), which integrates rule-based
and object-oriented programming paradigms in a C++ environment
(Publication: Sriram, D., et al., An Ohject-Oriented Knowledge Based Building Tool Jot
Engineering Applications, Technical Report, 1ESL, 1991 ).

3. A domain independent C++-based shell fl)r conceptual design (CONGEN)
(Publication: Sriram, D., el al.. Engineering Cycle: A Case Study and hnplications for CA E,
In Knowledge Aided Design. Green, M (editor). Academic Press, 1992.

4. The concept of shared workspaces for storing product inff)rmation that is shared by various
engineering disciplines

125



(Publication: A. Wong and D. Sriram, SHARED: An lnjbrmation Modelj’or Collaborative
Product Development, Research in Engineering Design, 1993).

5. A transaction management fi’amework that supports long duration interleaved CAD
transactions
(Publication: Ahmed, S., Sriram, D., and Logcher, R., Transaction Management Issues in
Collaborative Engineering, ASCE Journal of Computing in Civil Engineering, January 1992
and Engineering with Computers, Fall 1992).

6. User interfaces for collaborative work
(Publication: Wong, A., Sriram, D., and Logcher, R., User Interfaces for Cooperative
Product Development, Proceedings of the Second National Symposium on Concurrent
Engineering, West Virginia University, Feb., 1990).

7. Prototype implementation (MagpieBridge) in a commercial object-oriented database
management system (GEMSTONE)
(Publication: Sriram, D., Logcher, R., Wong, A., and Ahmed, S., Computer-Aided
Cooperative Product Development: A Case Study, International .Iournal of Systems
Automation: Research and Applications(SARA) 1,91-114, 1991).

8. A constraint management system that utilizes AI planning techniques (COPLAN)
(Publication: Fromont, B. and Sriram, D., Constraint Sati.~faction as a Planning Process.
A! in Engineering Design, Held at Carnegie Mellon University, July, Kluwer Publishers, July
1992.)

9. DATON, BUILDER, and GHOST, which are design/planning agents
(Publications: Agbzyani, N., Sriram, D., and Jzyachzndran, P., An Object Oriented
Framework Jbr Steel Design: Implementation Issues, Computing Systems in Engineering,
1992 I DATON 1.
Cherneff, J., Logcher, R., and Sriram, D., Integrating CAD with Construction Schedule
Generation, ASCE Journal of Computing in Civil Engineering, January 1991 [BUILDER].
Navinchandrn, D., Sriram, D., and Logcher, R., GHOST: A Project Network Generator,
ASCE Journal of Computing, July 1988 [GHOSTI. )

14 Credits

The DICE project is headed by D. Sriram and Robert Logcher. Nicolas Groleau worked on the
initial implementations of DICE. Albert Wong worked on the user interface module and the
shared workspace concept. Shamim Ahmed was responsible for the transaction management
fi’amework. CONGEN was a joint effort between S. Gorti, A. Nishino, Kevin Cheong, and
Parin Gandhi. Bruno Fromont and Fred Garcia are working on the constraint management
system. Nestor Agbayani’s SM thesis dealt with DATON. Jonathan Cherneff addressed the
drawing interpretation problem in his doctoral dissertation. He was the prime architect of the
BUILDER system. Also, discussions with him helped us to reformulate and rationalize our
thoughts in a more coherent manner. Navinchandra was responsible for the GHOST system and
the initial work on a case-based reasoner (CYCLOPS). Feniosky Pena is currently working
on SHARED-DRIMS, the design rationale intent model. S. Gorti is responsible for the
symbol to structure mapping of design alternatives. Query and storage manage facilities of
DICE are being implemented by Murali Vemulpati. Domain aspects (in the AEC industry) 
DICE were addressed by Miriam Gross and Erik Swenson.

126



Funding for tile DICE project comes fi’om the IESL affiliates program and a NSF PYI Award
No. DDM-8957464, with matching grants fi’om NTT Data, Japan and Digital Equipment
Corporation, USA. Partial support for Albert Wong was provided by Gleddon Postgraduate
Studentship from the University of Western Australia. Kevin Cheong was supported partially
by a X-Window consortium grant. Bruno Fromont’s fellowship came from Aerospatiale,
France.

127




