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Abstract

Many mathematical proofs are hard to generate for humans
and even harder for automated theorem provers. Classical
techniques of automated theorem proving involve the appli-
cation of basic rules, of built-in special procedures, or of
tactics. Melis (Melis 1993) introduced a new method for
analogical reasoning in automated theorem proving. In this
paper we show how the derivational analogy replay method
is related and extended to encompass analogy-driven proof
plan construction. The method is evaluated by showing the
proof plan generation of the Pumping Lemma for context
free languages derived by analogy with the proof plan of the
Pumping Lemma for regular languages. This is an impressive
evaluation test for the analogical reasoning method applied
to automated theorem proving, as the automated proof of
this Pumping Lemma is beyond the capabilities of any of the
current automated theorem provers.

Introduction
Automated theorem proving systems have attained a re-
markable strength when it comes to pure deductive search
(McCune 1990). They are, however, still weak with re-
spect to long range planning or other global search and
control issues, as needed in complex proofs. In order to at-
tack complex mathematical problems we need to combine
the strength of traditional automated theorem provers with
human-like capabilities.

Mathematicians have clearly recognized and empha-
sized the power of analogical reasoning in mathemati-
cal problem solving (Hadamard 1945; Polya 1954; 1957;
van der Waerden 1964). Hence, integrating analogy into
theorem provers is one of the challenging problems in au-
tomated theorem proving (Bledsoe 1986; Wos 1988).

Melis analyzed several empirical sources (Melis 1994b)
on how mathematicians prove theorems. As a result, she
identified the use of the following reasoning strategies:
proof planning with partially instantiated methods, struc-
turing of proofs, analogy embedded in proof planning, ana-
logical transfer of partial subproofs, and analogical transfer
of reformulated subproofs and methods. This set of strate-
gies is closely related to the analogical reasoning paradigm
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used in other areas of AI, such as planning (Hammond 1986;
Kambhampati & Hendler 1992; Bhansali & Harandi 1993;
Veloso 1992).

In this paper, we explain how to incorporate analogical
reasoning capabilities into automated theorem proving sys-
tems using this planning perspective. The evaluation of the
method needs to be done by concrete identification of math-
ematical proofs that can be generated by analogy with other
proofs. In (Melis 1993) simpler examples are given for the
application of the method. Here we have chosen a difficult
example in order to show the relevance of the technique
that helps to prove analogous theorems with less effort or
to prove them automatically at all. The paper shows how
to derive by analogy the proof of the Pumping Lemma for
context free languages (CFL) from the proof of the Pump-
ing Lemma for regular languages (REGULAR). The reader
unfamiliar with the formalism of mathematical proofs may
often refer to the figures as an additional source of evidence
and refer to the formalism only as a last resource.

The paper is organized in four sections. Section 2 briefly
introduces the procedure developed for automated theorem
proving by analogy. Section 3 presents the example and
Section 4 draws conclusions on this work.

Analogy Procedure

Theorem proving by analogy consists of finding a proof
for a target problem on the basis of a given proof of a
source problem, which is similar to the target problem (See
Figure 1).

Traditionally, the analogy between the source proof and
the target proof was realized by establishing a mapping
from the primitive symbols of the source theorem onto
the symbols of the target theorem, and by extending this
map such that it provides a proof of the target theorem
when applied to the single steps of the source proof.
Here the primitive symbols are those symbols of the sig-
nature in which the theorems are expressed. In other
words, traditional approaches (Kling 1971; Munyer 1981;
Owen 1990) are centered around symbol mapping and the
transfer of single proof steps.

The analysis of empirical sources, as performed in (Melis
1994b), however, suggests the following features of analogy
in theorem proving:

From: AAAI Technical Report WS-94-01. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved. 



source proof

source problem target problem

Figure 1: Analogy in theorem proving

¯ representation of analogy within a proof planning frame-
work,

* analogical transfer of proof ideas, subproofs, or methods
found by decomposition,

¯ analogical transfer based on reformulation, including ab-
straction, rather than just by symbol mapping.

The complete general analogical cycle involves the gen-
eration, storage, retrieval, and adaptation of past similar so-
lutions. In this paper we address only the adaptation phase
and show how it relates to the problem of replaying the
derivation of a solution for a planning problem. We extend
the original analogical replay of (Veloso 1992) to encompass
forward chaining in addition to backward chaining. Proofs
are therefore bidirectionally constructed as a combination
of inferences originated in the assumptions and deductions
required to reach the goal. We further include the abil-
ity to reformulate and restructure the operators, goals, and
assumptions ofthe source case. Table 1 outlines the analogi-
cal reasoning replay cycle when applied to theorem proving.
(Note that in this paper we do not specify the methods of
reformulation and restructuring. The interested reader is
referred to the reference (Melis 1993).)

We now illustrate this procedure applied to a specific
complex proof.

Example: Constructing a Proof Plan for the
Pumping Lemma for CFL

The Pumping Lemmata in general state that every suffi-
ciently long word in a language L contains some subwords
which can be repeated ("pumped") any number of times,
and the resulting word will still be in L. The general idea
underlying a proof for the Pumping Lemma is to find two
nodes of the parse tree of a word, which are labelled with the
same variable and to repeat the subword(s) that are located
between them.

Proving the Pumping Lemma for context free languages
automatically is still far beyond the capabilities of auto-
mated theorem provers (such as OTYER (McCune 1990))1.

1A lot of user guidance is crucial for any complex proof.

1. Terminate if the goal statement is satisfied in the cur-
rent state.

2. If the source case is exhausted, then base-level plan
for the remaining goals.

3. Get a new action from the source case and apply to it
the current set of reformulations. The action is either
an assumption that was used in forward chaining, or a
goal that was used in backward chaining.

4. Let p be the goal expanded or the assumption used in
the source case.

5. Let R be the reformulation of p, such that p matches
a current target goal or assumption. Add R to the set
of reformulations for future use.

6. Link the new p node to the source case. Advance case.
7. Select the operator chosen in the case and apply refor-

mulations.
8. Restructure the operator if necessary.
9. Check if the operator choice is verifiable. If it is not,

then
¯ Select another operator by base-level planning.
¯ Go to step 1.

10. Add to the set of pending goals all the preconditions
of the operator that are not satisfied in the current state.
Add to the set of assumptions the effects of operators
applied forward.

11. Link the new operator node to the source case. Ad-
vance case.

12. Go to step 1.

Table I: Outline of the extended analogical replay cycle.

The proof has too many assumptions and is very complex2,

and hence, the search space for the proof is enormous. It is
even hard for humans to write a correct logical proof. The-
orem proving by analogy as shown below, however, gen-
erates a proof of GFL from a proof of REGULAR. More
precisely, starting with a proof plan of the Pumping Lemma
for regular languages, we obtain a proof plan for CFL by
analogy-driven proof plan construction. This construction
requires two other small subproofs to be found directly by
a theorem prover.

We do not focus on initial generation of proof plans here,
but start already with a source proof plan. The operators
of this plan closely correspond to the steps of the proof in
(Hopcroft & Ullman 1979). The example reveals the impor-
tance of automated decomposition of proofs into appropri-
ate subproofs (see (Melis 1994a)) because decomposition
yields subproofs that can be transferred analogically for the
target proof, or which can be proved directly.

In order to speak about formal proofs of the Pumping
Lemmata, we need some formal notation. First we provide
the notation so that the reader can refer to it when reading
the technical details of the proofs.

E.g., for Nqthm (Boyer & Moore 1988), user guidance in form
of lemmas is crucial (personal communication with Bob Boyer).
Shankar’s proof of G~del’s theorem has 1741 lemmas and the file
to generate this proof is more than 1 Mbyte.

ZAccording to the third, fourth, and sixth complexity criterion
in (Boyer & Moore 1988).
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Notation
In general, a logical proof is represented as a tree of prob-
lems such that the leaves are the assumptions of the proof,
the root is the theorem to be proven, and each subgoal (node)
is derived by logic calculus rules from its immediate prede-
cessors. Notice that the proof arguments for the Pumping
lemma in textbooks are often easier to understand, since
they operate with pictures while a logical proof uses only
formulas.

Let a languageL be a tuple L = (V, T, p, S), where V is a
set of non-terminal symbols, T is a set of terminal symbols,
p is a set of production rules, and S is the start symbol.
Derivations in L are denoted by ~. We assume that the
reader is familiar with regular and context free languages,
the Chomsky normal form for CFL, etc (see (Hopcroft 
Ullman 1979)).

Izl denotes the length of the word z. xy is an abbreviation
for the concatenation x o y of words x and y. The parse
tree tree(w) represents the derivation of a word w using the
rules ofp. The root of tree(w) is labeled with S. path de-
notes a path in tree(w) starting in S. The function l(node)
returns the label of node which is a variable or terminal sym-
bol used in the derivation at that step in tree(w). Notice
that different nodes may have the same label. The function
yield maps nodes of tree(w) to words (see (Hopcroft 
Ullman 1979)). The function depth returns the depth of
a node in the tree. The function sw(Ni,Nj) is only de-
fined for Ni, Nj with depth(Ni) < depth(Nj) and both
Ni and Nj belonging to the same path in tree(w), and re-
turns the subword of yield(Ni) which precedes yield(Nj)
in yield(Ni )3. The function swp(Ni, Nj ) returns the pair of
subwords of yield(Ni) which consists of the subword pre-
ceding yield(Nj) and the subword succeeding yield(Nj)
in yield(Ni)4.

A Proof Plan of REGULAR

We first give the source theorem, the proof assumptions, and
subgoals of the source proof plan according to a straight-
forward logical reconstruction of the mathematical proof in
(Hopcroft & Ullman 1979).

Theorem (REGULAR): Let L be a regular language. Then
there is a constant k (dependent only on L), such that 
w E L and Iwl _> k, then there are u, v, x ¯ T*, such that
w = uv=,luvl <_ k, lvl >_ l, andVi(uvZx ̄ L).

For a proof of REGULAR it suffices to show (according to
(Lewis & Papadimitriou 1981)) that:

1. 3kVw ([wl > k -+ Bu, v,x,A (u, v, x E T* A A E V 
s ~ ~A ̂A ~ vAAA ~ =/~,,~ = wA Ivl >_ 1)).
We consider eleven assumptions, which are used in the

proofS; A11 is named L11 because it is a lernma (subgoal),

3The proof of REGULAR uses this function.
4The proof of CFL uses this function.
5 Bold font indicates the pieces of the proof subject to adaptation

later on.

the proof of which is not decomposed further. L11 is derived
from the features of the parse tree for wordS w of a regular
language L.

AI: yield(S) = 
A2: regular(w) VX, N, a,e (s w(Z,g) = 

yield(N) = c -4 yield(X) = a 
A3: vg, x (g E tree(w) ̂  yield(N) = x --* l(g) 
A4: regular(w) --* VX, gj, v (sw(X, Nj) = v ---+

l(X) vol(Ni)
i5: VNi2path (Ni ¯ tree(w) -4 S, Ni ¯ path)
i6: VN~ (N~ E tree(w) --* yield(N,) = ~ ̂  ̄  ~ T*)
i7: VNi,NiVpath (Ni,Ni ¯ path A Ni k Nj - 4

sw(g~, Nj) 5£ 
A8: VNi, Nj, Vpath3v (Ni, Nj E path A

depth(N~) < depth(Nj) A -,leaf(Ni) -, leaf(Nj) -~
sw(gl, Ni) = v ^ v E T*)

A9: For any sequence ~r of length n and any function
l from this sequence to a set of labels smaller than n
there exist el, e2 ̄  cr with l(el) l( ez)

A10: IV] = k, for a constant k and number IVI of ele-
ments in V.

L11: qpath(length(path) > where n i s a parameter
and preconditions Iwl > n + 1 ....

The meaning of each of these assumptions follows di-
rectly from the notions introduced above. For instance, A3
expresses formally that for each node N in tree(w), the
yield of N can be derived (in L) from the label of 

Figure 2 sketches the proof plan of REGULAR, where
the numbers A.. refer to the assumptions above. In order to
produce new conclusions from assumptions or previously
derived facts, we apply operators. The figure points to
where the operators are applied but we do not show here
their contents. These operators are complex and correspond
to subproofs with preconditions and effects. The subgoals
encountered are numbered and correspond to the following
enumeration6:

1. 3kVw(Iwl > k -4 3u, v,x,A(u,v,x ¯ T* AA ̄  V 

S~uAAA:~vAAA~xAuvx=wAIvI¢ I)
3. 3kVw3g~, Nj, ~, ~, ~(Iwl > k -~ g,, gj ̄  tree(w) 

~w(g~, gj) = v A l(Yd = l(N~) A yield(g~) 
sw(S, Ni) = u A yield(S) = u o vox A v ¢: e A
u,v,x ¯ T*)

4. vw, N~3u(~w(S, N~) = u/x ,1 E 
5. 3kVw3N~,N~,v(lwl > k --, NI,Nj e tree(w) 

v ¯ T* A l(Ni) = l(Nj) A sw(Ni, Nj) = v A v ~£ e)

6. 3kVw3Ni,Nj3path(lw I > k -4 Ni,Nj ¯ tree(w) 
Ni, Nj ¯ path A depth(Ni) depth(Nj) /xI(Nd =l(Nj) A N,, N~ ~ Zea~e~ N~, N~# root)

The subgoal 6 expresses, for instance, that for words longer
than a certain k there are two nodes, which are not leave
nodes and not root nodes, that are labelled same.

6Again, bold symbols will be subject to change in the
adaptation.
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Figure 2: Proof plan of REGULAR

The Target Theorem CFL
Now we give the target theorem (for CFL) and its assump-
tions indicating differences to the assumptions of REGU-
LAR by bold font.

Theorem (CFL) (see (Hopcroft & Ullman 1979)): 
be any context free language. Then there is a constant k
(depending only on L) such that ifw E L and Iwl > k, then
there are u, y, v, z, x E T*, such that w = uvxzy, luzyl <
k, IvzI > 1, and Vi(uv~xz~y E L).

Again, it suffices to show

1’.: 3kVw(w E L A Iwl > k
3u, y, v, z, x, A(u, y, v, z, x E T* AA EVA
S =~ uAyAA =~ vAzAA =~ zAuvxzy = wAIvzl ___ 1)).

Assumptions, that can be used in the proof, are

AI: yield(S) = 
A2": cf(w) ---+ VX, N, a, b, e (swp(X, N) = 

A yield(N) = c --~ yield(X) = a o b)
A3: VN, x (N E tree(w) A yield(N) = x --+ l(N) 
A4": cf(w) ---+ VX, gj, v, z (swp(X, Nj) = (v, z) --+

l(X) :~ v o l(Uj) z)
A5: VNi3path (Ni E tree(w) --+ S, Ni E path)
A6: VNI3x (Ni E tree(w) --* yield(Ni) = x A x 
A7’: VNi,NjVpath (Ni,Ni E path A Ni ¢ Nj --*

swp(Ni, Nj) ~ (e,e))
A8’: ’¢Ni, NjVpath3v, z (Ni, Nj E path A depth(Ni) 

depth(Nj) A ",(leaf(Ni) A-~leaf(Nj)) 
swp(Ni, Nj) = (v,z) A v, z E T*)

A9: For any sequence a of length n and any function
1 from this sequence to a set of labels smaller than n
there exist el, e2 E ~r with l(el) = l(e2)

A10: IV[ = k, for a constant k.
In the CFL case we do not know about a lemma asso-
ciated with L11.

Further assumptions about parse trees of words in con-
text free languages will be necessary to establish that under
certain conditions 3path(length(path(w)) for a pa-
rameter n.

Analogy-Driven Plan Construction

According to the analogy procedure in section 2, the source
proof plan is changed in order to obtain a correct target
proof plan, i.e., one with verified operators, i.e., correct
subproofs, and no open goals. We show the instantiated
procedure adapting the proof of REGULAR to the new
proof of CFL, based on the reformulated assumptions as
shown above.

1. Terminate if the goal statement is satisfied in the current state.

2. If the source case is exhausted, then base-level plan for the
remaining goal L11.

3. Get a new action from the source case and apply to it the current
set of reformulations.

4. Letp be the goal expanded or the assumption used in the source
case.

5. Get the reformulation R of p. Associating corresponding as-
sumptions and lemmata by the user improves the efficiency of
finding reformulations. The following term mappings are found
to establish these matches:

M1 The mapping M1 transfers A2, A4, A7, and A8 to A2’, A4’,
A7’, and A8’ by replacing sw by swp, replacing each term t
that occurs in as a rhs of an equation where the lhs is sw(...)
by a pair of terms t l, t2 of the same type (e.g., s w (Ni, Nj) 
v ~ swp(Ni, Nj) = (v, z)), and replacing t E X by
tl, t2 E X. M1 is a common generalizing reformulation.

M2 The additional mapping M2 transfers A2’ and A4’ to A2"
and A4" by replacing terms (tl, t2) o t by tl o t o t:.

M3 For A2" and A4" we need the additional mapping
regular =~ ef in order to match their preconditions.

A0, A1, A3, A5, A6, A9, and A10 stay unchanged.
These reformulations can be user-supplied or even found auto-
matically.
Add M1, M2, and M3 respectively to the set of reformulations.

6. Link the new p node to the source case. Advance case.

7. Get the relevant operator from the proof plan of RF:GUI.AR
and apply the reformulations.

8. Restructuring splits the reformulated opl into opl’ and op2’.
The effect of op2’ is 2’:
3kVw(w E L ^ lw[ > k --. 3u, y,v,z,x,A(u,y,v,z,x 
T* A A E V A S ~ uAy A A ~ vAz A A ~ x A uvxzy =
w A (V, Z) ¢ (e,e))).
from op 1 in the source plan.

9. Checkifthe operatoris verifiable: opl’ cannotbe verified, since
A0 cannot be applied to (v, z) ~ (e, 
* Find another subproof for the goal 1’, taking 2’ as a pre-

condition. (Using A0, but additionally using the pair
axiom (x, y) ~ (e, e) ~ u ~ e V z :fi e, a tiny subproof
can be found by a theorem prover.)

¯ Go to step l.
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10.Add to the set of pending goals all the preconditions of the
operator that are not satisfied in the current state. Add to the set
of assumptions the effects of operators applied forward.

11. Link the new operator node to the source case. Advance case.
12. Go to step 1.

Figure 3 shows the resulting proof plan of CFL, where
we marked the nodes that are new and reformulated with
respect to the proof plan of REGULAR, shown in figure 2.

~ reformulated
~= O

I new

Figure 3: Proof plan of CFL

Introducing new subproofs and replacing assumptions by
small subproofs is typical in theorem proving by analogy.
The complexity of the proofs to be done from scratch using
analogy, is usually smaller by orders of magnitude compared
with the whole proof.

Conclusions
We have shown how the analogical replay of Veloso (Veloso
1992) is extended by forward and backward chaining and
by reformulating and restructuring goals, assumptions, and
operators. The examined analogy-driven proof plan con-
struction has actually shown how important it is to incor-
porate the restructuring of proofs into theorem proving by
analogy since this technique yields small subproofs which,
if not transferred by analogy, can be proven automatically.

Our method can be used for analogy-driven theorem prov-
ing and is not restricted to the particular example (see
(Melis 1993)). The evaluation of our method is quali-
tative: The example presented is a real one, showing a
real impact on automated theorem proving: Proving the
Pumping Lemma for context free languages automatically
is still beyond the capabilities of the current automated the-
orem provers. However, by analogy-driven proof-plan con-
struction from the proof plan of the Pumping Lemma for

regular languages this target proof became tractable, since
only small new subproofs are to prove automatically from
the target assumptions. Of course, a limitation of the
method is the need of a source proof plan. For a discus-
sion of the appropriateness of our method see (Melis 1993;
1994b). To determine the class of problems that can be
solved easier or at all by this method is an open research
problem.
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