
Instance-Based Prediction of Continuous Values

Tony Townsend-Weber and Dennis Kibler
Information and Computer Science

University of California, Irvine, 92715 U.S.A.
tweber@ics.uci.edu, kibler@ies.uei.edu

Abstract

Learning to predict a continuous value rather
than a discrete class is an important problem
in machine learning. Instance-based algorithms
can be effectively used to solve this problem.
Two methods of classification using weighted and
unweighted averages, based on the k-nearest-
neighbor algorithm, are presented and shown
empirically to do equally well. Two methods
for eliminating irrelevant attributes, 1-1ookahead
and sequential backward elimination, are pre-
sented and shown empirically to do equally well.
In seven domains, choosing the best k for k-
nearest-neighbor is shown to reduce the classifi-
cation error by 1.3% over arbitrarily using k = 3,
and eliminating irrelevant attributes reduces the
error by 0.50/o. Instance-based algorithms are
compared to several other algorithms, includ-
ing regression + instances, model trees + in-
stances, neural networks -b instances, regression
trees, and regression rules. The instance-based
approach is the best in a few domains, but over-
all is slightly less accurate than model trees +
instances and neural networks + instances.

Introduction

Classification algorithms typically use discrete-valued
attributes to predict discrete-valued classes. When val-
ues are continuous, they must be discretized before the
algorithm can run. A good deal of information can be
lost this way. Recent work in machine learning has
focused on algorithms that use continuous-valued at-
tributes without discretizing, and predicting continu-
ous values. Weiss and Indurkhya (1993) build an or-
dered set of regression rules which can be thought of as
a continuous-valued analog of decision lists. A new in-
stance is classified by the first rule that it matches; each
rule predicts the mean of the values it covers. Weiss
and Indurkhya claim regression rules achieve higher ac-
curacy than regression trees, such as built by CART
(Sreiman et al, 1984). Van de Merckt (1993) uses
decision tree with the class average at each leaf. The
splitting metric is contrast-based and unsupervised,
which chooses sets that are dense and far apart.

Quinlan’s (1993) M5 builds a ’model tree’, which
a decision tree with the standard attribute/value split
at each node, plus a linear equation at each node. This
linear equation is built with standard multivariate lin-
ear regression based on minimizing the sum of squares.
Only the examples in the subtree formed by a node
are used to construct the linear equation at that node.
The splitting metric is based on the standard devi-
ation, choosing sets with low variances; i.e. they are
dense but not necessarily far apart. To predict a value,
an example first traverses down the tree to a leaf node,
where its value is given as the average of all the exam-
ples in that leaf. Then it travels back up the tree to the
root in a "smoothing" process; at each internal node
the predicted value is modified by the linear equation
at that node. The new value at a node is the weighted
average of the old value and the value predicted by
the linear equation at that node, where the weight of
the old value is the number of examples in the sub-
tree formed by the node, and the weight of the linear
equation’s prediction is a fixed constant (mysteriously
chosen to be 15).

In the same paper, Quinlan combines instance-based
and model-based methods to predict continuous val-
ues. Instance-based algorithms explicitly choose some
set of examples {P1,P2,..., Pk} to predict the class
value of a new instance. Model-based methods form
a generalization of examples in some language; they
do not store the examples themselves. Quinlan uses
three model-based methods in his experiments: model
trees, equations built by multivariate linear regression,
and artificial neural networks. Let the class value of
an example P be V(P) and the predicted value of P
by a model be M(P). To combine instance-based and
model-based methods, Quinlan modifies the prediction
of instance-based methods. If a given instance-based
algorithm would use values {V(P1), V(P2),..., Y(Pk)}
to predict the value of a new instance U, now it uses
the values

V(Pi) - (M(Pi) -

instead of V(Pi) for i = 1... k. This takes into account
the difference between an example instance Pi and the
test instance U as predicted by the model. For exam-

3O

From: AAAI Technical Report WS-94-01. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved.

ple, suppose we use 3-nearest-neighbor (3-NN) as our
instance-based algorithm. The closest examples to new
instance U are {P1, P2, P3}. Using the 3-NN algorithm
alone, we would predict the value of U to be

1
-~ (V(P1) + V(P2) V(P3)) ¯

By combining it with a model-based method, we now
predict the value of U to be

(V(P1)-(M(P1)-M(U))+

1 V(P2) - (M(P2) - M(U))+

3 V(P3) (M(Pz) - M(

Quinlan uses this 3-nearest-neighbor algorithm as
his instance-based method, which predicts the class
value to be the (unweighted) average of the classes
the three most similar instances. In this paper we show
the utility of choosing the best k for the k-nearest-
neighbor (k-NN) algorithm, and compare a weighted-
average method of classification to the unweighted-
average method. Quinlan also uses all attributes to
compute similarity. We show that eliminating irrele-
vant attributes improves the classification accuracy.

Algorithms
Using instance-based learning, we describe two meth-
ods of predicting real values (weighted and un-
weighted) and two methods of eliminating irrelevant
attributes (1-1ookahead and sequential backward elim-
ination).

Instance-based learning relies on keeping all previ-
ously seen instances. When attempting to classify a
new instance, the k-NN algorithm picks the k instances
that are most similar to the new instance, and uses
those k instances to predict the class of the new one.
The similarity of two instances X and Y is given by
the formula

d

Similarity (X, Y) = ~ 1- Xi- Y i I
i=1

where d is the number of attributes of each instance,
and Xi is the normalized value of the ith attribute
of X. "Normalized" means divided by the range of
the attribute, so that Xi E [0, 1] for every attribute i
and instance X. This causes all attributes to have an
equal weight in the similarity. Similarity between two
instances varies between 0 and d, with a similarity of d
indicating the two instances are identical. If attribute
i is symbolic, then we define I Xi - Yi I in the above
equation to be 0 if the values are the same and 1 if the
values are different.

When the k most similar instances are chosen, two
methods can be used to predict the class of the test
instance. The unweighted method predicts the class
value to be the average of the class values of the k
known instances. The weighted method is a weighted
average of the k known class values where the weight of

an instance X is the similarity between X and the test
instance. The intuition is that if a known instance is
very similar to the test instance, its class will be more
similar to the unknown class than the class of another
known instance that is farther away. For 2-NN in two
dimensions, the weighted method will give the inter-
polated point of two instances on each side of the test
instance. The weighted method is due to Kibler, Aha,
and Albert (1989). This paper extends their work
comparing the weighted method with the unweighted
method and examining the effect of choosing the best
k and eliminating irrelevant attributes.

The k-NN algorithm can be used simply by choosing
k and determining whether to use the weighted method
or the unweighted method of prediction. However, by
preprocessing the training data to choose the best k
for the domain and eliminating irrelevant attributes,
we can increase the accuracy of the algorithm.

To determine the best k, the training data is broken
down into two sets, a subtraining set and a subtest
set. The subtest set is classified using the subtraining
set with many different values of k. The best k is the
one that has the lowest error. We use leave-one-out
testing to choose the best k since this gives the largest
subtraining sets. The subtest set is a single instance,
and the subtraining set is all the other instances.

Every instance in the training set is classified using
many values of k, and the best k is found by taking the
lowest average error over all n instances in the training
set. We test k from 1 to d, where d is the number of
attributes of each instance. This upper value of d has
nice theoretical properties (described below) and is
good balance between testing too few and too many
values of k. The total time to choose the best k in this
fashion is O(n2d). The derivation of this complexity
follows. Computing the similarities between the one
subtest instance and n - 1 subtraining instances takes
O(nd) time. Then we choose the d most similar in-
stances and sort them based on similarity. This can
be done in O(n + dlogn) using d iterations of heap-
sort, but we use an easier method based on insertion
sort that takes at most O(nd) time. The errors for all
d k-NN can be calculated in O(d) time, since the er-
ror with k = i can be computed from the error with
k = i - 1 in constant time. This whole process is per-
formed n times, and the best k is found in O(d) time.
The total time, then, is O(n2d). If we tested k from 1
to n instead of from 1 to d, it would raise the complex-
ity to O(n2d + 2 l ogn). Testing kfr om 1 tox, where
x is any value less than d, still has a complexity of
O(n2d). So the upper value of d is the maximum value
that will not change the complexity (barring addition
of constants).

The two methods for eliminating irrelevant at-
tributes are also based on classification accuracy.
Again, we do leave-one-out testing on the training set.
The 1-1ookahead method of eliminating irrelevant at-
tributes is as follows. One attribute at a time is re-

31

Loop until error can not be lowered any
further:

¯ For each attribute i

- Remove attribute i
- Classify all training instances using

leave-one-out testing. Compute the
average error.

- Reinstate attribute i.

¯ Permanently remove the attribute whose
previous removal produced the lowest error,
provided that this error is lower than the
current error.

Figure 1: The 1-1ookahead method of eliminating ir-
relevant attributes.

For each attribute i (in random order)

¯ Remove attribute i

¯ Classify all training instances using
leave-one-out testing. Compute the average
error.

¯ If the error is lower than the current
error, permanently remove attribute i.
Otherwise reinstate it.

Figure 2: The SBE method of eliminating irrelevant
attributes.

moved, then all instances are classified and the aver-
age error computed, then the attribute is reinstated.
The attribute that reduced the error the most is then
thrown out permanently. The cycle repeats until the
error cannot be improved by eliminating any attribute.
The pseudocode is given in Figure 1. The time com-
plexity is O(n2d3). The best k is chosen at each leave-
one-out testing phase, since it does not change the com-
plexity.

In the sequential backward elimination (SBE) (Kitt-
ler, 1986) method of eliminating attributes, we first
randomize the order of the attributes. We make one
pass over the attributes, eliminating an attribute if it
reduces the error. Standard SBE has a parameter that
specifies the maximum number of attributes that will
be thrown out. We set this parameter to be d- 1,
where d is the number of attributes. Figure 2 gives
the pseudocode. The time complexity is O(n2d2),
factor of d less than the 1-1ookahead method. The 1-
lookahead method corresponds to steepest-ascent hill-
climbing and SBE corresponds to greedy hill-climbing.
In other domains such as N queens (Minton et a11990)
and 3-SAT (Selman and Kautz, 1993), greedy hill-
climbing has been found to do as well as steepest-
ascent. The same pattern is repeated in our results.

I
i Continuous Discrete I

Domain Cases attributes attributes Range

housing 506 13 0 45
cpu 209 6 2 1144

auto-price 159 2 7 29938
auto-mpg 392 7 0 37.6

servo

iris
167 2 2 6.97
150 3 0 2.4

heart 297 6 6 48
sinormal 150 7 0 0.794

Figure 3: Basic features of the eight domains.

Results

We ran five versions of k-NN on eight domains. The
versions include the four combinations of (weighted,
unweighted) and (1-1ookahead, SBE) k-NN and
control--unweighted 3-NN using all attributes. The
domains include seven natural domains and one ar-
tificial domain. We chose these domains so that we
could compare our results with those of Quinlan (1993)
and Weiss and Indurkhya (1993). The natural domains
are housing, cpu, auto-price, auto-mpg, servo, iris, and
heart, all from the UCI repository. Figure 3 gives the
number of examples in each domain, as well as the
number of continuous and discrete attributes, and the
range of the class value. The iris domain contains four
continuous attributes and one class label. We elimi-
nate the class labels and predict the fourth attribute,
as Weiss and Indurkhya did. Similarly, class labels in
the heart domain are eliminated and we predict the
person’s age. The artificial domain is sinormal, from
Weiss and Indurkhya, which is 150 randomly chosen
instances of the function

sinormal(xl, x2,..., xT) = 0.2 sin xl + normal(x~)

where normal is the standard normal curve with mean
of 0 and standard error of 1, Xl E [0, 2~r], x2 E [-5, 5],
and xi E [0, 1] for i = 3, 4, 5, 6, 7. x3, ¯ ̄ ., x7 are noise
attributes. We used stratified sampling and ten-fold
cross validation, as the other authors did. We wished
to answer the following questions:

1. Which method of classifying (weighted or un-
weighted) is best?

2. Which method of eliminating irrelevant attributes
(1-1ookahead or SBE) is best?

3. How well does k-NN, with choosing the best k and
eliminating irrelevant attributes, fare against other
classification algorithms?

4. What is the effect of choosing the best k?

5. What is the effect of eliminating irrelevant at-
tributes?

Figure 4 gives the results of the five versions on
the eight domains. Statistical significance was checked

32

Control: weighted, weighted, unweighted, unweighted,
Domain unweighted SBE 1-1ookahead 1-1ookahead SBE

3-NN k-NN k-NN k-NN k-NN
housing 2.63 2.37* 2.45* 2.45* 2.37*
cpu 35.4 26.8* 25.9* 26.0* 27.0*
auto-price 1689 1793 1752 1719 1773
auto-mpg 1.90 2.00 2.01 1.97 2.02**
servo 0.42*
iris

0.99 0.44* 0.44* 0.42*
0.147 0.152 0.147 0.147 0.152

heart 7.51 6.49* 6.47* 6.47* 6.49*
sinormal 0.12 0.045* 0.035* 0.035* 0.045*
Average 8.5% 5.9% 5.9% 5.9% 5.9%

* Statistically better than the control, at the 1% significance level.
** Statistically worse than the control, at the 1% significance level.

Figure 4: Average, absolute error on unseen cases. The ’Average’ column represents the average over all domains
of the absolute error as a fraction of the range of the class value. Boldface numbers are the lowest in their row.
Statistical significance between the control and the four k-NN variations are indicated. There is no statistical
difference between any of the four k-NN variations in any natural domain (the first seven), at the 1% significance
level. The weighted variations in the sinormal domain are significantly better than the unweighted variations, at
the 1% level.

by the one-tailed t-test, since all algorithms were per-
formed on exactly the same partitions of data. In five
domains, choosing the best k and eliminating irrele-
vant attributes was significantly better than the control
3-NN. Only one algorithm in one domain performed
statistically worse than the control (unweighted, SBE
k-NN in the auto-mpg domain). The weighted and un-
weighted classification methods do equMly well; there
is no statistical difference between them in any natural
domain at the 1% significance level. Even at the 5%
level, only one comparison in one natural domain (out
of 28 comparisons total for all natural domains) was

’significant: weighted 1-1ookahead k,-NN was statisti-
cally better than unweighted 1-1ookahead k-NN in the
housing domain. We hypothesize that the methods do
equally well in the natural domains because the con-
cepts cannot be modeled well as continuous functions.
Also, the best values of k are small, between 2 and 4,
and thus the difference between the predicted values
using the two methods will be small, especially when
the instances are close together.

In the artificial domain sinormal, the weighted varia-
tions did statistically better than the unweighted vari-
ations, although by a tiny amount. From Figure 4
it appears that the weighted and unweighted meth-
ods did equally well, and the significant difference is
between the 1-1ookahead and SBE attribute elimina-
tion methods. However, exactly the opposite is true,
which is only shown by statistical tests. The differ-
ence between the weighted and unweighted methods
is significant, though tiny, and the difference between
the SBE and 1-1ookahead methods is not significant,
though large. The sinormal function is smooth, and
the weighted method predicts a value which is close

to the interpolated value, which is better than an un-
weighted average. Therefore it makes sense that the
weighted method consistently did better than the un-
weighted method in this domain.

The SBE and 1-1ookahead attribute selection meth-
ods also do equally well. No difference was statistically
significant, even at the 5% level. We hypothesize that
this is due to the origin of the databases for the do-
mains. These databases are usually processed before
they reach the UCI repository. Most attributes are
significant to some extent, and the attributes that are
not significant are obviously irrelevant. Often these at-
tributes will be descriptions of an example, such as the
name of a person in a medical database. These obvi-
ously irrelevant attributes will be eliminated by either
the SBE or 1-1ookahead methods. The extra lookahead
is not needed. Therefore, an algorithm designer should
use SBE, since it is faster and simpler.

Eliminating irrelevant attributes and choosing the
best k produces lower errors than the control 3-NN in
five of eight domains. In the cases where the control
seems to do better, the difference is significant for only
one algorithm in one domain. It is surprising that this
happened in even one case, however. Our explanation
goes as follows. Both 1-1ookahead and SBE methods
will throw out an attribute even when the improve-
ment in error is tiny and not statistically significant.
This may result in overfitting the training data, and
thus a higher error when classifying unseen instances.
In the auto-mpg domain, the best k was usually three
or four, and no single attribute was always dropped.
This indicates that all attributes are significant, and
the averaged 3-NN is the best that can be done. This
fits our hypothesis. A future improvement on the al-

33

Control: unweighted 3-NN
Quinlan’s unweighted 3-NN

regression + instances
model trees + instances
neural nets + instances

weighted, SBE k-NN

housing cpu auto-price auto-mpg servo Average
2.63 35.4 1689 1.90 0.99 6.8%
2.90 34.0 1689 2.72 0.52 6.0%

2.45 30.0 1430 2.37 0.48 5.2%
2.32 28.1 1386 2.18 0.30 4.5%
2.23 29.0 1677 2.06 0.29 4.5%
2.45 26.0 1719 1.97 0.44 5.O%

Figure 5: Average, absolute error on unseen cases. Boldface numbers are the lowest in their column. The ’Average’
column represents the average over all domains of the absolute error as a fraction of the range of the class value.

weighted,
1-1ookahead k-NN

regression trees (CART)
regression rules

sinormal iris heart

0.035 0.147 6.47
0.075 0.142 6.05
0.052 0.142 6.05

Figure 6: Average, absolute error on unseen cases.

gorithm will be to only eliminate an attribute when it
is statistically significant to do so.

Figure 5 compares the weighted SBE k-NN with the
results of three systems from Quinlan (1993): regres-
sion + instances, model trees + instances, and neural
networks q- instances. First, note the differences be-
tween our averaged 3-NN control and Quinlan’s aver-
aged 3-NN. These occur because of different partitions
of the data, and indicate the difficulty of directly com-
paring results. No statistical tests could be run since
we do not have the same partitions of data. In the cpu
domain k-NN clearly does best of all approaches. In
the auto-mpg domain our control 3-NN does best, but
since it is substantially different from Quinlan’s 3-NN,
no conclusions can be drawn. In the other domains,
our k-NN does worse than model trees + instances
and neural nets + instances. The ’average’ column
gives a rough indication of the algorithms: neural nets
+ instances and model trees + instances have the low-
est errors, then our k-NN, then regression + instances,
and finally the control 3-NN algorithms. Note that the
difference between our control 3-NN and Quinlan’s is
0.8%, which is due to different partitions of the data.
This indicates that the error in the ’average’ column
is also this much. If we scaled our k-NN by this 0.8%
so that both of our 3-NN systems agreed, our k-NN
would achieve a 4.2% error rate, which makes it the
most accurate algorithm! Thus although neural nets
+ instances and model trees q- instances seem to do
better than k-NN, these results could well be reversed
by re-running all algorithms on the same data parti-
tions and doing a fairer comparison.

Figure 6 presents a comparison of k-NN with re-
gression trees and regression rules from Weiss and In-
durkhya (1993). The regression trees were built

CART. k-NN does much better in the artificial domain
sinormal, and slightly worse in the natural domains iris
and heart. In the sinormal domain, both SBE and 1-
lookahead methods correctly eliminated all five noise
attributes. Regression trees and regression rules do not
eliminate irrelevant attributes; this is the most likely
reason that k-NN does so much better. In the iris and
heart domains, regression rules and regression trees do
equally well, and have lower errors than k-NN. It is
unknown if the differences are statistically significant.

Figure 7 shows the effects of choosing the best k
and eliminating irrelevant attributes in the seven nat-
ural domains. The first row is the percentage differ-
ence between the worst-k classifier and the best-k clas-
sifter, averaged over all leave-one-out training phases
of each of the ten folds of cross validation, and over
all four k-NN variations (weighted/unweighted and
SBE/1-1ookahead). All attributes were used to clas-
sify, so there would be no effect of SBE vs. 1-1ookahead
on choosing the best k. The average across the seven
domains is a 2.3% decrease in error. Since many re-
searchers (including Quinlan) arbitrarily choose k =
for k-NN, we wished to measure what benefit choosing
the best k had over this policy. The second row shows
the difference between the 3-NN classifier and the best
k classifier, again averaged over all runs, folds, and k-
NN variations, and using all attributes. The average
across the seven domains is a 1.3% decrease in error.
The third row shows the decrease in error that comes
from eliminating irrelevant attributes, averaged over
all runs, folds, and variations. The average is a 0.5%
decrease in error. We hypothesize that this improve-
ment is so slight because, again, most attributes were
significant in these domains, given that they are usu-
ally hand-tuned before reaching the UCI repository.
Figure 8 presents the best k found in each domain,
averaged over all training runs, folds, and variations.
Values of two, three, and four are most common. An
average of 9.5 in the heart domain is an unusual case.
We conclude that choosing the best k and eliminating
irrelevant attributes is a good idea when accuracy is the
main priority. If simple, quick classification is needed
with reasonable accuracy, 3-NN is a good choice.

34

worst-k-NN - bcst-k-NN
3-NN- best-k-NN

all attr. - best attr.

auto- auto-
housing cpu price mpg servo iris heart Average

1.3 1.1 1.5 1.0 7.9 0.7 3.5 2.3
0.0 0.4 0.1 0.1 7.5 0.1 1.1 1.3

0.8 0.5 0.6 0.1 0.7 0.2 0.7 0.5

Figure 7: Effect of choosing the best k and eliminating irrelevant attributes. All results are percentages of the
range of the class value.

Ihousing cpu auto-price I auto-mpg servo iris heart sinormal Average I
3.1 2.1 2.9 3.8 2.5 3.6 9.5 3.3 3.8

Figure 8: Average best k

Conclusions

Instance-based algorithms can be used effectively to
predict continuous values. Choosing the best k and
eliminating irrelevant attributes generally improves the
accuracy of the k-NN algorithm. In seven natural do-
mains, there is no difference between the weighted and
unweighted methods of classification, or between the
1-1ookahead and SBE methods of removing attributes.
In five domains, k-NN was the best in one and reason-
able in the others, when compared to model trees ÷
instances, neural networks ÷ instances, and regression
-t- instances (Quinlan 1993). The k-NN algorithms had
lower errors than regression ÷ instances, but higher er-
rors than model trees -I- instances and neural networks
÷ instances. However, the results are inconclusive be-
cause of a difference in identical control experiments
resulting from different partitions of data. The k-NN
algorithms had lower errors than regression trees and
regression rules (Weiss and Indurkhya 1993) in one ar-
tificial domain because of the facility of eliminating
irrelevant attributes. In two natural domains, regres-
sion trees and regression rules were more accurate, but
it is unknown if the differences are statistically signif-
icant. In seven natural domains, choosing the best k
lowered the error an average of 1.3% over arbitrarily
using k -- 3, and eliminating irrelevant attributes low-
ered the error an average of 0.5%.

Future work will include investigation of why choos-
ing the best k and eliminating attributes sometimes
results in a higher error. Eliminating an attribute
only when the error reduction is statistically significant
may solve the problem. Weighing attributes instead of
throwing them out may be an even better approach,
since most attributes in the domains we studied con-
tained some predictive information. We have devel-
oped but not implemented a continuous-valued analog
to Kira and Rendell’s (1992) RELIEF system of weigh-
ing attributes.

Acknowledgments

Our sincere thanks goes to Doo Song for his help with
the statistical verification of the algorithms and to
Mike Pazzani for several insightful comments on the
paper.

References

Breiman, L., J. If. Friedman, R. A. Olshen, and
C. J. Stone (1984), Classification and regression
trees, Belmont, California: Wadsworth International
Group.

Kibler, D., D. W. Aha, and M. K. Albert (1989),
Instance-based prediction of real-valued attributes,
Comput. Intell. 5, 51-57.

Kira, K. and L. A. Rendell (1992), The feature se-
lection problem: traditional methods and a new ap-
proach. Proceedings AAAI g2, 129-134.

Kittler, J. (1986), Feature selection and extraction.
Young ~ Fu (Eds.), Handbook of pattern recognition
and image processing. New York: Academic Press.

Minton, S., M. D. Johnston, A. B. Philips, and P.
Laird (1990): Solving large-scale constraint satisfac-
tion and scheduling problems using a heuristic repair
method. Proceedings AAAI 90, 17-24.

Quinlan, J. R. (1993), Combining instance-based and
model-based learning, Machine Learning Conference
1993, 236-243.

Selman, B. and It. Kautz (1993). An empirical study
of greedy local search for satisfiability testing. Pro-
ceedings NCAI-93, 46-51.

Van de Merckt, T. (1993), Decision trees in numerical
attribute spaces, Proceedings IJCAI 93, 1016-1021.

Weiss, S. M. and N. Indurkhya (1993), Rule-based
regression, Proceedings IJCAI 93, 1072-1078.

35

