
When (not) to use Derivational

Sanjay Bhansali
School of EECS

Washington State University
Pullman, WA 99163

bhansali @eecs.wsu.edu

Abstract.

We present an experience report in applying derivational
analogy to speed up the performance of a prototype system
called APU that synthesizes UNIX shell scripts from a
problem specification. We present experimental results
showing how the system performed, the quality of
solutions obtained by using analogy, and how the system
scaled up with size of case libraries. We discuss the
implications of the results and describe properties of the
knowledge representation and the domain that contributed
to APU’s performance.

Introduction

APU (Automated Programmer for UNIX) is a prototype
system that can synthesize UNIX shell scripts from a logic-
based specification of a program (given in terms of pre- and
post-conditions). The synthesis engine in APU consists of
hierarchical planner that uses a set of rules to decompose a
given problem specification into a set of simpler goals.
These goals are in turn decomposed into sub-goals until
ultimately each sub-goal can be solved by using a UNIX
command. If a sub-goal cannot be solved by a using a UNIX
command and cannot be decomposed further, the planner
backtracks. As the planner attempts to solve a problem it
records the derivation history of the rules applied so far.
When it finally succeeds in solving a problem, the problem
and its associated derivation may be added to APU’s case
library (this decision has be to made by a user). When new
problems are encountered, APU uses a set of heuristics to
retrieve an analogous problem from the case library and
replays the derivation history of the retrieved problem to
solve the new problem more efficiently. The retrieval
heuristics were designed to estimate the closeness of two
program implementations based on the closeness of their
specifications. The retrieval heuristics match problem
specifications based on the following features [2]:

1. Overall solution strategy Problems are
analogous if the same high-level strategy (e.g. divide-and-
conquer, generate-and-test, etc. [1]) are applicable. This is
detected by matching the logical form of the specifications
and ignoring the specific functions, predicates, and objects.

2. Systematicity - Problems are analogous if their
input and output arguments are parts of a common system
of abstract relationship. This is adapted from the
Systematicity Principle proposed by Gentner [5].

3. Syntactic features - Problems are considered
analogous if they contain certain pre-defined keywords which
dictate the form of the solution (e.g. a recursive solution, or
a solution that involves asynchronous wait).

Analogy: Lessons learned using APU

Mehdi T. Harandi
Department of Computer Science

University of Illinois
Urbana IL 61801

ha randi @ c s. uiuc. edu

4. Conceptual distance - This is used to rank order
retrieved analogs by comparing the semantic distance
between corresponding concepts in a concept hierarchy. The
closer the concepts the more analogous are the problems.

The Appendix gives an illustrative example showing how
problems are specified and solved by APU. Details of the
system, the planning algorithm, and the retrieval heuristics
have been described elsewhere [1, 2]. In this paper we
evaluate APU’s performance from a case-based reasoning
perspective and describe some of the lessons that we have
learned from our experiences.

Motivation for Derivational Analogy

To evaluate a case-based system, we need to first specify
the purpose for creating the system. Our initial motivation
in creating APU was simply to develop an automatic
programming system based on planning techniques. We
realized quite early that such a system would have a large
number of different kinds of rules and that a brute force
search for finding a solution would result in unacceptable
performance. To improve the planning process we created a
sophisticated planning algorithm based on hierarchical
planning. The two key features of our approach were:
¯ The planner assigned a criticality value to each

outstanding sub-goal to determine which sub-goal to
solve next. This ensured that failure paths were
identified as early as possible.

¯ The rules in the rule-base were categorized according to
their generality; when multiple rules were applicable,
the planner always chose the most specific rule first.
Besides reducing search, this also resulted in better
solutions (i.e. more efficient shell scripts).

Although the resultant system was efficient, we believed
we could obtain larger speed-ups by reusing the derivation of
an analogous problem (when available) in solving a new
problem. To test this hypothesis, we built an analogical
reasoner component to APU, and created a body of rules and
concepts to solve six representative problems (three pairs of
analogous problems). We discovered that replay gave us
speedups by as much as a factor of ten.

Encouraged by these initial results, we decided to see if
these results scaled up, particularly when the cost of
retrieving analogs was factored in. (In the initial version
there was just one plausible analog for each problem and the
cost of retrieval was negligible).

In the rest of this paper, we describe the experimental
evaluation of the replay component of APU, analyze the
results, and discuss properties of the system and domain that
contribute to the results.

1

From: AAAI Technical Report WS-94-01. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved.

Experimental Evaluation

We designed experiments to answer the following set of
questions:
¯ How good are the heuristics in determining appropriate

base analogs?
¯ How effective is derivational analogy in improving the

overall problem-solving performance?
¯ How does the retrieval cost affect performance?
¯ How does quality of solutions obtained using replay

compare with the quality of solutions obtained without
replay?

¯ How does incomplete knowledge affect the
performance of the system?

The answers to these questions were expected to give
insights on whether, and under what conditions, derivational
analogy is likely to improve the problem-solving
performance of a system. Note that a significant difference
between our system and most case-based reasoning systems
(with some exceptions, e.g. [9, 10]) is that in our system
the analogical reasoner was only one component of a
sophisticated problem-solver. We believe that in many real-
life domains there are other domain-specific problem-solving
methods that can, and should be, exploited when considering
ways of improving the efficiency of the system.

Generating the Data Set

We began by constructing a rule-base for eight problems
that are typical of the kind of problems solved using shell
scripts in this problem space. The problems included in the
set were:

1) List all descendant files of a directory,
2) Find most/least frequent word in a file,
3) Count all files, satisfying certain constraints, in

directory,
4) List duplicate files under a directory,
5) Generate an index for a manuscript,
6) Delete processes with certain characteristics,
7) Search for certain words in a file, and
8) List all the ancestors of a file.
To generate the sample set, we first created a list of

abstract operations that can be used to describe the top-level
functionality of each of the above problem - count, list,
delete, etc. - and a list of objects which could occur as
arguments to the above operations directory, file, system,
line, word. Then we created another list of the predicates and
functions in our concept dictionary which relate these
objects, e.g., occurs, owned, descendant, size, cpu-time,
word-length, line-number,

Next, we used the signatures (i.e. number and type of
arguments) of predicates represented in APU to generate all
legal combinations of operations and argument types. For
example, for the count operation, the following instances
were generated: (count file system), (count file directory),
(count word file), (count character file), (count line file),
(count string file), (count process system).

In a similar fashion, a list of all legal constraints were
generated, using the second list of predicates and functions.

Examples of constraints generated are (occurs file directory),
(descendant directory directory), (= int (line-number
file)), and (= string (owner file)). Constraints that
trivial or uninteresting were pruned away (= int int).

Next we combined these constraints with the top-level
operations to create a base set of problems. We restricted
each problem to have a maximum of three conjunctive
constraints. From this set a random number generator was
used to select thirty-seven problems, which together with
the initial set formed our sample population of forty-five
problems.

The final step consisted of translating the informal
problem descriptions into a formal specification using the
most "natural" or likely formulation of the problem. For
example, for the problem (most-frequent word file), the
corresponding post-condition with a word being the output
variable and a file being the input variable is more likely,
rather than the reverse (which would generate a program to
find that file in which a given word is the most frequent).

Goodness of Heuristics

For the purposes of this workshop, the exact performace
of the various heuristics is not relevant since the retrieval
heuristics are very specific to this domain. Hence, we
simply summarize the results here (for details see [2]):

¯ Using all four heuristics APU performed almost as well
as a human (it failed to retrieve the best analog in only 5%
of the cases).

¯ The systematicity and solution strategy were the two
most important heuristics. Turning both off caused the
system to miss the best analog in all but four cases,
whereas each one by itself was able to retrieve the best
analog in about 80-85% cases.

¯ Cases where APU missed the best analog were
insightful in indicating the reasons why analogy works in
APU (this will be discussed in detail later).

Speedup using Derivational Analogy

To measure speedup we built a case library by randomly
selecting a set of ten base analogs from the sample set.
From the same sample another set of problems were
randomly selected to be the target problems. We measured
the time to synthesize each of the target problems with and
without using analogy. The experiment was repeated with
different sets of base and target problems and the average
speed-up was computed for all the experiments.

We observed that the average time to synthesize programs
is reduced by a factor of 2 when derivational analogy is used
[2]. This is a very modest performance gain compared to our
initial estimations and compared to speedups obtained by
other learning programs e.g. [6, 10].

The primary reason for this is the nature of the search
space in APU. The planner uses sophisticated heuristics and
domain-specific knowledge to ensure that its rule selection
methodology greatly reduces the need for backtracking. As a
result the planner spends most of its time in pattern
matching and in selecting the right rule rather than on
search. Thus, during replay the saving is obtained by
eliminating the cost of rule selection rather than by

2

eliminating search. This leads us to conclude that
sophisticated problem-solving methods and domain-specific
problem-solving knowledge, when available, may be more
effective in improving problem-solving performance than
replay. In other words, an analogical reasoner should be
considered as one technique among several possibilities
when exploring methods for improving the performance of a
problem solver.

Second, the largest speedups were obtained when parts of
a solution could be copied. Most rules in APU’s knowledge-
base decomposed problems so that there was no interaction
between sub-goals. As a result, whenever an identical sub-
goal is observed in an analogous problem, APU can simply
copy the derivation subtree beneath that sub-goal in the
source problem. This implies that in domains where
problems are decomposable, with little or no interaction
between sub-goals, and where similar sub-problems recur
frequently, one would obtain high speed-ups by using
replay. This is in agreement with observations made by
other researchers in CBR [7].

Our data also supported the following intuitive results
about replay:

¯ speed-ups tend to be greater with larger problem sizes
(owing to the reduced overheads of matching analogs as
fraction of the total problem-solving time).

¯ The degradation in performance when analogies failed
was less severe than the speedups obtained when analogies
matched suggesting that unless the number of mismatches
are much greater than the number of matches, replay should
prove effective.

Finally, our results are based on a random sampling of
problems from a population. We conjecture that in many
realistic applications problems do not have such a
distribution and the 80-20 rules applies: 80% of the
problems are generated from 20% of the problem space
indicating that there are many instances where problems are
similar compared to instances where they are not. In such
cases, derivational analogy should yield higher performance
gains. However, further empirical testing is needed to
confirm this hypothesis.

Effect of Case Library size.

To determine how the time to retrieve analogs depends on
the size of the case history library, we incrementally
increased the size of the derivation history library (in steps
of 5, selecting new problems at random), and measured the
time taken to retrieve analogs for a fixed set of target
problems. Figure 2 shows the result of one typical run of
this experiment.

When problems are stored in the case library they are
indexed using a set of keys that are derived from the problem
specification using APU’s retrieval heuristics. When a new
problem specification is encountered, APU constructs a set
of keys for the new problem using the same heuristics and
then uses them to retrieve cases from the library. The
conceptual distance heuristic is then used to rank order the
retrieved cases. Thus, the retrieval strategy in APU can be
thought of as a sophisticated hashing scheme. However,
unlike a regular hashing scheme problems do not have a

unique key and several different keys may be used to index
the same problem. The experimental results showed that in
such a situation the cost of retrieval increased almost
linearly with the average number of problems per feature.

This provides a hypothesis as to when problems should
be stored in the derivation history library: If adding a set of
problems to the library increases the ratio problems/feature,
the new problems are probably similar to the problems
already existing in the library, and hence should not be added
to the case library. On the other hand, if the ratio decreases
or remains the same, the problems are probably different
from the ones in the library and should be added.

An alternative approach to the utility problem that has
been recently reported involves using a more efficient
matching of learned rules [4].

4.0
3.5

Average 3.0
Retrieval 2.5
time(CPU 2.0
seconds) 1.5

1.0
0.5

5 10 15 20 25 30 35 40

(a) Derivation library size

45

4.0
3.5

Avg. no. of 3.0
problems 2.5
per feature 2.0

1.5
1.0
0.5!

5 10 15 20 25 30 35 40 45

(b)Derivation library size

Figure 2. (a) Average time to retrieve analogs as
function of library size. (b) Average number
problems per feature as a function of library size.

Quality of solutions

It is well-known that there is a trade-off in the quality of
solutions obtained versus time spent in searching for
alternative solutions during replay [8]. One strategy that can
be used to balance the trade-off is the following: At each
step during replay allow the problem-solver to search for an
alternative, superior solution provided the search time does
not exceed a certain threshold value. However, it is not clear
what the threshold value should be. In APU we
experimented with different values of the threshold. The
strategy that worked the best was: only look for alternative
1-step derivations during replay. Increasing the threshold
beyond this value did not improve the quality of solutions

but degraded performance considerably. Likewise, ignoring
alternative solutions and blindly replaying the derivation
histories caused APU to miss several efficient solutions.

We believe that the explanation for this lies in the way
rules are categorized in APU according to generality. When
two or more rules are applicable to a problem, the most
specific rule almost always leads to a better solution. APU
currently has three levels of rules. The most specific rules
are the ones that apply at the leaf nodes and solve a sub-goal
by applying a UNIX command. Only these rules are
considered as alternatives during replay. A generalization of
this heuristic would be to consider alternative plans
whenever a more specific rule than the one being replayed is
applicable to the current sub-goal. We have not yet
experimented with this heuristic.

A second experimental observation regarding quality of
solutions was that the retrieval heuristics were important in
determining quality (see [2] for an example). In APU, the
replay algorithm only considers the best analog retrieved
from the case library for solving a particular goal.1 If that
turns out to be an inappropriate analog, the replay algorithm
either produces a partial solution or passes the problem back
to the planner (this choice is controlled by a user - see
below). In either case there is a penalty to be paid - either in
terms of the solution (partial versus complete) or in terms
of performance. In an earlier set of experiments we tuned the
algorithm so that it always chose to produce the best partial
solution it could. The experiment clearly showed the effects
of the different heuristics in choosing the best solution and
helped us to fine-tune the heuristic used to rank retrieved
cases. This observation served to confirm our intuition that
the retrieval methodology is critical in determining whether
derivational analogy would be successful. Section 4.0 gives
certain guidelines, based on our experience, on how to
organize background knowledge about a domain to help in
effectively retrieving base analogs.

Partial solutions
This is related to the issue of solution quality. We believe

that it is unrealistic to assume that a completely automatic
system could be constructed for many real-life problems
because of the difficulty of ensuring completeness and
correctness of problem-solving rules. Therefore, it is
necessary to consider situations when the system is unable
to completely solve a problem but can provide a reasonable
partial solution that can be extended by the user. Note that
there is an important difference between APU and some
CBR systems in that in APU’s domain there is a well-
defined notion of a correct answer. CBR domains such as
law, cooking, etc. do not have a unique "correct" answer.
Each answer therefore has to be evaluated in the real world
and the distinction between a complete and partial solution
is irrelevant. If we insist that the system always provide a
complete solution whenever such a solution exists, then the
benefits of using replay can be completely negated! This is

1We discovered that trying more than one analog for the same
goal resulted in unacceptable performance.

because whenever an analogy fails at a sub-goal and the
planner cannot produce a solution for that sub-goal, the only
way to know whether a solution exists is to back up all the
way using the underlying planner and exhaust all
possibilities. In such a situation derivational analogy is not
useful since, in effect, the derivation history is being
ignored.

APU finesses this problem by querying the user whether
to backtrack or continue whenever it encounters a goal for
which there are no applicable rules. However, we believe
that this is a serious limitation of derivational analogy in
domains where the problem solving knowledge is relatively
incomplete and complete solutions (whenever they exist) are
highly desirable.

Why does analogy work in APU?

As with most AI systems, the effectiveness of APU
depends heavily on the representation of the domain. The
key features of APU’s representation scheme are the
abstraction hierarchies of objects, predicates, and functions
and the formulation of the rules in terms of these
abstractions [2]. In this section we briefly discuss how the
abstraction hierarchies are formed, and what properties of the
abstraction hierarchies, the rule base, and the analogical
detection mechanism determine the effectiveness of APU.

Two basic guidelines in forming the abstraction
hierarchy in our system are the following:

(1) If a common function or predicate can be applied
objects A and B, consider classifying A and B under a more
general object. For example, the operation sort-in-
alphabetical order can be applied to a set of characters,
words, or lines; hence characters, words, and lines are
grouped into a more general object line-object. (2) If a plan
for achieving two goals expressed using predicates (or
functions) f and g share common sub-goals, consider
classifying f and g into a more general predicate (function).
For example, a plan for finding the largest element in an
unordered collection of elements (using some ordering
operator) and a plan for finding the smallest element in an
unordered collection of elements share the common sub-goal
of first sorting the collection of elements. Therefore the
predicates largest and smallest may be grouped under a
common predicate called extremum.

One of the prerequisites for analogy to work is that there
be a large proportion of general rules, i.e. rules formulated
in terms of general objects, predicates and functions (hereby
called concepts) in the abstraction hierarchy. Otherwise, if
we only had specific rules written in terms of specific
concepts (forming the leaves of the abstraction hierarchy),
there would be very little analogical transfer of a solution
derivation from one problem to another.

Secondly, for analogy to succeed the features that are
used to retrieve analogous problems should be good
predictors of the sequence of rules needed to solve the
problem. Figure 2 shows the relationship between sets of
problems, applicable derivations, and the features used to
detect analogous problems. Different features would
correspond to different sizes of the subsets of problems and

the applicable derivations. A feature would be most
predictive if the subset Q coincides with subset R; such a
feature could be used to retrieve all, and only those,
problems for which the entire derivation is applicable.
However, if R is very small, such a feature would not be
general enough for analogy. On the other hand if Q
coincided with the set P, then the feature would be very
general, but would be a poor predictor of the subsequent
rules to apply. An ideal feature for analogy is one that
maximizes both the subset of problems which it identifies
(for generality) as well as the part of the solution derivation
that is applicable to them (for effectiveness).

Range

(a) (b) (c)
Figure 2. The relationship between

problems, plans, and features used to detect
analogous problems. P is the set of all problems
to which the first rule in a derivation applies, Q
is the subset of problems that match the feature
used for plan retrieval, and R is the subset of
problems for which the entire derivation is
applicable.

In APU, when a rule is used to decompose a goal, the
bindings of the rule variables to the goal expressions
determine the subsequent sub-goals and thus, implicitly, the
subsequent sequence of rules to apply. Therefore the
bindings of the rule variables provide a feature for analogy
detection. One can imagine three ways in which these
bindings can be used to predict other goals on which the
same sequence of rules would apply. At one extreme, one
could completely ignore the bindings of variables, and say
that for any goal expression which matches the rule, the
original sequence of rules should apply. However, if the rule
is very general, it may be poorly correlated to the
subsequent sequence of rules to be used, and thus the
analogy is likely to fail as often as it succeeds. This
corresponds to case (a) in figure 2. At the other extreme, one

could use the exact bindings and say that if a rule matches
another goal with the corresponding variables bound to the
same expressions (up to variable renaming) then the original
sequence of rules would apply. This corresponds to case (c)
in figure 2 and is not general enough for analogy. A third,
intermediate approach is to extract certain features that
characterize the bindings and use them to predict the
sequence of subsequent applicable rules. If the features that
are used to characterize the bindings are both general (to
permit analogical transfer of solutions to many other
problems) and well correlated with the subsequent rules
needed to solve the problem, then they can be fruitfully used
to detect analogous problems (case (b) in figure

The key to APU’s success is that its retrieval heuristics
use a set of features that provide precisely such a
characterization of the variable bindings. The ontology of
intermediate concepts represented in the abstraction hierarchy
plays a central role in the characterization of the bindings.
Because of the methodology used to construct the
abstraction hierarchy, there is a strong correlation between
the intermediate level concepts used to characterize variable
bindings and the subsequent rule sequence that is used, and
at the same time the characterization is general enough to be
applicable to several different problems.

A property of the domain that contributes to APU’s
success is the availability of a rich set of planning operators
(i.e. the UNIX commands and subroutines) that make
possible to represent the objects in the domain in terms of
abstraction hierarchies. Thus, when a plan is formulated in
terms of general objects, there is a high correlation between
the various plans obtained by instantiating the general
object by specific ones in the abstraction hierarchy, and their
completions. For example, in APU files and directories are
classified under the abstract object directory-object and most
plans are formulated in terms of directory-object. The
analogy between files and directories is effective because for
most UNIX commands that operate on files there is a
corresponding (possibly same) command that operates
directories.

Conclusion

Derivational analogy was proposed as a mechanism that
could be used to reduce problem-solving effort [3]. However,
the usefulness of this approach needs to be experimentally
validated in non-trivial and novel domains. We have
described our experiences and some lessons learned in using
derivational analogy to synthesize UNIX shell scripts. These
lessons provide some insights on when derivational
analogy is likely or not likely to be a useful technique, and
what issues need to be examined more carefully in
attempting to scale up to real-world problems.

Our current work includes expanding the rule-base in
APU to include more domain-independent, problem-solving
(as opposed to UNIX-specific) rules to increase the repertoire
of problems that can be solved using a fixed set of UNIX
commands. This will increase the search space of APU. Our
conjecture is that in such a situation, the benefits of using
replay would increase significantly.

An interesting side-effect of implementing the analogical
reasoner was that it served as a valuable tool for knowledge
acquisition and refinement. In trying new problems APU
often surprised us by failing to synthesize solutions for
problems although an obviously analogous problem could
be solved. Examining the node at which replay failed
quickly revealed rules that were missing, or overly specific,
or objects/predicates missing in APU’s concept hierarchy.
We plan to investigate the role of derivational analogy as a
knowledge acquisition technique by exploiting replay
failures to propose new rules and new concepts in the
concept hierarchy.

References

[1] Bhansali, S., Domain-based program synthesis using
planning and derivational analogy. 1991, Department of
Computer Science, University of Illinois at Urbana-
Champaign.

[2] Bhansali, S. and M.T. Harandi, Synthesis of UNIX
programs using derivational analogy. Machine Learning,
1993. 10(1).

[3] Carbonell, J.G. Derivational analogy and its role in
problem solving, in Third National Conference on Artificial
Intelligence. 1983. Washington, D.C.

[4] Doorenbos, R.B. Matching 100,000 Learned Rules. in
Proceedings of AAAI-93. 1993. Washington, D. C.

[5] Gentner, D., Structure-mapping: A theoretical
framework for analogy. Cognitive Science, 1983.7(2),
155-170.

[6] Kambhampati, S., A validation-structure based theory
of plan modification and reuse. Artificial Intelligence, 1992.
55(2-3), p. 193-258.

[7] Koton, P.A. Evaluating case-based problem solving.
in Proc. of a Workshop on Case-based Reasoning. 1989.
Pensacola Beach, FL.

[8] Mostow, J., Design by derivational analogy: issues in
the automated replay of design plans. Artificial Intelligence,
1989. 40, p. 119-184.

[9] Thagard, P. and K.J. Holyoak. Why indexing is the
wrong way to think about analog retrieval, in Proc. of a
Workshop on Case-based Reasoning. 1989. Pensacola
Beach, FL.

[10] Veloso, M. and J.G. Carbonell, Derivational analogy
in Prodigy: automating case acquisition, storage and
utilization. Machine Learning, 1993. 10(3), p. 249-278.1.
Bhansali, S. and M.T. Harandi, Synthesis of UNIX
programs using derivational analogy. Machine Learning,
1993. 10(1).

Appendix

The following example gives a flavor of the kinds of
problems and how they are solved by APU. In the
following, the output of APU is in normal font, the user’s
response is in bold, and our annotations are in italics.

Beginning of session
> (get-problem)

Enter problem description:-
NAME: max-word
INPUT: ?f :file
OUTPUT: ?w :word
PRECONDITION: true
POSTCONDITION: (most-frequent ?w (BAG (?x :word)

:ST (occurs ?x ?f)))
This is a problem of finding the most commonly used word in a
text-file.
> (solve-problem)
Failed to find an analogous problem.
Solving problem using planner.
APU first tries to solve a problem by analogy. There are no
analogs for this problem in APU’s knowledge-base. So this
problem is solved by calling the underlying planner.
Expanding sub-goal: (most-frequent

?w
(BAG (?x :word) :ST (occurs ?x .90))

A sub-goal is expanded by using transformational rules and
reducing it to a sequence of one or more sub-goals.

Expanding sub-goal:
(= ?sl (SET (?wl :word ?n:integer)

(and (occurs ?wl ?f)
(= ?n (count-of ?wl (BAG (?x :word)

:ST (occurs ?x .90))))))
Expanding sub-goal:
(= ?s2 (SET (?w2 :word) :ST (occurs ?w2

Expanding sub-goal:
(= ?nl (SET (?xl :integer) :ST (= ?xl (count-of

(BAG (?x2 :word) :ST (occurs ?x2.90)))))
Unable to solve sub-goal:

(= ?nl (SET (?xl :integer) :ST (= ?xl (count-of
(BAG (?x2 :word) :ST (occurs ?x2 ?f))))))

Choose one of the following: 1. Backtrack 2. Continue
APU starts solving the problem in a top-down manner by
decomposing sub-goals to simpler sub-goals, choosing at
each point the most critical sub-goal. It discovers that it
cannot solve or further decompose the sub-goal of computing
the count of the number of times a given word occurs in a file
and asks the user whether to backtrack or continue and generate
a partial solution.

>2
The user opts for a partial solution.
The rest of the trace is omitted.

Finished generating plan. A solution to the problem is:
MAX-WORD:

cat ?f I
tr -s " ’\012’1
tr -s ’ ’ ’\012’
sort I
uniq >/tmp/file728
WHILE read ?var3
130

list the given input file
replace spaces by NEWLINE
replace tabs by NEWLINE
sort the list
remove duplicates
#for all words in the list

[SET(?xl :integer) get count ofword ?var3 in fil e ?f
:ST (= ?xl (count-of ?var3 (BAG (?x2 :word)

(occurs ?x2 ?f)))) >
FOR ?var4 IN ?nl
DO # print (word, word-count) in a file

echo $?var3 $?var4 >>/tmp/file729
DONE

DONE </tmp/file728 # the input to the while loop
sort +2 -r/tmp/file7291 # sort on the second field
head -1 >/tmp/file730 # select first element of list

6

set ?w=’awk ’{ print $1 }’/tmp/file730" # select lstfieM

Look for other solutions? (y/n)
Add the problem to the derivation history library? (y/n)
Saving derivation history ... done
APU adds the above problem and its derivation to its
derivation history library. This can now be used by the system
to solve analogous problems. This is illustrated next.

> (get-problem)
Enter problem description:-
NAME: max-file
INPUT: ?d :directory
OUTPUT: ?f :file
PRECONDITION: true
POSTCONDITION: (most-frequent ?f (BAG (?x :file)

:ST (descendant ?x ?d)))
In this problem the user wants to find the most common file
name, among all files that are descendants of a given directory.
>(solve-problem)
Found analogy! Exploring further ...
APU automatically detects the max-word problem as the best
analog for the current problem, retrieves its derivation from
the derivation history library and replays that derivation.

Found analogy! Exploring further ...
The analogy continues for the decomposed sub-goals.

Found analogy! Exploring further ...
Found analogy! Exploring further ...
Analogy failed at sub-goal: (= ?s3 (SET (?F :file)

(descendant ?fl ?d)))
The earlier rule is no longer applicable to this sub-goal.

No alternate rule available! Solving problem using the
planner.
No alternative rules are stored in the derivation history. So
APU passes this sub-problem back to the planner.

Found analogy! Exploring further...
APU discovers another analogy to this problem. Presumably it
has solved a similar problem earlier, whose derivation has
been stored in the derivation history library.

Found exact match! Copying sub-tree ... done.
The earlier problem was identical to the current problem, so
the solution is simply copied.

Finished generating plan.
Found analogy! Exploring further...

Having successfully solved the sub-problem the planner
passes control back to the analogical reasoner which
continues to apply the original analogy.

Unable to solve sub-goal:
(= ?nl (SET (?xl :integer) :ST (= ?xl (count-of

(BAG (?x2 :file):ST(descendant ?x2 ?d))))))
APU again fails to solve or decompose the problem of
computing the count of the number of times a given file occurs
in a collection of files. No alternative rules are applicable. So
APU queries the user.

Choose one of the following: 1. Backtrack 2. Continue
>2
Found analogy! Exploring further ...

Analogy continues on rest of the sub-goals.
The rest of the derivation is omitted.

Finished generating plan.
MAX-FILE:

descendant ?d I
sort f

get descendants of directory ?d
sort the list of descendants

uniq >/tmp/file801 # remove duplicates
WHILE read ?var3
DO # get count of ?var3 in list of descendants
[SET (?xl :integer) :ST (= ?xl (count-of ?var3

(BAG (?x2 :word) :ST (descendant ?x2 ?d))))
FOR ?var4 IN ?n 1
DO # print (word, word-count) in a file

echo $?var3 $?var4 >>/tmp/file802
DONE

DONE </tmp/file801 # input to the while loop
sort +2 -r/tmp/file802 I # sort on the second field
head -1 >/tmp/file803 # select first element of list
set ?w=’awk ’{ print $1 }’/tmp/file803"# select first fieM

DESCENDANT:
if test -f $1
then

echo $1 # output the filename
else # else input is a directory

FOR var IN "Is $1" #for all objects in the directory
DO

descendant $1/$i # call the routine recursively
DONE

fi
End of session

