
SHADE: Technology for knowledge-based
collaborative engineering

D. R. Kuokkaz, J. G. McGuirez, R. N. Pelavinz, J. C. Webers,
J. M. Tenenbaum~, T. Grubera and G. Olsena

1Lockheed Atificial Intelligence Center
3251 Hanover Street

PaloAlto CA 94304-1191 USA
2Enterprise Integration Technologies

459 Hamilton Ave, Suite 100
PaloAlto CA 94301 USA

3Knowledge Systems Laboratory
Stanford University

Stanford CA 94305 USA

Abstract

Information shying and decision coordination arc central problems for collab-
orative product dcvclopmcnt and enterprise-wide coordination. Designcrs, man-

ufacturing cnginccrs, and marketing engineers nccd to assess the impact of their
decisions and notify affected parties as the product evolves. Yct, cxisting CAD

tools tend to isolate information at tool boundarics, or make overly-strong com-
mitmcnts to an all-encompassing common model. Furthcrmorc, there is oftcn no
automatcd support outside of thc design function. The SHADE (SHAred Dcpcn-

dcncy Engineering) project is working on knowlcdge-b~cd methods to improve the
communication in the product dcvclopmcnt process. Thcre arc three mare compo-
nents of SHADE: a shared knowledge representation (language and domain-specific
vocabulary); protocols for information cxch,’mgc enabling change notification and
subscription; and facilitation scrviccs such ,as contcnt-dircctcd routing ,~nd intelli-

gent matching of information consumers and producers. SHADE is being applied
to sew’r~d real domains, including the Palo Alto Collaborative Tcstbcd.

1 Introduction

Product development is a complex, knowledge-intensive process typically carried out by

a team working from multiple perspectives. The decisions made by one team member,

working on one aspect of the product, usually have significant intpact on othe.r team

members. Fttrthermore, knowledge possessed elsewhere in the team is often needed to

make more informed decision. Thus, a serial model of product development, whet(, the

emerging design passes from one engineering function to another is often inadequate. A
more interactive, coordinated approach is needed, giving rise to the fields of concttrrcnt

engineering and enterprise integration.
At tiw heart of effective concurrent engineering is communication. In product devel-

opment, something is ahvays changing perhaps a design requirement, aa unanticipated

245

From: AAAI Technical Report WS-93-07. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

simulation or test result, the availability of a component, or an improvement to the manu-
facturing process. Reacting quickly to such changes is essential for quality and productiv-
ity, and getting the information to the right place is aa essential prerequisite. Designers
need to assess the impact of their decisions on each other, and notify the affected parties in
an appropriate way. Effective communication is especially important whenever anything
affecting other aspects of the design changes. Otherwise, unanticipated interactions may
lead to expensive last-minute redesigns.

While computers are used extensively in product development, existing tools do little
to facilitate information sharing and coordination. In fact, current tools often aggravate
the problem by isolating information at tool boundaries, creating islands of automation.
Most computer tools support specific tasks in engineering (e.g., geometric modeling, anal-
ysis), manufacturing (e.g., process planning, scheduling) or business (e.g., cash flow anal-
ysis). However, the transfer of relevant information from one tool to another is sometimes
impossible. Often, the only output of one tool is a piece of paper that is mailed or faxed
to team members in other departments. Those individuals must then re-(,nter the relevant
information in the format required by their tools. Due to this inefficiency, designers end
up making decisions on the basis of inconsistent or out of date information. Moreover,
only information concerning the artifact is generally available; critical information about
the decisions leading to design choices and their underlying rationale is rarely documented
effectively. For team-oriented product development to advance, the communication must
be improved.

This paper gives aa update on the SHADE project [Gruber et al. 1992, McGuire et
al. 1992], a joint effort by the Lockheed AI Center, Stanford Knowledge Systems Lab,
and Enterprise Integration Technologies. The SHADE project is primarily concerned
with the information sharing aspect of the concurrent engineering problem. Our solution
is to provide a medium that allows designers, through their tools, to accumulate and
share engineering knowledge spanning the functionality of individual tools. This involves
more than networking the tools together (to be practical, the design tools need to remain
distributed due to the complexity inherent within individual design aspects). First of all,
common knowledge-level representation, that spans the intersection of all the engineering
tools, is required. Second, since the exact information needs of one team menfl)er catmot
be known by another, there must be a means by which information needs and capabilities
can be exchanged and acted upon. Finally, since the overhead of increased communication
can be large, there must be a set of services that facilitate the communication, off-loading
the burden on the individual team members and tools.

Of course, a communication infrastructure is not useful without a set of tools to
populate it, and a tool must assume certain responsibilities before being capable of in-
teroperating within the SHADE environment. The tool must understand the common
knowledge representation, speak the knowledge transfer protocols, and be able to make
use of the facilitation services. A tool that satisfies these requirements is said to be an
agent. Therefore, the general approach of SHADE is termed agent-based integration.

In fact, SHADE is one project within a larger cooperative community looking at related
issues. PACT [Cutkosky et al. 1993] is a landmark demonstration of both the collabora-
tive research effort and of agent-based technology. Work on federation architectures and

246

agent-based software engineering [Genesereth 1992] has served as a basis for much of the
research in this area. The DARPA Knowledge Sharing Initiative [Nechcs et al. 1991, Patil
et al. 1992] is a community-wide effort to provide an adequate representational framework
for man}’ projects. The Knowledge Centered Design project [Kuokka e.t al. 1993] is fo-
cusing more closely on the problem of transforming existing tools into agents that are
capable of communicating via the SHADE infrastructure. Another l)roject at Lockheed,
called Cosmos [Mark et al. 1993], is focusing on providing support for negotiation and
commitment reasoning within the SHADE infrastructure. Finally, the SIIARE project
[Toye et al. 1993] is looking at a wide range of intbrmation exchange technologies in order
to help engineers and designem collaborate in mechanical domains.

2 Approach

Three basic components are embodied in the SIIADE approach to agent-base integration,
corresponding to the three requirements outlined above. First a common vocabulary must
be defined to allow tools to express shared dependencies among themselves. Second, a
set of protocols of interaction must be defined that permit advanced knowledge sharing.
Finally, a set of basic facilitation services is re£uired.

2.1 Shared Representation to Bridge Tool Perspectives

The first component of SHADE is a shared ontology: a formal specification of a shared
conceptualization that provides the representational vocabulary with which agents can
communicate [Gruber 1993]. The need for a shared ontology is a direct result of the
multi-disciplinary nature of engineering. There are many different views of a design
(fimction, performance, manufacturing), each with a largely different language. However,
the various persl)ectives typically overlap, necessitating the sharing of information if design
is to proceed concurrently and cooperatively. For information to be shared, there must
be a comnmnly tmderstood representation and vocabulary.

Whereas the language must be demonstrated as being expressive enough to bridge
relationships among participating agents used in multi-disciplinary design activities, this
does not imply that it must be capable of expressing the union of all distinctions made
by participating agents. Man)’ portions of a design space are of iilterest only to (me
agent, while other portions must be common to many agents. The challenge is to SUl)l)ort
different degrees of knowledge sharing, from arms-length knowledge exchanges to strong
common models.

SttADE acknowledges this range of knowledge sharing by presupposing an increment;d
evolution of language that allows the encoding of progressively richer dependencies across
tools. The language evolution would proceed from an encoding of simple dependenries
among opaque elements ("object X is in some way dependent on object Y") to the gradltal
introduction of common models (~’Y.b = 2, X.a + 3") to explanatiotls of (’ausality
causrd Y to fair’). This evolution would enable increasingly sophisticatt,d types of change
notification and interaction ~mlong designers. Of course, it also inlposes gre~ter demau,ls

247

upon the SUl)porting communications infrastructure.
To better support tile development of shared ontologies, SIIADE is workillg on systems

and techniques for building ontologies, and applying them to construct specific vocabular-
ies for engineering. To establish conventions, promote rigor, and facilitate enhancement
and extensibility, ontologies are defined within a widely accepted, formally defined rep-
resentation, +rod the related vocabulary is modularized into hierarchical theoL’ies. The
r(,presentati<~n, tools, techniques, and theories are discussed below.

2.2 Protocols for Coordination Among Tools

The second major component of SIIADE follows from th(, realizatiol, thar r(,am nmmbers
are inherently distributed in the real world of engineering. A set of protocols is needrd
to guide the knowledge transfer within the shared environmel,t, thus emd)lillg a diversr
user comnmnity to work together effectively.

A major part of the SHADE effort is an ongoing contribution to the (,volving Knowl-
edge Query and Manipulation Language (KQML) [Finin et al. 1992] bci~g defined by the
External Interfaces working group of the DARPA Knowledge Sharing Initiative. KQML
is an agent communication language whose message types have specific semantics and
impose constraints on the agents uttering the messages, The protocols of interaction are
embodied within the semantics of individual message types. That is, agents communicate
effectively by abiding by the constraints imposed upon their behavior by the semantics of
the messages they issue.

KQML only provides a protocol by which agents can communicate their attitudes
(belief, interest, expectation). It makes no commitments to policies such as honesty,
accuracy or completeness. That is, an agent may assert a piece of information without
actually having support for the belief. However, for effective communication to occur, a
collection of appropriate policies will have to be in effect. SHADE is actively investigating
policies, on top of KQML, that support effective communication among agents.

By way of example, consider a design tool interacting with other tools within the
SHADE infrastructure. The elements of the shared design model are actually distributed
among the individual agents. Each individual agent maintains a portion of the shared set
of beliefs (either embedded within tool-specific data structures or contained within the
wrapper’s knowledge base). To be recognized as an information service contributing part
of the virtual knowledge base, an agent would use KQML to advertise its information-
producing potential, or capabilities. Conversely, an agent would use KQML to declare
its interests in relevant portions of the shared model, thereby enabling notification and
information matchmaking. Advertisements and interests create virtual shared knowledge-
based even though the actual information is distributed.

2.3 Facilitation Agents to Ease the Communication Burden

The third major component of SHADE is aa (extensible) suite of core. framework services
to facilitate communication and coordination among agents, tlmreby rr.ducing the I)urdru

248

on individual agents. These services are implemented by special facilitation agents corl-
nected to the infrastructure much like application agents. Example sel~’ices include 1)
message routing and nameservice, 2) translating between different (locally opaque) repre-
sentations. 3) subscription and notification services, 4) matching information consumers
producers based on descriptions of their information interests and information-producing
capabilities (matchmaking), and 5) providing active constraint management of dependen-
cies spazming several design-tool perspectives.

A representative facilitation se,n, ice is content-based routing: the intelligent routing
of information among participating tools based on previous subscriptions. This allows
an agent to send a message without having to determine exactly which other agents are
interested. As networks of agents get larger, this becomes a necessity as opposed to a
convenience.

For content-based routing to work, however, agents must post every piece of informa-
tion that they derive (that is translatable into the shared representation). This makes
feasible for a logically centralized facilitator to check all new infor,nation against interest
criteria and route information appropriately. The flaw in this scheme is that an agent can
produce man)’ types of information and (assuming a pay for a seln’ice scheme) probably
will not post information unless someone has explicitly requested it. What is needed is a
facilitation service that locates information p,’oducers capable of fulfilling outstanding iu-
terests and manages subscriptions to these information producing seth’ices so that neech~d
infor,natiou is posted. This would ease the burden on individuM agents since they could
rely on the infrastructure to locate service providers. Such a facilitation agent is called a
matchmaker, and is discussed in more detail below.

3 SHADE Technology Elements

The above elements of SHADE have been under active investigation. Several specific,
albeit partial, solutions have been developed so far. This section outlines the major
results to date.

3.1 Representation of Shared Design Knowledge

An ontology is an explicit specification of a conceptualization. A conceptualization is
defin(’d l)y the objects, coucel)tS, and other entities that are presumed to exist in sore(,
area of intcr(’st and the relationships that hold among them [Gcnes(,reth aud Nilsson 1987].
A conceptualization is an abstract, simplified view of the world that we wish to represent
for some purpose. Since the set of objects and relationships in an agent are reflected iu
the representational vocabulary, an ontology can be given as a set of definitions for this
shared vocabulary.

The common ontology, and the sentences using that ontology, must be represcntabh,
in a implementation- and agent-independent format. The format used in SIIADE is (’all~(1
KIF (Knowledge Interchange Format) [Genesereth and Fikes 1992], which is a product
the DARPA Knowledge Sharing Initiative. KIF is a machine-readabl(, w,rsion of first order

249

predicate calculus, with extensions to enhance expressiveness. KIF is the content language
for the SHADE framework. The KIF specification defines the syntax and semantics: the
ontologies define the l)roblem-sl)ecific vocabulary; agents exchange senten(’~,s in KIF using
the shared vocabulary.

Since individual engineering tools have specialized internal formats, there is a ne(’d to
maintain l)ortal)h: ontologies I)y providing translation ntechauisms into and out of a shared
rel)resentation. Consequently, SHADE is using the Ontolingua [Gruber 1992] system to
develop and maintain its ontologies. Ontolingua provides a layer on top of KIF for writ-
ing definitions and translating them into implemented representation systems. Ontolingua
can translate class, relation, function, and object definitions into several knowledge rep-
resentation systems. It specializes in translating to ob.ject-centered rel)r(’s(’ntations, such
as those used in frame systems and object oriented data description languages.

To ground our efforts in ontology construction, we have focused on the exchange of
knowledge between several key perspectives in mechanical design, such as the exchange
between a controls engineer and a rigid body dynamics specialist. This exchange is quite
general in that it consists primarily of mathematical expressions relating commonly under-
stood variables. Mathematical expressions are the basic language of engineering analysis.
Engineers use mathematical models, such as equations, to analyze the behavior of l)hys-
ical systems. While standard notations exist in textbooks and other technical literature,
these notations fail to capture much of the meaning intended by the modeler and leave
implicit man}’ of the details required to understand the equations. Much information is
not formally stated in an expression like :’x + lOycos(q) = T", such as which symbols are
variables or constants; whether the numbers are reals or vectors: whether the modeled
quantities are static values, functions of time, or functions of time and space; and if there
are units of measure assumed, what they are. Also distinctions between the symbol .r
(i.e. a reference to aa attribute of a design feature) and the quantity it (lenotes (i.e.
actual value of the attribute) are almost never apparent.

Aa ontology written using Ontolingua is modularized into theories to promote sharing.
Each theory formalizes sets of classes, functions, relations, and axioms (possibly in terms
of other theories) to enrich a shaa’ed vocabulary. Each theory can serve ms a "building
block" 1W defining terms that can be assumed in derived theories. As an example of how
theory modularity can be exploited, consider the theory inclusion graph of sornc (’.xisting
Engineering Math ontologies developed under SHADE (Figure 1).

A link between theories indicates that the lower theory relies on terms defined within
the upper theory. The Engineering Math ontologies are an evolving set of Ontolingua
generated theories created to provide a language which can declaratively capture the
semantics associated with mathematical expressions describing physical quantities. The
theories focus on algebras relating engineering parameters. For our discussions, we will
focus on the Physical Quantities theory. The remaining theories deal with algebraic
classification of parameters and the mathematical operators (e.g. addition) associated
with them.

In engineering analysis, physical quantities such as ’the sl)e(;d of light’ are regularly
modeled by variables in equations with numbers as values. Whih, human engineers can
interpret these numbers as physical quantities by inferring dimension and units from con-

250

KIF language
l

frame-ontology

l
abstract-algebra

i
physical-quantities
/ \

scalar-quantities standard-units-and-dimensions

/ \
unary-scalar-functions vector-quantities

l
quantity-state-space

Figure 1: Inclusion graph for Engineering Math Ontologies

text, the representation of quantities as numbers leaves implicit other relevant information
about physical quantities in engineering models, such as physical dimension and unit of
measure. Furthermore, there are many classes of models where the magnitude ofa phys-
ical quantity is not a simple real number -- a vector or higher-order tensor for instance.
Our goal here is to extend standard mathematics to include unit and dimension semanti(:s.

In the Physical Quantities theory, we define the basic concepts associated with physical
quantities. A quantity is a hypothetically measurable amount of something. Vv~ refer to
those things whose amounts are described by physical-quantities as physical-dimensious
(following the terminology used in most introductory Physics texts). Time, length, mass,
and energy are examples of physical-dimensions. Comparability is inherently tied to
the concept of quantities. Quantities are described in terms of reference quantities called
units-of-measure. A meter is an example of an unit-of-measure for quantities of the length
physical-dimension.

The physical-quantities theory defines the basic vocabulary for describing physical
quantities in a general form, making explicit the relationships between magnitudes of
various orders, units of measure and physical dimensions. It defines the general class
physical-quantity and a set of algebraic operators that are total over all physical quanti-
ties. Specializations of the physical-quantity class and the operators are defined in other
theories (which use this theory).

The theory also describes specific language for physical units such as meters, inches,
and pounds, and physical dimensions such as length, time, and mass. The theory pro-
vides representational vocabulary to compose units and dimensions fl’om basis sets and
to describe the basic relationships between units and ptffsical dimensions. This tlw()ry
helps support the consistent use of units in expressions relating physical quantities, ;tl~(l
it also supports conversion of units needed in calculations.

As examples of legal informational content, suitable for containm(~nt within a (KQML)

251

message (e.g. to convey expression of belief), consider:

(physical-dimension length)

(unit-of-measure inch)

(= (q.dimension inch) length)

(quantity (diameter shaft-a))

(= (diameter shaft-a) (* 3.6 inch))

(= (q.magnitude (diameter shaft-a) feet)

The unit-of-measure "inch" and the physical-dimension "length" are introduced in
the first two sentences. The dimension associated with a unit of measure is accessible via
the "q.dimension" relation. Using this relation, in the third statement, the dimension of
"inch" is assigned be equal to "length". In the fourth sentence, the expression denoted
by "(diameter shaft-a)" is classified as a "quantity". In the fifth sentence, the value
of shaft-a’s diameter is equated with the quantity returned by the product 3.6, inch.
Quantities are introduced using a specific magnitude and unit of measure, but can be
described via other units of measure compatible in dimension. For (~.xample, in the sixth
sentence, the "q.magnitude" relation allows the magnitude of the quantity assigned to
shaft-a’s diameter to be described in terms of the "feet" unit of measure - even though
the quantity was defined in terms of inches.

Other theories under construction (which are derived from the Math theories) include:

State Spaces: This theory provides a language for describing relationships among
variables which are time dependent. An ordinat3" differential equation is a typical
relation. (This is the strongest theory Of commonality between the controls and
dynamics specialists in the PACT scenarios described below.)

¯ Kinematics: This theory will provide a language for describing the relative orienta-
tion and position of reference frames and points in space.

¯ Rigid Body Dynamics: This theory will provide a language fbr describing the dy-
namical motion of bodies. Newton-Euler and Kane’s formulations will be supported.

Another theory, non-mathematical in nature, which exists is:

¯ Component Hierarchies: This theory provides a language for dcs(’ril~ing hierarchi-
cally conne(’ted components, rei~resenting component conn(x’t,i(Jns and part/sul,part
relationships.

252

3.2 Protocols of Interaction

Sophisticated programs, especially knowledge-based agents, interact in many ways I)e-
yond the simple query-response paradigm of standards like SQL. Without an effort to
understand and standardize agent communication, there would be a proliferation of in-
compatible, ad hoc agent, communication languages. The SHADE project is actively
working toward the establishment of a common agent communication language. Mem-
bers of the SHADE team are key participants within the DARPA Knowledge Sharing
Initiative, which is working on the definition of the Knowledge Query and Manipulation
Language (KQML). SHADE is also one of the most active users of KQML.

KQML is a language for programs to use to communicate to the recipient what the
sender’s attitude is toward the informational content, where the content is encoded in a
specified ontology. Examples of attitudes on content, are:

* believing/disbelieving the information content

, indicating interest in the class of information described by the content

. advertising a capability to produce the class of information described by content

. expecting that the class of information described by the content will be promised

. fiflfilling with the informational content some past commitment (i.e. a reply to
query)

KQML is also an enabler of information-flow architectures, through forwarding, broad-
casting, and brokering messages. That is, an agent need not send every message directly
to the final destination. Often an agent does not know exactly who should process a mes-
sage, or even if an approl)riate recipient exists. Forwarding and broadcasting allow the
sending agent to use intermediaries to facilitate transport. Brokering allows the agent to
be umxmcerned with exactly who can l)rocess the message. The brokc,r facilitation agellt

is resl)onsible for finding an appropriate recit)ient for the request.
To enal~le agents to use KQML, the SIIADE project has defined an initiad API (apl)li-

cation programmer interfa(’e) through which agent programs can send and receive mes-
sages. The API supports sending and receiving of KQML messages as either strings
or "s-expressions". The API is currently available for C, and a LISP w’rsion is ,nder
dev(,lopnlent.

When an agent expr~sses an attitude in the form of a KQML message., there must [,(,
some understanding of exactly what the message means. The elaboration of the semantics
of KQML attitude types [Genesereth et al. 1992] is an area of collaborative research by
SHADE. To provide a semantics, an agent’s internal state is abstractly modeled by its
beliefs and goals. The semantic meaning of KQML message types are then modeled by
the constraints they impose on the sending agent’s abstract model of internal state. A
re(’il)ient agent’s internal st~tte can potentially be affected by the attitudes of a sender
(e.g. the recipient agent may choose to believe knowledge content],,cause someone elsr
believes it.). 253

The KQML semantics elaboration effort is also characterizing how the abstract internal
state of aa agent constrains externally visible behavior (in the form of attit(tde utterances
in messages) of the agent. Other examl)les of semantic constraints are:

¯ when an agent asserts a belief in s()me content, the internal state of the agent should
reflect th;tt b(,lief.

when an agent accepts the responsibility of providing a ace(led pi(’(’(’ of infl)rmation,
the agent’s internal goal state should reflect the desire to meet the responsibility,
and consequently the agent’s future (externally visible) behavior should live up
the promise.

when an agent expresses the attitude of fldfilling the informational request of another
agent, it should be the ca,se that the agent believ(’s that the otlwr agent want~d
someon(, to provide the infornmtion.

3.3 Message Transport

Message-passing is the glue that builds large software systems out of multiple smaller
component systems. There are many new standards and toolkits that sup[)()rt the trans-
port of messages anmng programs (e.g. OMG CORBA, OSF DCE, ISIS, BSD Sockets,
etc). Even though the SHADE project is not focused on increasing this set, a reliable,
easy-to-use transport mechanism is an important prerequisite of inter-agent conmmnica-
tion. To satisfy our specific needs, the SHADE project has produced the EIT ServiceMail
(tin) toolkit, which enables the creation of engineering services (rendering, layout, etc.)
that are ac.cessed using multimedia electronic mail.

The idea of ServiceMail is that of sending e-mail to programs in order to request some
atttomated or semi-automated service. There have been several applications along this
line accessible through electronic mail, including services for archival searches, mailing
list manipulation, conference information, etc. Each of these applications use electronic
mail in the following way: users send their requests in the headers and/or bodies of e-mail
messages, including an}’ relevant data files (e.g. a semiconductor layout representation).
These applications have been vetT popular, largely due to the ease of e-mail access and
simplicity of use. SHADE has experimented with several new applications of ServiceMail,
inclUding:

¯ a semiconductor fabrication process simulator service at Stanford

¯ a mechanical part checkplot/milling service at the Univ. of Utah

¯ a means of enabling corporate (e.g., Lockheed) participation in SIIADE experiments.
Man}’ big companies disallow bidirectional TCP/IP int(,rn(,t acc~,ss, for s(,v~u’ity
reasons. E-mail is often the only 1)idirectional transport me(’h;misHt nv;~ilabl(’.

SHADE has been fostering ServiceMail by freely distributing a toolkit that helps
service providers get their services on-line. The current toolkit provides software to take

254

care of the overhead in establishing a service from scratch, including: connecting to
the e-mail system, parsing incoming messages, nmltiplexing multiple services mid(,r
single mail address, and generating outgoing messages. Current work on the toolkit is
addressing other issues such as: integrity checks on message contents, authentication
of users, attditing of service requests and responses, directory services to locate sel-~’ice
advertisements.

3.4 Facilitation Services

The SHADE infrastructure is designed to include facilitation agents that provide commu-
nication support to agents. One of the frst necessary services that has bee.n identified is
content-I)ased routing, where messages sent by an agent are routed automatically based
on interests asserted I W other agents. To achieve this, agents must !)<~ able to express
their interests in terms of a general subscription. In the simplest case, a subscription
looks like a syntactic pattern that must be unified against the message. More generally,
it looks like an arbitrarily complex first-order logic condition which must be evaluated
for satisfiability. An agent subscribes to information by posing a persistent query within
the vocabulary of the common ontology. When relevant information is published by some
other agent, it is picked up by the routing agent and fot~-arded on to tll(, requesting agent.
In this way, the SHADE environment is able to determine the routing of messages ba.scd
upon the content of the message, rather than a wired-in prearranged address.

However, as mentioned above, content-based routing assumes that agents vohtnteer all
information, an assumption that cannot be supported as the network grows and financial
issues are considered. To overcome this problem, we developed the notion of matchmak-
ing. Instead of routing individual messages sent by other agents, a matc.hmaker actually
matches up advertisements and interests. This allows the matchnm.k(~r to establish con-
nections between the l)roducer and consumer.

For example, consider the following scenario. Agent A1 has an interest in a class of
information, which it wishes to have flflfilled by another agent. It posts to the shar,~d
environment a request to monitor all future changes in the specified class of information.
The shared framework, itself composed of facilitation agents, records A1’s interest and
determines whether the message is of interest to any other agents. A matchmaker service
agent has posted an interest in other agents’ interests (i.e. it wants to know what other
agents want to know) and consequently is notified of Al’s interest. The matchmak~,L’
service attempts to match the interest with any advertised capabilities. A match is found,
the facilitation service subscribes to the relevant capability to enal)le notification. Th,’
capability provider, agent A2, schedules a goal to provide the service. Later, when a
change occurs to the interesting class of infbrmation, the interest is incrementaUy fttlfill,,d
and A1 is notified.

The intention is to support knowledge based relevance reasoning to infer matches
between specifications of information interests and information producing capabilities. Iu
our exl)eriences, it is easier to specify an interest (which looks like a knowledge base query)
than it is to precisely characterize an agent’s capabilities (which ne(’ds to account for all
possible interest requests). Even if it were possible to precisely characterize all conditions

255

on capabilities, prudence dictates that the specification be overly general to allow for the
development of tractable algorithms that infer matches on interests.

As an example of the progression toward knowledge-based relevance determinatiotl,
consider the case where several tools exist each capable of producing simulation results
for the aspect of the design modeled from their perspective. Also assure,, that the shar(,d
language supports a representation for time varying data in the form:

(= (val ?component ?port ?time) ?value)

Within this format, all of the simulation agents characterize their capabilities via an
extremely over-generalized specifications ("I can tell you the. values of all ports of all
components at, any time"):

(advertise :content ’(= (val ?component 7port ?time) ?value))

Conversely, some information consuming agent asks to monitor all simulation results
for a specific port:

(monitor :content ’(= (val cl pl ?time) ?value))

In order to satisfy the request, the matchmaker would int~.r matches with all of the
overly-general capability specifications and would then request subscriptions with each
simulation agent in turn until one ac.cepted the subscription. That subscription would
then be forwarded to the requesting agent.

Another possibility would be for each agent to enumerate every component-port pair
for which it was capable of producing simulation results. This strategy could h,~l to overly
verbose capability specification on large designs with many (’ompon(:ltts. If, however,
the common vocabulary introduced a rich inheritance language, agents could ~mnounce
capability patterns annotated with type restrictions on the individual arguments. This
would allow simulation agents to partially describe their capabilities without referring to
specific instance identifiers (object references) contained within a design. For example,
a simulation package with access to a rich model library would describe the types of
components it could simulate (not the component instances themselves). Thus, there
would be a natural separation between design-specific instance identifiers and persistent
types that are instantiated across many designs. This woukl allow for more precision
in capability specifications and better matchmaking, while remaining in the realm of
tractable algorithms (i.e. classification using taxonomic reasoning [MacGregor 1991]).

The matchmaking service also allows for more efficient conmmnicatiou l)y alleviating
message traffic bottlenecks through a centralized facilitator. Since information sources
and sinks find each other during a preprocessing phase, the)’ can communicate directly
with each other thereafter. The alternative is to continually infer relevance based on
subscriptions during actual information exchanges. A precompilation of message traf-
fic dataflow is extremely important in some engineering design scenarios. Experiments
were conducted based on distributed simulations over the Intct’n~t I,t’idp;itt~,; s~w~wal tool
perspectives. Performance was considerably slowed in those cases where relevance deter-
ruination was performed on each message (via a unification-oriented subscription service)
and routed based on content by a centralized facilitation mechanism.

256

4 Applications

To drive our research, SHADE is focusing on specific design domains and scenarios. This
section describes these.

4.1 PACT

SItADE’s initial application focus was on PACT (Palo Alto Collaborative T}~.stbed), a se.t
of experiments in exercising knowledge sharing techniques among four existing concurrent
engineering tools [Cutkosky et al. 1993]. The experiments involved four geographically and
organizationally distributed engineering teams (Lockheed, Stanford, Enterprise Integra-
tion Technologies, and Hewlett-Packard) collaborating on scenarios of design, fabrication,
and redesign of a planar robotic manipulator. Each team modeled a different aspect of the
manipulator from a different engineering discipline: controller sohware (NVisage [Weber
et al. 1992]), rigid body dynamics (NextCut [Cutkosky and Tenenbaum 1992]), circuitry
(DesignWorld [Genesereth 1991]), and sensors and power system modeling (DME [Iwa.saki
and Low 1993]). Several collaborative design tasks were performed including dynamics
model exchange between the controls agent and dynamics agent, fine-grained coopera-
tive distributed simulation exercising each aspect supported by the four tools, and finally
design modifications suggested by the simulation.

The challenge in PACT was to take four existing systems, each already a specialized
framework, and to integrate them via a flexible, higher-level fl’amework. To ground the
experiments, design scenarios that would be thwarted by tool isolation were proposed.
The developers of the various tools identified the information exchange necessary to enable
the design scenarios. As a result of these interactions, an implicit ontology was created
reflecting offiine agreements. Next, each tool was wrapped up as an information agent
available as a service to other agents. Over the course of the PACT experiments, the
ontologies were explicitly encoded in KIF. After the form and semantics of the knowledge
content had been agreed upon, KQML was used to allow expressions of attitude toward
knowledge content such as belief, disbelief, and interest. Each team was supported by its
own computational enviromncnt linked via the PACT framework oww the Interact.

The PACT experiments demonstrated a wide variety of advanced variety of inter-
agent communication. The PACT framework utilized an infrastructure postal service
to allow agents to delegate all message delivery’ responsibilities [Genesereth 1992, Singh
and Genesereth 1992]. The postal service is capable of handling "forward" messages
addressed to any registered agent, and agents can query the postal agent to determine
all other online registered agents. Other message traffic was pernfitted in the form of a.
point-to-point package between agents to reduce the overhead of a centralized bottleneck
(e.g. during a distributed simulation).

Since the PACT experiments were meant to represent a concurrent engineering ap-
proach, it was critical that all affected parties of design changes be notified so they may
assess the impact. Consequently, heavy use was made of the %ubscribe" messag~ type
to convey the conditions triggering a notification. As a simple examph, of the utility’ of
%ubscribe" within PACT, one agent (NextCut) posts a persistent inttu’est in the type

257

of motor apl)lying torque to the manilmlator arms. This way if the motor changes, the
consequences of the change in the motor’s features can be evaluated.

The flow of information was also subject to control in the experiment. Some tools in
the PACT experiment were able to handle asynchronously transmitted partial informa-
tion (one answer at a time) by while other tools required entire sets of answers bundled
together. To provide flexibility in the packaging of transmitted knowledge, message types
were devised to convey differing requirements on the form of the answers to requests.

The PACT experiments show how heterogeneous systems can exchange information
and services as if through a shared knowledge base, even though most of the knowledge
resides in the internal representations of individual tools. However, the experiment, was not
a complete demonstration of SHADE. The PACT architecture did not provide advanced
facilitation services, such as matchmaking or sophisticated routing of information based on
content. Instead all such facilitation sophistication resided directly within each individual
design agent’s wrapper, making wrapper development onerous. Future PACT experiments
will shift functionality into the infrastructure to provide mechanisms for locating registered
agents with capabilities suited to fulfilling specific information interests.

4.2 MACE

As a more complete demonstration of SHADE, and to flesh out issues not covered in
PACT, the SHADE project has been working on a more in-depth incarnation of the
PACT scenario. The scenario is based on the Mid-Deck Active Controls Experiment
(MACE), a research prototype intended to be flown inside of the Space Shuttle Mid-
Deck to study the use of active body members on vibration control in satellites. The
scenario is built around the interaction of three real enginering tools: SDRC’s I-DEAS
(structural dynamics analysis), ISI’s Matrix-X/SystemBuild (controls), and a rigid
dynamics analysis tool based on Mathematica. By focusing on real tools as applied to
a real problem, SHADE will be able to validate current concepts and will be driven to
enhance concepts were most needed.

4.3 VT

The idea of using formal ontologies as specifications of common conceptualizations is
also being applied in an experiment by the knowledge acquisition community called Sisy-
phus/VT [Linster 1992]. Sisyphus is the name of of an ongoing experiment in which
participants from several research groups are building knowledge system architectures
and knowledge acquisition tools for specific problems in order to compare their methods,
architectures, and results. The previous year’s problem was a simple office-assignment
task. This year’s problem is elevator design, a configuration proMem with many pa-
rameters and constraints. This domain is well understood, and has been the subject of
research such as VT [Marcus et al. 1998], aa expert system for elevator design, and the
SALT system for knowledge acquisition [Marcus and McDermott 1989]. The task and
domain have also been analyzed and a thorough English-language description has been
published [Yost 1992]. For the purposes of the Sisyphus/VT experiment, the domain is

258

coml)lex and large enough to preclude simplistic approaches (brute-force search or simple
optimization techniques).

The SHADE team, in collaboration with colleagues from the knowledge acquisition
community, is developing a set of formal ontologies that describe the configuration design
problem and the elevator design domain. The ontologies will serve as a formal problem
specification for the experiment (some participants will build agents that commit to the
ontologies; i.e., will be able to accept inputs and provide outputs using the formal vocab-
ulary and theory of the ontology). From early analysis it appears that the much of the
theory underling the VT ontologies can be inherited as a specialization of the engineering
math ontologies produced by the SHADE project for the exchange of behavior models
and data. The design task adds the additional requirements of representing structure and
design constraints declaratively.

5 Summary and Future Work

The SHADE project is creating technologies to promote information sharing among de-
sign tools within multi-disciplina D’ design environments. Our strategy is to provide
a knowledge-based medium by which designers, through their tools, share engineering
knowledge. There are three key ideas to central to the SHADE vision. First, individual
design tools will communicate in a common ontology realized in a declarative representa-
tion. Second, agents will make use of knowledge transport protocols to coordinate their
information needs and capabilities. Finally, the shea’ed environment will be populated
with facilitation services to ease the burden of inter-agent communication. Because the
shared knowledge is expressed in a formal, declarative language, the shared enviromnent
can use deductive mechanisms to answer queries, route information, perform translations,
and othe~avise facilitate knowledge shaa’ing and software interoperation.

SHADE continues to work on fundamental ontologies and support tools. In addition,
we have started work on ontologies and facilitators aimed at design rationale and decision-
maintenance [Gruber and Russell 1992, Petrie 1992]. SHADE also continues to be one of
the driving forces behind the KQML effort. ServiceMail is gaining increased recognition,
and additional enhancements are expected. Finally, SHADE is increasing its efforts toward
implementing useful facilitation agents.

Work up to this point has been motivated by experiments in multi-disciplinary design
settings such as PACT. This inter-project approach will continue. Thr SIIADE group is
now interacting with Lockheed’s Space Systems Division to explore application of SHADE
technology to support collaborative spacecraft, design activities involving dynamics anal-
ysis and controls design. These activities are real-world examples of the design scenarios
explored in the PACT experiments. SHADE is also being applied to the VT domain to
broaden the test of the concepts.

Finally, the community of SHADE users is growing (e.g., KCD and COSMOS), but
are actively pursuing ties with other efforts in the research community to further validate
the generality of our approach. The success of SHADE depends largely on the degree to
which we can support, coordination among numerous, heterogeneous agents.

259

6 Acknowledgements

We gratefully acknowledge the contributions of our colleagues in PACT, KCD, and the
DARPA Knowledge Sharing Initiative, particularly, Bill Mark and Brian Livezey at Lock-
heed, and Mike Geaesereth, Gio Wiedcrhold, Mark Cutkosky, and Richard Fikes at Stan-
ford. ~,~.~ would also like to acknowledge Morton Hirschberg tbr valuabh~ technical editit~g
feedback.

7 References

Cutkosky M., and Tenenbaum, J. (1992). Toward a Framework for Concurrent Design.
International Journal of Systems Automation: Research and Applications, 1(3).

Cutkosky, Engelmore, Fikes, Gruber, Geaesereth, Mark, Tenenbaum, and Weber. (1993).
PACT: An experiment in integrating concurrent engineering systems. In IEEE
Computer, 26(1).

Finin, Fritzson, and McKay. (1992). Aa Overview of KQML: A Knowledge Query and
Manipulation Language. Department of Computer Science, l..’aiversity of Maryland,
Technical Report.

Finin, Weber, Wiederhold, Genesereth, Fritzson, McGuire, McKay, Shapiro, Pelavin, and
Beck. (1992). Specification of the KQML Agent Communication Language. Offi-
cial Document of the DARPA Knowledge Sharing Initiative’s External Interfaces
Working Group, Enterprise Integration Technologies, Inc. Tech Report 92-04.

Genesereth, M. and Nilsson, N. (1987). Logical Foundations of Artificial Intelligence.
Morgan Kaufmann Publishers.

Genesereth, M. (1991). Designworld. Proceedings of the IEEE Coinference on Robotics
and Automation.

Genesereth, M. (1992). An Agent-Based Framework for Software Interoperability. Pro-
ceedings of the DARPA Software Technology Conference, Meridian Corporation,
Arlington, VA. Also Computer Science Department, Stanford University Tech Re-
port Logic-92-2.

Genesereth, M. and Fikes, R. (1992). Knowledge Interchange Format, Version 3.0 Ref-
erence Manual. Computer Science Department, Stanford University, Tech Report
Logic-92-1.

Genesereth, M. et al. (1992). Semantics of Performatives in ACL, Working Document.
Stanford Logic Group Tech-Report.

Gruber, T. (1992). A Translation Approach to Portable Ontology Specifications. In
Mizoguchi (editor), Proceedings of the Second Japanese Knowledge Acquisition for
Knowledge-Based Systems Workshop, Kobe, Japan. To appear in the Journal of
Knowledge Acquisition.

260

Gruber, T., Tenenbaum, J., and Weber, J. (1992). Towards a knowledge medium tbr (;ol-
laborative product development. In J.S. Gero, editor, Pro(’ecdings of the Second
International Conference on Artificial Intelligence in Design, Pittsburgh, PA, pages
413-432, Kluwe," Academic Publishers.

Gruber, T. and Russell, D. (1992). Generative design rationale: Beyond the record and
replay paradigm. Technical Report KSL 92-59, Knowledge Systems Laboratory,
Stanford University. To appear in Thomas Moran and John It. Carroll (editors),
Design Rationale, Lawrence Erlbaum.

Gruber, T. (1993). Toward Principles for the Design of Ontologies Used for Knowledge
Sharing. International Workshop on Formal Ontology in Conceptual Analysis and
Knowledge Representation, Padova, Italy.

Iwasaki, Y. and Low, C. (1993). Model Generation and Simulation of Device Behavior
with Continuous and Discrete Changes. Intelligent Systems Engineering, 1(2).

Kuokka, D., Livezey, B., Simoudis, E., Hood, J. (1993). Knowledge-Centered Design.
Lockheed Artificial Intelligence Center Technical Report.

Linster, M. (1992). Sisyphus ’92: Models of Problem Solving. GMD-Arbeitspapiere 630.
GMD, SchloB Birlinghoven, Postfach 13 16, W-5205, Sankt Augttstin 1. ISSN 0723-
0508.

MacGregor, R. (1991). The Evolving Technology of Classification-Based Knowledge Rep-
resentation Systems. In John Sown (editor), Principles of Semantic Networks: Ex-
plorations in Representations of Knowledge, pages 385-400, Morgan Kaufmann.

Marcus, S., Stout, J., and McDermott, J. (1988). VT: An Expert Elevator Designer that
Uses Knowledge-Based Backtra~.king. AI Magazine, pp. 95-111.

Marcus, S. and McDermott, J. (1989). SALT: A Knowledge Acquisition Language for
Propose-and-Revise Systems. Artificial Intelligence, 39(1):1-38.

Mark, Schlossberg, Ogata, MacGregor, Kuokka, Hyde, and Livezey. (1993). The Cosmos
System for Distributed Design Negotiation Support. Lockheed Artificial Intelligence
Center Technical Report.

McGuire, Pelavin, Weber, Tenenbaum, Gruber, Olsen. (1992). SHADE: A Medimn for
Sharing Design Knowledge Among Engineering Tools. Lockheed Artificial Intelli-
gence Center Technical Report.

Neches, Fikes, Finin, Gruber, Patil, Senator, and Swartout. (1991). Enabling technology
for knowledge sharing. AI Magazine, 12(3), 16-36.

Patil, Fikes, Patel-Schneider, McKay, Finin, Gruber, and Neches. (1992). The DARPA
Knowledge Sharing Effort: Progress report. In C. Rich, B. Nebel, and W. Swartollt
(editors), Principles of Knowledge R(q)r(,s(,ntation and Reasoning: Pro(’(,edings
the Third International Conference, Cambridge, MA, Morgan I{aulinatm.

Petrie, C. (1992). A Minimalist Model for Coordination. Proceedings of AAAI-92 Work-
shol) on Design Rationale. To appear in Enterprise Modeling, (2!. Petrie (editor),
MIT Press.

261

Siagh, N. and Genesereth, M. (1992). hnplementation Details for Agent Based Software
Engineering Interoperation. Internal Stanford l.niw~rsity Logic Group Tech Report.

Toye, G., Cutkosky, M., Leifer, L., Teaenbaum, J., and Glicksman, J. (1993). StIARE:
Methodolo~, and Environment for Collaborative Product Development. Stanford
Center for Design Research Technical Report 1993-0420.

\~,~ber, J., Livezey, B., McGuire, J., and Pelavin, R. (1992). Spreadsheet-Like Design
Through Knowledge-Based Tool Integration. International Journal of Expert Sys-
tems: Research and Applications, 5(1).

Yost, G. (1992). Configuring Elevator Systems. Technical Report, Digital Equipment
Corporation, 111 Locke Drive (LMO2/K11), Marlboro, MA, 02172.

