
Facilitating collaborative design through
representations of context and intent

G. Fischer1, K. Nakakoji ~ and J. Otswald1
1Department of Computer Science and Institute of Cognitive Studies

University of Colorado
Boulder Colorado 80309-0430

USA
2Software Engineering Laboratory
Software Research Associates, Inc.
1-1-1 Hirakawa-cho, Chiyoda-ku

Tokyo 102
Japan

Abstract

Domain-oriented design environments require support for three types of collaboration: (1)
collaboration between domain-oriented designers (the users of design environments) and
design environment builders, (2) collaboration between domain-oriented designers and clients
(users of designed individual artifacts using a design environments), and (3) long-term
direct collaboration among designers. Design environments provide representations that
serve as a shared context for collaboration and ground languages of design.

In this paper, we describe two components of our research work exploring domain-oriented
design environments. First, the Knowing-in-Design (KID) environment uses explicit represen-
tations of the designers’ task at hand (representing a partial articulation of their intent)
facilitate mutual education between clients and designers, and to deliver design knowledge
relevant to the task at hand. Second, the Evolving-Artifact-Approach (EVA) which uses
descriptive representations, functional representations, and seed prototypes to facilitate the
mutual education process between designers and design environment builders necessary for
achieying a deep knowledge of the application domain, for capturing design rationale, and for
representing domain knowledge.

Domain-oriented design environments are evolving artifacts supporting long-term indirect
collaboration between designers: Each design produced in design environments contributes
to the accumulated design knowledge. By delivering relevant information from the
knowledge base, design environments create a virtual collaboration with past designers.

Keywords: domain oriented design environments, long-term indirect collaboration, coopera-

293

From: AAAI Technical Report WS-93-07. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

tive problem-solving systems, shared context, mutual education, languages of doing, situa-
tional interpretation, focus of attention, EVA, evolving artifact, KID, communication of intent,
human-centered intelligent agents, computer-supported cooperative work, information over-
load, information access and delivery, information filtering, learning, institutional memory,
design rationale.

1 Introduction
We view design as intrinsically collaborative and ongoing. Complexity in design arises from
the need to synthesize different perspectives on a problem, the management of large amounts
of information potentially relevant to a design task, and understanding the design decisions
that have determined the long-term evolution of a designed artifact. Our approach to support-
ing design with computers focuses on human-centered design support with domain-oriented
design environments. Rather than modeling the cognitive processes of designers, we augment
the abilities of designers to understand, manage and communicate complexity.

In this paper we first describe two modes of collaborative design and discuss how design
environments support two of collaboration at two levels of design: the design of individual
artifacts and the design of design environments. The KID design environment is described to
illustrate support for collaboration in the design of individual artifacts, and the EVA approach
to design environment building is describe to illustrate collaboration in the context of system
building.

2 Two Modes of Collaboration
Design environments support two modes of collaborative design: (1) Short-term, Directed
Collaboration; and (2) Long-term, Indirect collaboration. These modes are actually two points
along a continuum of possible collaboration paradigms, but for the purposes of clarity we will
discuss them as if they were distinct.

Short-term, Directed Collaboration. Design requirements originate not from designers but
from clients, who do not have the knowledge necessary to implement a solution. Initially,
there is a symmetry of ignorance between design designers and clients, in which 1) the under-
standing required to solve the design problem is distributed, and 2) there is no common lan-
guage that allows the stakeholders to communicate their understanding to each other. Mutual
education processes enable the construction of a shared "language of doing" that allows
clients and designers to collaboratively build the knowledge required to solve the design
problem.

In short-term, directed collaboration, designers and clients work together to define the
problem to be solved as well as to produce a solution. Our primary emphasis is on conceptual
coordination rather than on physical coordination. We are interested in creating a shared un-
derstanding among stakeholders that allows both clients and designers to contribute their
respective knowledge to the design task. Complex problems can be only vaguely understood
before the design process begins. Attempts at producing a solution reveal additional design
requirements that could not be foreseen. For complex design problems, design requirements
and solutions must coevolve.

Long-term, Indirect Collaboration among Designers. Long-term, indirect collaboration is
required in the design of complex and evolving artifacts, such as local area network design

294

Modes of collaboration

Short-term, Direct Long-term, Indirect

Individual
Artifact

Levels of Design

Design
Environment

Design

Seeding

Redesign

Reseeding

Ume

Figure 1: Four Collaborative Design Processes

The left two cells of the matrix descri.be face-to-face direct collaboration. In seeding, domain
experts and system builders work togemer to design the design environmenL The box labeled
design represents a collaboration between domain experts and clients. The right two cells of the
matrix represent indirect collaboration, where design knowledge stored in the artifact facilitates
virtual collaboration with past designers.

and software design, which are maintained and modified over a span of years. In ongoing
design, the emphasis must be on sharing knowledge among designers rather than on
knowledge acquisition by individuals. Designers who maintain and modify complex and
evolving artifacts collaborate indirectly with the original designers.

The term, "indirect collaboration" implies that communication occurs through a shared
knowledge space rather than directly between designers. A shared knowledge space that sup-
ports indirect collaboration provides a background, or tradition, against which the design of
individual artifacts takes place. Knowledge spaces that support indirect collaboration must be
dynamic because design traditions are constantly evolving as new knowledge is discovered
and old knowledge becomes obsolete.

Design documentation, reference materials, precedent solutions, and design guidelines are in-
formation sources that enable indirect, long-term collaboration with past designers. However,
the existence of large amounts of design information does not guarantee effective collabora-
tion. In information-intensive domains, the challenge is not merely to accumulate infor-
mation, but rather it is to find information relevant to unanticipated problems that arise during
the design task.

3 Two Levels of Design in Design Environments
There are two interrelated and ongoing design processes addressed in our design environment
work: (1) the design of individual artifacts within design environments; and (2) the design
design environments themselves. Our claim is that both design processes are collaborative,
are anchored by representations, and employ languages of doing.

295

Figure 2 illustrates the levels of collaborative design involved in building and using design
environments. Three types of people are involved: (1) design environment builders; (2)
designers, who use the design environment; and (3) clients, who use individual design ar-
tifacts.

Although it is vital to facilitate the communication among people in the two adjacent levels
(see Figure Figure 2), the goal is to reduce the amount of communication required between
people in non-adjacent levels. People in each level use different languages for achieving their
design. Communication distance represented by the number of levels involved represents the
number of languages that the participants have to deal with. The more languages, the larger
the risk that mis-communication may take place. We have to reduce the problem of miscom-
munication by reducing the communication distance.

Design Envimnmcnt Use
Collaborative design
of Domain Artifacts

Seeding
Collaborative design

of Domain Environments

Domain-lndependent Component s and Tools

Collaborative Design
Processes

Artifacts

Design Support
(e.g., design environments support
deaign of individual artifacts)

Figure 2: Face to Face Collaborative Interactions

The two ovals illustrate the two levels of direct collaboration involved in building and using
domain-oriented design environments. EVA supports design environment builders to produce a
design environment ~1 using domain-independ-ent tools/rod compon.ents in collabo.ration wire
dom~ain workers {d,esigners) who will ,use the design environment..,gin su:p .lX~. d.qsigners, to
proguce inoiviouam aes~gn artifacts in coimooration wtm cfients, wno wm use me moivtoum oestgn
/mitacts.

Figure 3 describes a process model for collaborative design in developing and using a
domain-oriented design environment. The model illustrates the two interrelated indirect col-
laborative design processes that design environments support: 1) seeding and continual
design-in-use (Greenbaum, Kyng, 1991) of design environments, and 2) design and ongoing
evolution of individual design artifacts within the design environment.

296

297

3.1 Direct Collaboration Mediated by Design Environments
Seeding. Seed building creates the initial conditions for design environment use. Because
design environments are open systems that evolve with use, we refer to the initial system as a
seed. The stakeholders are designers (future users of a design environment) and environment
builders. The designed artifact is a domain-oriented design environment.

Design. Design is the creation of artifacts. The stakeholders are the designers (the users of
the domain-oriented design environment) and the client. The designed artifact is an in-
dividual design that is used by the clients.

Both seeding and design processes involve face-to-face collaboration among different
stakeholders. Environment builders design domain-oriented design environments in accord-
ance with requirements articulated by designers. The designers in turn design individual ar-
tifacts based on clients’ requirement specifications. In each collaborative design process, the
requirement specification and the solution construction must be integrated (Fischer, Nakakoji,
1992). Therefore, the stakeholders must work together to produce quality artifacts.

Since each stakeholder uses a different representation to express their ideas, goals and inten-
tions, communication breakdowns often take place. For example in kitchen design, client
often do not understand a blue-print that a designer provides as a partial design. Explicit
representations support the construction of a shared language of doing by providing a com-
mon reference for communication.

3.2 Long-term, Indirect Collaboration Through Design Environments
A different type of collaboration is required during the reseeding and the redesign processes.
Designers (and design environment builders) have to understand why design decisions have
been made in order to reuse or modify it.

Redesign. Artifacts are not designed from scratch but are iteratively refined and components
are reused. A complex design artifact can never be complete but is constantly evolving in
nature. As illustrated in Figure 3, designers gradually accumulate design knowledge through
design practice. Thus, the knowledge-base of the design environment gradually evolves.
Ironically, the more information the knowledge base has, the more difficult it is for designers
to access the useful information without an adequate support because the information space
becomes large and complex.

In order to cope with this information overload problem, design environments provide
knowledge delivery mechanisms. By sharing the problem context with designers, design en-
vironments make the information space relevant to the task at hand, thereby supporting desig-
ners to access design knowledge stored by other designers. Consequently, it enables desig-
ners to collaborate with other designers via stored design knowledge.

Reseeding. As designers use the design environment seed to create design artifacts, they may
encounter gaps in the knowledge base or discover new knowledge that should be recorded. In
both cases, designers can add to the knowledge in the seed. As design knowledge is accumu-
lated over time, the knowledge base will occasionally require reseeding. Reseeding is process
in which design environment builders reorganize the knowledge-base in order to eliminate
inconsistent or obsolete knowledge and to consolidate redundant knowledge. Little research
has been done in how to support this reseeding process, but we need to keep in mind that

298

reseeding should not be considered as a result of flaws in the design of a design environment,
but rather be a necessary process for evolution of design environments.

4 Explicit Shared Context and Communication of Intent
Communication between clients and designers is difficult because designers and clients use
different languages. Explicit Representations ground collaborative design by providing a con-
text for communication. Representations help to detect communication breakdowns caused by
unfamiliar terminology and tacit background assumptions, and turn the breakdowns into op-
portunities to create a shared understanding. Consequently, explicit representations serve as a
basis for the creation of a new and shared language between collaborators.

An important component of shared context is the intent of the collaborators. A shared under-
standing of intent promotes mutual intelligibility by serving as a resource for assessing the
relevance of information within the context of collaboration. In everyday communication be-
tween people, intent is often implicitly communicated against in the rich background of
shared experience and circumstances. Machines, however, have a limited notion of back-
ground that limits their ability to infer the intent of users (Suchman, 1987).

Domain-oriented design environments address this problem in three ways. First, a domain-
orientation allows a default intent to be assumed, namely, the creation of a "good" artifact in
the given domain. Second, a construction situation can be "parsed" by the system, providing
the system with information about the artifact under construction. Third, a specification com-
ponent allows the designer to explicitly communicate high-level design intentions to the sys-
tem.

In our design environments, design activities, including the communication of intent, are cen-
tered around artifacts. By capturing the intentions and priorities of designers and associating
them with the artifacts, design environments can have a deep representation of an artifact.
This deep representation allows the system to locate stored artifacts and information that are
relevant to a designer’s task at hand, and provides the designer with rich resources for assess-
ing the relevance of delivered information.

The first aspect of our work described is the role of a specification and construction com-
ponents of a design environment during the use of the design environment. The specification
and construction components of the KID (Knowing-in-Design) environment provide explicit
representations of the design intention and partial solution, which ground collaboration among
designers and clients. The representations also allow designers to communicate design inten-
tions to the system, thereby establishing a shared context between the designers and the
design environment that enables the system to deliver design knowledge relevant to the task at
hand. The design knowledge contained in our design environments has been accumulated
through previous design efforts, thereby allowing designers to collaborate indirectly with past
designers.

The second aspect of our work described is design environment seeding, where domain ex-
perts and system builders collaboratively design a design environment -- a complex artifact
in it’s own right. The EVA (Evolving Artifact) approach uses descriptive representations,
functional representations, and seed prototypes to facilitate a mutual education process be-
tween design environment builders and designers. The evolving seed provides a shared con-
text to ground collaboration between designers having different backgrounds.

299

5 Collaboration in The KID Design Environment
The KID system is a design environment for creating kitchen floor plans and substantially
extends the JANUS system (Fischer, McCall, Morch, 1989). Figure 4 and Figure 5 show
screen images of the KIDSPECIFICATION and KIDCONSTRUCTION components of KID. The
specification component supports designers in framing their design problem; i.e., specifying
design goals, objectives, and criteria or constraints. The construction component support
designers in constructing a the solution form of the design artifact. In the kitchen domain the
solution form is a floor plan.

The user interface of KIDSPECIFICATION is based on the questionnaire forms used by profes-
sional kitchen designers to elicit their clients’ requirements. KIDSPECIFICATION provides an
extensible collection of questions (issues) and alternative answers from which designers select
the requirements associated with their current design task, and assign weights to the selected
answers to represent the relative importance of the specified requirements. If no existing alter-
natives express their position, designers can add or modify information in the underlying ar-
gumentation base.

Domain-oriented design environments support a rich notion of design context. In KID the
designer determines the context of design by manipulating interface objects in the construc-
tion and specification components. The system has access to the context through the state of
the interface objects. The specification provides information about the designer’s high-level
intentions. From the solution construction, the system obtains information about the design
moves that have been made. The representations in the specification and construction that
define the design context are shared between the designers and the system because the state
of the representations are accessible to both.

KID uses computational critic mechanisms (Fischer et al., 1993) to alert designers to problem-
atic design situations, such as a violation of domain design rules, and to provide information
relevant to the situation. KID contains two collections of domain knowledge: an argumen-
tation base that stores design rationale, and a catalog base that stores design artifacts. The
argumentation base is a semi-structured design space that expresses interdependencies be-
tween design decisions as well as the contexts in which the interdependencies are relevant.
The catalog base contains precedent design cases represented as a construction (floor plan)
and a specification (design requirements).

Conceptual coherence in design can be defined as the "match" between problem require-
ments and problem solution. A fundamental challenge for computational design support is to
represent the dependencies between a high-level problem specification and a low-level con-
struction. KID uses specification-linking rules to do so. Specification-linking rules map from
a preference articulated in the specification to a corresponding combination of constraints that
should be satisfied in the construction.

The Specification-linking rules enable KID to detect design situations in which the construc-
tion and specification are in conflict. Such conflicts are brought to the designer’s attention by
specific critics (Fischer et al., 1993). Information is provided to help designers understand
problematic situations by two knowledge delivery mechanisms:

¯ RULE-DELIVERER locates information in the argumentation base corresponding
to the conflict between the specification and construction. The argumentative in-
formation helps designers to understand the problem and alternative means for

300

’i!~i,-)’

’~ ~I~ ~I~" ,,i i i "~ ~,~.~
~A ~A~A~AA

o ..I. e ~I.
,
! j °-...-

w,lo M ~ i ~.
4~

I I
5

i ~ ’ |" r!l

.... " o .rr.’~-~-~

I , , ~, ,

I~ "";’;-’-"- """’"’i’r ’
’

~ *ih,
8

,, I ;"

c o ¯
t iiJ ~ o~ ¯

g ~
£ ~

P

301

I!|.

302

resolving it.

¯ CASE-DELIVERER orders the catalog space so that examples relevant to the cur-
rent design situation are easily accessible to the designer. CASE-DELIVERER
computes conformity of each catalog example to the current partial specification
by (1) applying specific critics to each catalog example, (2) computing an
propriateness value for the example as the weighted sum of the critic evaluations,
(3) ordering the examples according to the values, and (4) presenting the ordered
catalog examples.

KID’s explicit representations of a problem specification and solution construction facilitates:

¯ collaboration between designers and clients: using the specification component,
clients and designers are encouraged to articulate their design problem eollabora-
tively. An explicit representation of problem specification provided by
KIDSPECIFICATION helps them to achieve and maintain a common understanding
of the problem, and prevents them from overlooking important considerations.

¯ long-term indirect collaboration: by having the specification component, the
design environment has more shared understanding about the designer’s intention
for the current task, and thus can deliver task-relevant information. KID’s
knowledge bases contain design information and artifacts accumulated through
past design efforts, enabling designers to collaborate indirectly with their peers
from the past.

5.1 Facilitating Direct Collaboration between Designers and Clients
Collaboration between designers and clients is supported by KID through a specification and a
construction components. KIDSPECIFICATION allows designers to specify their problems in
terms of the problem domain. In some domains, KIDSPECIFICATION can be used by clients,
not only by designers. Expert designers are good at understanding "’languages of the
domain," such as a representation provided in a construction component. Clients, or end-
users of application software, often do not understand such languages of the domain.

The specification component of a design environment provides an explicit representation of a
problem. While prototypes in the construction component are built by designers, partial
problems in the specification component are built by clients.

Specification-linking roles used in KID facilitate the communication between designers and
clients by providing a mapping between the construction and the specification. The
specification-linking rules represent interdependencies among specification and construction.
Clients specify their problem in the specification component and designers build their solution
in the construction component. Specification-linking rules can detect inconsistency among
the two in the form of specific critics identified by RULE-DELIVERER (see the Messages win-
dow in Figure 5). A relation of the fired specific critics to the current specification is in the
the Suggested window in Figure 4. KID also helps clients to understand the language that
designers use by looking at a concrete representation of a solution (a catalog example) that
retrieved according to the relevance to their problem specification by CASE-DELIVERER. The
Catalog window in Figure 5 lists names of examples that are ordered according to the partial
specification.

303

5.2 Facilitating Indirect Long-term Collaboration
As designers use a design environment to create artifacts, design knowledge is accumulated
into the system. A typical example of this type of knowledge includes design rationale and
design artifacts. Design rationale explains why certain design decisions are made in what
problem situations. It provides heuristics and a source of design expertise in the domain.
Design artifacts can be "reused" by designers by combining, or modifying them into a new
artifact. They can also be used to warn designers of possible failures that were previously
made. Both design rationale together with designed artifacts provide a source for case-based
reasoning (Kolodner, 1990; Riesbeck, Schank, 1989).

The argumentation base and the catalog base of design environments facilitate long-term in-
direct communication among designers. That is, designers communicate through designed ar-
tifacts instead of directly talking or writing. Communication is embedded in design artifacts
(Reeves, 1993).

As illustrated in Figure 3, a designer accumulates the design knowledge into the system and
later another designer can access the design knowledge. A portion of the design rationale ar-
ticulated and stored by a designer can be used to produce a specification-linking rule.
Figure 6 illustrates how the accumulated design rationale can be used to derive specification-
linking rules. A detailed description of the mechanism is found in (Nakakoji, 1993). The
catalog base can also provides a communication medium among designers. Designers store a
design, which helps other designers in producing ideas for a solution. Using catalog examples
also amplifies designers’ creativity in performing design (Fischer, Nakakoji, 1993).

KID supports not only recording design experiences but also higher level knowledge acquisi-
tion. Competent practitioners usually know more than they can say. This tacit knowledge
(Polanyi, 1966) is triggered by new design situations and by breakdowns that occur in
design process. A user study of KID has shown that users of design environments often
wanted to extend them in response to breakdowns (Nakakoji, 1993). Thus, as design environ-
ments are constantly used, their domain knowledge is increased and refined by interacting
with designers.

End-user modifiability of design environments characterizes this aspect. MODIFIER (Girgen-
sohn, 1992) is implemented and tested in the context of JANUS, a precedent of KID. Girgen-
sohn used the representation of objects to allow designers to perform at least some of the
adaptations on a level above that of a programming language. For example, using MODIFIER,
designers can introduce a new concept such as a microwave oven by copying and modifying
attributes of existing concepts such as a stove using a property sheet. Such modification tasks
are supported by providing task agendas, on-line help, examples, and critics. Girgensohn
identified principles to enhance end-use modifiability of computer systems, including layered
architectures and parameterizations.

The approach described here in terms of KID has demonstrated the effectiveness of supporting
collaborative design in a relatively mature, stable domain such as kitchen design. For an
immature or an unstable domain, which is relatively new, still under exploration, or heavily
depending on state-of-the-art technologies, it is difficult to to identify and analyze the domain
in consideration. Designers have neither the design knowledge (principles and abstractions),
nor ideas of what a solution form should look like.

304

Spedflmltlofl-Ilnklng Rule
s~e-of-family~une --~ l~e-of-slnk~single.bowl-sink

Relates

Figure 6: Integration of Components in KID

Spe~i(fication-linking rules are derived from a_partial specification and the argumentation. I~rived
Sl~cit~cation-linking .rules are used (1)to make suggestions in K~SPEC~CA’nON, (2) to snow
related, argument in me argumentation base, (3) Io iaentify relevant critics by RtI~-DeLIVERi~R, (4)
to evamate a cauuog example using me specmc entic, aria (3) to oraer me catalog examples
CASE-DELIVERER.

6 The Evolving Artifact Approach to System Building
The kitchen domain has been a useful object-to-think-with for our design environment work.
The broad-based familiarity and simplicity of the domain makes it ideal for developing and
communicating ideas to a wide audience. We have built domain-oriented design environ-
ments for other domains such as computer network design (Fischer et al., 1992), lunar habitat
design (Stahl, 1993), and phone-based voice dialog design (Repenning, Sumner, 1992).
doing so, we have experienced the difficulty of acquiring the understanding necessary to build
design environments for these complex application domains.

The Evolving Artifact (EVA) Approach is a system design methodology to support design
environment building in complex domains, where the difficulty is not knowing how to imple-
ment system functionality, but rather it is knowing what functionality to implement. The
"Evolving Artifact" name refers to the incremental manner in which the design environment
is created. EVA approach is a bootstrapping approach, where understanding of the problems
to solved guides implementation, and implementation creates understanding. This is in con-
trast with traditional "waterfall" models of system design, in which a detailed system
specification is constructed before implementation proceeds. Waterfall models assume a

305

complete understanding of the problem exists before implementation begins.

The EVA approach supports system design as a process of mutual education between system
builders and domain workers (see Fig2). Because the critical resource in system building
application domain knowledge (Curtis, Krasner, Iscoe, 1988), the initial focus is on represent-
ing and understanding application domain concepts. In the EVA approach, descriptive
representations of application domain concepts provide a context for understanding system
requirements, and functional representations are used to guide implementation of system
functionality. The evolving design environment seed consists of both descriptive objects and
functional objects.

In order to further describe the EVA approach, we will use EVA-SERVICE as an example
(Ostwald, Bums, Morch, 1992). EVA-service is a design environment to support NYNEX
service order representatives to perform the complex task of service provisioning. Service
provisioning begins with a service representative and customer collaboratively designing a
telephone service configuration to meet the customers requirements. It ends with the im-
plementation of that design, which involves the coordinated activity of many different internal
groups, such as line-workers and billing departments. The service representative’s job in-
cludes entering data in databases, tracking down field personal for progress reports, and
providing customers with detailed telephone service information.

6.1 Descriptive and Functional Representations
Descriptive representations. In the initial stages of system design, descriptive represen-
tations are the means for facilitating mutual education between system builders and system
users. The goal is to build a shared language of design by representing domain concepts in a
form that can be discussed, questioned and refined.

Figure 7 shows a screen image containing a descriptive representation of information flow in
one perspective of the service provisioning task. The purpose of the diagram is to stimulate
discussion that surfaces important issues and terminology about the domain. System builders
create descriptive representations and domain workers, who are experts in their domain, point
out shortcomings in the diagram or fill in missing knowledge. Modifications are easily made
to the descriptive representation, and related concepts and knowledge can be represented and
linked using hypermedia technology. For defining and discussing basic concepts, descriptive
representations are more useful than conventional object-oriented formalisms.

Functional representations. Descriptive representations are easily understood and modified,
but they do not support domain workers to envision how design environments can support
their work. In particular, descriptive representations do not have the high degree of inter-
activity that characterizes most state-of-the-art applications, including design environments.

Functional representations are used to illustrate how computation can be applied to problems
and tasks in the application domain. Functional representations are implemented using
object-oriented formalisms, and embedded in descriptive representations. In the EVA system,
function calls may be associated with graphical objects, so that clicking on the object will
execute the function. Embedding the functional representations in descriptive representations
provides a context for understanding the functionality.

Figure 8 shows a functional representation that is embedded in the descriptive object shown in

306

BMO PPovlsionlng

Customer

Order
N~otlatlnO

Serv ~ce Rep

8erviee Order

t

1

~ Tw M
Show Documenter.ion Show Candidat4s Help
Dewcrib¢ He
Bookmarks
NIRX92
CXS Im~lenentatlon
Provisioning
Ftgure Record

~ - Emtes

Candldateo
EMO ProJect Deecrtotton
Xncenttuea 4n the BMO ProJect
Et111ng Untt- 4Th F1Qor. 1166 ¯ of e, NYC
BHO Tttle
Eustness ~arkettn 9 DpQrattQnS (BflO)
EhO Bt111ng
GMO Collect4ane
BHO Utettw
BMO Reconnendattons
BMO Ordertng

Figure 7: A Descriptive Representation

Descriptive representation as viewed in the "EVA Topic Browser," a tool supporting design en-
vironment building. This representation illustrates an aspect o~ me service provisioning process.

Figure 7. It expresses a possibility of how the task of "order negotiating" might be sup-
ported. This functional representation allows service provisioners to evaluate the system
builder’s understanding of the task, and provides a concrete reference for discussion.

Functional representations are important resources for collaboration, because they help
workers to articulate their tacit knowledge. Like the more flexible descriptive representations,
functional representations are meant to expose gaps in the collective understanding of the
domain and how to support it. Unlike descriptive representations, functional representations
allow domain workers to experience functionality in a hands-on manner. This is an important

307

Figure 8: A Functional Representation

A functional repre.sentation is embedded in. an descriptive object. This form-based representation
~emonstrates a technique tor supporting a aata collecti .on. task with dynamically configured fields.
nystem builde~ use.the fun.ctional representation to elicit knowledge from service provisioners
a0out t~ interaepenaencies oetween fields and field values. Service provisioners use the represen-
tation to understand the concept of "smart forms".

part of the mutual education process, because it surfaces tacit knowledge workers have about
their work practice, thereby allowing them to contribute their expertise to the task of system
building.

Seed Prototypes. Seed prototypes are used to focus mutual education on issues relevant to
system use, such as accessing information and collaborating with other users. Seeds axe built
from descriptive and functional objects, but rather than embedding functionality in descriptive

308

Call Forwarding

Description

Call forwarding causes a call to one number to be automatically
transferred to mr)other.

Sales Presentation

wCal! forwarding allows you to get valuable business ceils that might
otherwise end up on your con~etltor’a de~;k,...’

Special deals for large businesses . . .

Service Requirements

Call forwardlng requires both lines (the original line and the line to
which the call Is forwarded to) to be touch tone. The service Is net
offered in . . .

Figure 9: EVA-SERVICE m A Seed Prototype for Service Provisioning
f

The top portion of the screen is the form-~ interface illustr~tted in Figure 8. Below is infor-
mation associated with the "call forwarding field selected with me mouse.

objects, the functional objects are part of the seed interface. In the seed prototype, functional
objects are accessed and manipulated in the user interface, while descriptive objects provide
information relevant to the user’s task at hand. For example, in the KID system describe
above, the construction and specification components are functional objects, and the
argumentation-base contains descriptive objects.

In the domain of service provisioning, forms play a role analogous to the construction kit of
KID. Figure 9 shows a screen image of a EVA-SERVICE prototype based on the functional
"form" representation shown in Figure 8. In this screen image, the form is placed in a sys-
tem framework to simulate how it would appear to users in a fully functional system. Each
field of the form provides accesses information that is helpful to the service provisioner. This
prototype serves to demonstrate how such information might be accessed in the course of the

309

service provisioning task. Domain workers will be able to contribute their own information
(e.g., sales tips, general information, etc) so that co-workers can access it. This supports in-
direct collaboration with co-workers.

This prototype does not represent the final product of the seed building process, but instead
serves to surface important issues in the collaborative design process. The prototype raises
the questions of, "what fields of the provisioning form should lead to descriptive problem-
solving information?", "what types of information are helpful under which circumstances?",
and "how can workers record information so that it doesn’t distract from the task at hand?"

Eventually the evolving EVA-SERVICE prototype will be mature enough to release into the
workplace as a design environment for service provisioning domain. As illustrated in Figure
3, EvA-SERVICE will continue to evolve as it is used to support collaborative design between
domain workers and clients. Indirect collaboration between domain workers is supported
through the accumulation and sharingof service provisioning knowledge.

6.2 Short-term, Direct Collaboration in EVA
The major challenge of system building is to identify and refine the system requirements of
domain workers, and to implement appropriate functionality. In the EVA approach represen-
tations serve two purposes: (1) they elicit knowledge from domain workers that is often tacit
and therefore not expressible in abstract situations, and (2) they communicate the intentions
system builders to domain workers. In both cases, the explicit representations are crucial.

Descriptive representations provide a context for collaboration. They make the intentions of
system builders explicit where they can be understood and critiqued by domain workers.
Descriptive representations allow the stakeholders to identify and understand important issues
early in the design process, before time and effort has been invested in the wrong direction.

Functional representations build upon the understanding gained through creating and modify-
ing descriptive representations. Embedding functionality in descriptive objects provides con-
text in which to understand and discuss the issues raised by applying computation to the ap-
plication domain. Functional representations support mutual education by allowing system
builders to educate domain workers about computational techniques, and by allowing domain
workers to educate system builders about what domain knowledge the functionality should
contain. Service provisioning workers were able to articulate shortcomings in our functional
representations that they did not identify in the corresponding descriptive representations.

Seed prototypes provide a shared context for understanding how functional and descriptive
objects should be combined in a mature system. Seed prototypes build upon the shared un-
derstanding generated through the construction and evaluation of descriptive and functional
objects.

6.3 long-term, Indirect Collaboration in EVA
Long-term, indirect collaboration is required between system builders and system maintainers
in domain environment reseeding (see Figure 3). System maintainers need to understand the
design decisions that shaped the system. The EVA approach builds an information space of
descriptive objects as a natural product of the system building process. The descriptive ob-
jects represent the application domain knowledge on which implementation is based -- cru-

310

cial information for reseeders. Because descriptive objects are understandable by domain
workers, the objects provide a context for collaboration between system maintainers and
domain workers in the reseeding process.

7 Summary
User studies of KID have shown that the explicit representation of client’s goals and intentions
provided by KIDSPECIFICATION benefits designers in understanding the design problem better
by allowing them to (1) create (frame) concrete objects to reflect on and (2) reflect on (see)
partially framed design with task-relevant design knowledge delivered by KID. Thus, the sys-
tem enhances the quality of collaboration between designers and clients. The
seeing-framing-seeing cycle of design processes driven by designers in collaboration with the
design environment has been constantly observed in users interacting with KID. Designers’
reflection was enhanced by the sometimes unexpected arrival of information, which has been
stored by other designers. It was observed that the knowledge delivery encouraged designers
to articulate design knowledge that had been implicit before. Assessment of these
mechanisms illustrates the specification component’s beneficial role in enabling the KID
design environment to effectively support direct and indirect collaborative design among
designers, clients and the design environment.

The EVA approach extends our design environment work by applying our design environment
work to industrial setting where (1) we cannot choose problems conveniently, and (2)
complexity of the real world is inescapable. The artifacts produced with the EVA approach
support long-term, indirect collaboration between system builders by capturing application
domain knowledge that is produced during system building. Specifically, descriptive
representations that describe important characteristics, terminology and relations of the ap-
plication domain are useful during the reseeding process. Conventional system building ap-
proaches do not focus on domain knowledge, and do not integrate this knowledge within the
system itself. Consequently, system maintainers are often forced to perform their job without
benefit of the knowledge gained by system builders.

Both KID and EVA provide a process view of design environments, by greatly facilitating the
accumulation of design rationale (Fischer et al., 1991), and by supporting design as a cycle
framing, action, breakdown and repair (Schoen, 1983; Rittel, 1984).

References
B. Curtis, H. Krasner, N. Iscoe 1988. A Field Study of the Software Design Process for Large Systems,
Communications of the ACM, 31 (11), November: 1268-1287.
G. Fischer, A.C. Lemke, R. McCall, A. Morch 1991. Making Argumentation Serve Design, lluman Computer
Interaction, 6(3--4):393-419.
G. Fischer, J. Grudin, A.C. Lemke, R. McCall, J. Ostwald, B.N. Reeves, F. Shipman 1992. Supporting Indirect,
Collaborative Design with Integrated Knowledge-Based Design Environments, Human Computer Interaction,
Special Issue on Computer Supported Cooperative Work, 7(3):28 I-314.
G. Fischer, K. Nakakoji, J. Ostwald, G. Stahi, T. Sumner 1993. Embedding Computer-Based Critics in Ihe
Contexts of Design, in Human Factors in Computing Systems, INTERCHI’93 Conference Proceedings, ACM,
(in press).

311

G. Fischer, R. McCall, A. Morch 1989. JANUS: Integrating Hypertext with a Knowledge-Based Design En-
vironment, in Proceedings of Hypertext’89 (Pittsburgh, PA), 105-117, ACM, New York.

G. Fischer, K. Nakakoji 1992. Beyond the Macho Approach of Artificial Intelligence: Empower Human Desig-
ners - Do Not Replace Them, Knowledge-Based Systems Journal, 5(1): 15-30.

G. Fischer, K. Nakakoji 1993. Amplifying Designers’ Creativity with Domain-Oriented Design Environments,
Artificial Intelligence and Creativity.
A. Girgensohn 1992. End-User Modifiability in Knowledge-Based Design Environments, Unpublished Ph.D.
Dissertation, Department of Computer Science, University of Colorado, Also available as TechReport CU-
CS-595-92.
J. Greenbaum, M. Kyng (eds.) 1991. Design at Work: Cooperative Design of Computer Systems, Lawrence
Erlbaum Associates, HiUsdale, NJ.
J.L. Kolodner 1990. What is Case-Based Reasoning?, In AAAr90 Tutorial on Case-Based Reasoning, pp. 1-32.
K. Nakakoji 1993. Increasing Shared Understanding of a Design Task between Designers and Design Environ-
ments: The Role of a Specification Component, Unpublished Ph.D. Dissertation, Department of Computer
Science, University of Colorado.
J. Ostwald, B. Bums, A. Morch 1992. The Evolving Artifact Approach to System Building, in Working Notes of
the AAAI 1992 Workshop on Design Rationale Capture and Use, AAAI, 207-214, San Jose, CA.
M. Polanyi 1966. The Tacit Dimension, Doubleday, Garden City, NY.
B.N. Reeves 1993. The Role of Embedded Communication and Artifact Itistory in Collaborative Design, Disser-
tation Thesis, Department of Computer Science, University of Colorado, Boulder, CO, (forthcoming).
A. Repenning, T. Sumner 1992. Using Agentsheets to Create a Voice Dialog Design Environment, in Proceed-
ings of the 1992 ACM/SIGAPP Symposium on Applied Computing, ACM Press, 1199-1207, (also published as
Technical Report CU-CS-576-92).
C. Riesbeck, R.C. Schank 1989. Inside Case-Based Reasoning, Lawrence Erlbaum Associates, Hillsdale, NJ.
H.WJ. Rittel 1984. Second-Generation Design Methods, in N. Cross (ed.), Developments in Design
Methodology, John Wiley & Sons, New York, 317-327.
D.A. Schoen 1983. The Reflective Practitioner: ltow Professionals Think in Action, Basic Books, New York.
G. Stahl 1993. Interpretation in Design: The Problem of Tacit and Explict Understanding in Computer Support
of Cooperative Design, Unpublished Ph.D. Dissertation, Department of Computer Science, University of
Colorado, Forthcoming.
L.A. Suchman 1987. Plans and Situated Actions, Cambridge University Press, Cambridge, UK.

312

