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Extended Abstract

As scientific databases continue to grow, the analy-
sis of scientific data becomes an increasingly impor-
tant application area for machine learning research.
Much of the research on scientific data is directed
towards predicting properties of a physical process.
Such processes are often described in terms of a
function defined over the attributes of the domain
or a stochastic model such as a Markov chain. The
first question one should ask when studying such
problems is: what is the best machine learning tech-
nique to use for this problem domain? A general so-
lution to this problem remains elusive. It has been
argued (e.g., by the case-based reasoning commu-
nity) that instead of producing a description of the
problem domain in terms of logical rules, functional
descriptions, or a complex statistical model, it is
possible to store a collection of memories (cases)
and perform prediction by interpolating from them.
In this practical context, the second question to ask
is: are memory-based reasoning (MBI~) methods 
effective for a given problem domain as more com-
plex approaches (e.g., probabilistic networks). This
paper addresses this question both experimentally
and formally.

We were originally motivated to study the rel-
ative strengths and weaknesses of probabilistic vs.
memory based reasoning approaches because of the
recent application of these methods to the analy-
sis of biological data such as DNA and RNA se-
quences, proteins, and genetic mapping data. Con-
sider, for example, the problem of predicting the
secondary structure of a protein from its primary
amino acid sequence. These amino acids have many
important physical and chemical properties (e.g.,
hydrophobicity, polarity, and various geometric fea-

*The full version of this paper will appear in: Ma-
chine Learning: Proceedings of the Eleventh Interna-
tional Conference, Morgan Kaufmann Publishers, San
Francisco, CA. (1994)

tures) that influence their folding behavior. Thus,
the solution to this fundamentally important prob-
lem from molecular biology might be expressed as a
function of a large number of (currently unknown)
variables. Alternatively, it may be modelled as a
stochastic process involving the forces between the
atoms that comprise the protein. Although both
approaches are areas of active research, a precise
description of the physical process and all the rel-
evant attributes is not known. Instead, most cur-
rent methods approach this problem using a sym-
bolic representation for the 20 amino acids as the
primary input. Partially as a result of this rep-
resentational limitation, most current approaches
for predicting protein structure have met with only
moderate success, typically achieving about 64%
accuracy. More intricate methods obtain slightly
better results, but the problem is still largely un-
solved. Two relatively successful techniques for this
and similar problems in computational biological
have been Bayesian and MBR methods (Zhang,
Mesirov, & Waltz 1992; Cost & Salzberg 1993;
Yi & Lander 1993; Delcher el al. 1993). In ad-
dition, there are other prominent domains where
MBR and probabilistic methods are currently com-
peting for best performance (e.g., speech recogni-
tion and natural language parsing).

We therefore decided to perform a detailed study
of the relative strengths of Bayesian and MBR ap-
proaches for a range of different prediction tasks
involving symbolic attributes. As a baseline for the
comparison, we also demonstrate the performance
of a nearest neighbor algorithm using the simple
overlap metric. This study is particularly intrigu-
ing because of several important similarities that
exist between MBR methods (with value-difference
metrics) and Bayesian classifiers:

¯ both methods make the same independence as-
sumptions,

¯ both require the same computational time and

From: AAAI Technical Report WS-94-01. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved. 



space during training, although the output space
complexity and classification time is higher for
the MBI~ algorithm,

¯ these are the primary methods employed for the
study of the fundamental biology problems cited
above, and

¯ the Bayesian classifier abstracts case-specific in-
formation into a set of conditional and uncondi-
tional probabilities, while MBlt stores the cases
themselves. Thus, our comparisons highlight the
utility of using case-specific information.

Our analysis substantially enhances our under-
standing of the relative strengths and weaknesses
of these methods, and suggests that MBR has a
number of important advantages.

Stanfill and Waltz (Stanfill & Waltz 1986; Stan-
fill 1987) introduced the Value Difference Metric
(VDM) to define similarity when using symbolic-
valued features and empirically demonstrated its
benefits. They argued that the VDM is more ap-
propriate than the simple overlap distance mea-
sure, which defines distance as the number of mis-
matching features between two instances. More re-
cently, Cost and Salzberg (Cost & Salzberg 1993)
demonstrated that PEBLS, which uses a modifica-
tion of the VDM distance measure called MVDM,
can outperform the overlap measure and several
other learning algorithms on a number of practical
problems. However, these studies did not perform a
detailed analysis of MVDM’s learning ability, which
is a primary contribution of this paper.

The MVDM used by PEBLS defines the distance
between two examples as the sum of the value dif-
ferences across all features. The value differenc&
between two values vl and v2 of a given feature is
defined as:

k vl, v2,[
: E (1)

Ii=1

where k is the number of classes, vl, is the number
of times Vl occurred for instances of class C/and V1
is the number of times vl occurred for all classes.
Thus the ratio vl~/V1 is the probability of class C/
given that the feature has value vl, P(Ci]Vl).

The simple Bayesian classifier represents each
concept with a single probabilistic expression, de-
fined by class base rates and feature probability dis-
tributions. For each class C/ and feature value vj,
we estimate P(vj[C/) from the training data. A
new point is classified into C/if P(Ci) I-Ij p(vj ]ci)
is maximal.

Computationally, PEBLS computes the same
statistics as the Bayesian classifier. However, while

Bayes summarizes these statistics in simple rules,
PEBLS uses them as part of an MBR classifier.

In summary, we present in the full version of this
paper a methodology aimed at trying to evaluate
an MBR system based on particular performance
criteria. This approach has two important compo-
nents: 1) it examines learning problems of varying
complexity in a controlled attempt to better under-
stand the specific conditions under which a reason-
ing system will perform well, and 2) it applies stan-
dard techniques to the same problems as a baseline
for comparison. By this approach we have added
significantly to our understanding of these types of
systems.
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Abstract

Contrary to symbolic learning approaches, which
represent a learned concept explicitly, case-based
approaches describe concepts implicitly by a pair
(CB, sire), i.e. by a measure of similarity sire and
a set CB of cases. This poses the question if there are
any differences concerning the learning power of the
two approaches. In this article we will study the rela-
tionship between the case base, the measure of simi-
larity, and the target concept of the learning process.
To do so, we transform a simple symbolic learning al-
gorithm (the version space algorithm) into an equiva-
lent case-based variant. The achieved results strengt-
hen the hypothesis of the equivalence of the learning
power of symbolic and case-based methods and show
the interdependency between the measure used by a
case-based algorithm and the target concept.

Introduction

In this article (which is a short version of the work
presented in (Wess & Globig 1994)) we want to com-
pare the learning power of two important learning pa-
radigms - the symbolic and the case-based approach
(Aha 1991). As a first step in this direction, (Jantke
1992) has already analyzed the common points of in-
ductive inference and case-based learning. Under the
term symbolic learning 1 we subsume approaches, e.g.
(Michalski, Carbonell, & Mitchell 1983), that code the
knowledge provided by the presentation of the cases
into a symbolic represenlation of the concepl only, e.g.
by formulas, rules, or decision trees. The learning task

*The presented work was partly supported by the Deut-
sche Forschungsgemeinschaft, SFB 314: "Artificial Intel-
ligence and Knowledge-Based Systems" and the project
IND-CBL.

1 Case-based systems may also use symbolic knowledge.
The use of the term "symbolic learning" in this work may
therefore be confusing to the reader. But, since the term
"symbolic learning" is also used to contrast a special class of
learning approaches to systems which use neural networks,
we think that the use of the term "symbolic learning" as
characterization of these approaches is appropriate.

we want to study is the classification of objects. The
aim of a classification task is to map the objects x of
a universe U to concepts C C_ U, i.e to subsets of the
universe. In the most simple scenario we have to decide
the membership problem of a certain concept C.

For this special scenario we will show that a case-
based approach has the same learning power as a sym-
bolic approach. We will therefore present a simple
symbolic learning algorithm (the Version Space (Mit-
chell 1982)) and transform this algorithm into a equi-
valent case-based variant. Based on this example we
will show that for case-based approaches there exists
a strong tradeoff between the set of learnable concepts
and the minimal number of cases in the case base. We
will conclude that for our scenario the used bias must
have a comparable strength in both approaches.

Basic Algorithm for Case-Based

Classification

The fundamental problem the two approaches have to
solve during the learning phase is the same. At every
moment the learner knows the correct classification of
a finite subset of the universe only. The knowledge that
the algorithm is able to use is incomplete and, therefo-
re, the computed hypothesis needs not to be correct. In
the application phase a case-based system tries to clas-
sify a new case with respect to a set of stored cases, the
case base CB. For simplicity, we consider cases as tup-
les (z, class(z)) where z is a description of the case and
class(z) is the classification. Given a new case (y,?)
with unknown classification, the system searches in the
case base CB for the nearest neighbor (z, class(z)) (or
the most similar case) according to a given measure of
similarity 2 sim: U × U --~ [0, 1]. Then it states the

~The dual notion is that of a distance measure d: U ×
U ~ ~+. In the sequel we will use the term measure if we
do not want to distinguish between similarity and distance
measures. Both types of measures have the same power
(Richter & Wess 1991) and we will use them with respect
to the context of the examples.
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classification class(x) of the nearest neighbor as the
classification of the new case (y, ?), i.e (y, class(z)).
For the basic case-based algorithm cf. (Aha 1991;
Aha, Kibler, ~ Albert 1991).

From the viewpoint of machine learning, case-based
learning may be seen as a concept formation task. This
raises the question how the learned concepts are repre-
sented in case-based approaches. Contrary to symbolic
learning systems, which represent a learned concept ex-
plicitly, e.g. by formulas, rules, or decision trees, case-
based systems describe a concept C implicitly (Holte
1990) by a pair (CB, sim). The relationship between
the case base and the measure used for classification
may be characterized by the equation:

I Concept = Case Base -t- Similarity Measure]

This equation indicates in analogy to arithmetic that it
is possible to represent a given concept C in multiple
ways, i.e. there exist many pairs C = (CBl,siml),
(CB2,sim2),...,(CBk,simk) for the same concept
C. Furthermore, the equation gives a hint how a
case-based learner can improve its classification abili-
ty. There are three possibilities to improve a case-
based system. The system can (1) store new cases
in the case base, (2) change the measure of simila-
rity or (3) change both, the case base and the si-
milarity measure. During the learning phase a case-
based system gets a sequence of cases Xt, X2,.. ¯ with
Xi = (zl,class(xi)) and builds up a sequence of
pairs ( C Bt , siml ), ( C B2, sim2 ), . . . , ( C B~, sims) with
CBi C_ {X1, X2,. ¯., Xi}. The aim is to get in the limit
a pair (CB,~, sims) that needs no further change, i.e.
3n Ym >__ n (CSn, sims) = (CB,~, sim,~), because it
is a correct classifier for the target concept C.

Case-based systems apply techniques of nearest-
neighbor classification in symbolic domains. The basic
idea is to use the knowledge of the known cases direct-
ly to solve new problems. By directly we mean, that
the case-based system does not try to extract explicit
knowledge during the learning phase and apply this
abstract knowledge during the application phase.

A Case-Based Variant of a Symbolic

Learner

To demonstrate the fundamental equivalence of the
learning power of symbolic and case-based learners, we
transform a well-known symbolic learner - the Versi-
on Space (VS) from (Mitchell 1982) - in an equivalent
case-based variant. The Version Space algorithm is
a simple and well-known symbolic learning algorithm.
Because of its simplicity it is easy to show a lot of pro-
perties, which hold for many other learning algorithms,
where it would be difficult to prove them.

The Symbolic Version Space

The universe U of cases consists of finite vectors over
finite value sets Wi (U = W1 × "" x Wn). We want
to decide the membership problem of a certain con-
cept C. The concepts to learn fix the value of certain
attributes 3. We can describe these concepts C as vec-
tors (C1,..., Cn), with C~ = * or Ci = aij E Wi. A
case ((al,..., an), class(a)) fulfills the concept C, if for
all 1 _< i_< n holds: C/ =* or C/ = ai, i.e. Ci = *
is fulfilled by every z E Wi. We further demand that

Ci ~ * for at least one i.
A concept C is called consistent with a set of cases, if

all positive cases of the set fulfill the concept and none
of the negative does. The symbolic version space solves
the learning problem by updating two sets S and G of
concepts. S contains the most specific concept that
is consistent with the known cases and G includes the
most general concepts consistent with the known cases.
The task of the symbolic algorithm is to change the
sets S and G in order to preserve their properties. For
the algorithm cf. (Mitchell 1982). It is important that
at every moment all cases subsumed by S are known
to be positive, and all cases that are not subsumed
by any concept of G are known to be negative. This
observation leads to a partial decision function VS :
U --* {0, 1) that can be used to classify new cases:

i

ifYC E SIC(z) = 
VS(x) = if VC S G[C(x) = 

otherwise

As long as S ¢ G VS will not classify all cases of the
universe. If a case is covered by S but not by G it is
not clear whether it belongs to the concept C or not.
So VS will not return an answer for those cases (this
is the semantics of the "?" in the decision function).

A Case-Based Variant of the Version Space

If we analyze the version space algorithm, it is obvious
that the main learning task is to distinguish between
relevant and irrelevant attributes. We will use this ob-
servation to construct a case-based variant VS-CBl~
of the algorithm of the previous section. An attribu-
te value is called relevant, if it is part of the target
concept C = (at,..., an). For every attribute i, we
define a function fi that maps z C Wi to {0, 1} with
the following definition:

f~(x) = {10 ifCi = 
otherwise

ai.e. these concepts represent the conjunctions of atomic
formulas xi = ai, e.g. shape = circle A size = big.
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The functions f/ will be combined to f : U --* {0, 1}"
f((al,...,as)) = (fl(al),...,f,~(a,)). The distance
between two cases a and b is then defined using the
city-block metric as follows:

dy(a, b) := Ill(a1) fl (bl)] +’ " + If~(a~) - f~(b~)l

It is obvious that every change of the functions
fl, f2,..., fn causes a change of the underlying mea-
sure dr. The intended function f/ is learnable by the
algorithm in Fig. 1. The algorithm expects the first
case to be positive.

Algorithm to Learn f for VS-CBtt

1. Initialize fi(xi) = for al l i, xi E Wi

2. Let the first positive case be ((al .... , an), +). Let
fi(ai) -- 1 and CB = {(a, +)}

3. Get a new case ((bl,..., b~), class(b)).
4. If class(b) is negative, store b in the case base CB,

i.e. CB := CB U {(b,-)}

5. If class(b) is positive and fi(b~) = O, then let
fi(xi) ---- 0 for all xl e Wi (fl maps now every
value to zero).

6. If there exist two cases (a, class(a)), (b, class(b)) 
CB with dr(a, b) = and cl ass(a) ~ class(b) then
ERROR: The target concept C is not member of
the version space.

7. If the concept C is determined then STOP: The
concept is learned. The classifier (CB, d]) consists
of the case base CB and the measure d!

8. Go to step 3.

Figure 1: Algorithm to learn f for VS-CBR

If the concept is learned, the function f and the case
base CB are used for classification. Given a new case
(c, ?), the set

F := {x E CB [ V y E CB d](x,c) <_ d/(y,c)}

is computed. The classification class(x) of the most
similar case (x, class(x)) is then used for the classifica-
tion of the new case (c, ?). If F contains more than one
case and these cases have different classifications then
class(c) is determined by a fixed strategy to solve this
conflict. Different strategies are possible and each stra-
tegy will induce a own decision function for VS-CBR.
For example, one conflict solving strategy may state
the minimal classification according to a given ordering
of the concepts. To solve the membership problem, we
assume that a case (c, ?) is classified as negative if 

has the same minimal distance from a positive and a
negative case, i.e. d((a, +), (c, ?)) d((b, -) , (c ?)) 
minimal. To achieve this behavior of the classifier the
ordering of the concepts must be negative < positive.

Analysis

Now let us analyze VS-CBR’s way of classification in
more detail. Positive and negative cases are used dif-
ferently in VS-CBR during the learning phase:

¯ Positive cases are used to change f, i.e. to adapt
the distance measure d/. They will not be stored in
the case base (with the exception of the very first
positive case).

¯ Negative cases are stored in the case base CB but
do not change the distance measure d.

The information that is used by VS to change S and
G is used by VS-CBR to change the case base or the
measure of similarity. It is easy to show that all cases
which are classified by the symbolic VS will also be
classified correctly by the case-based one. The diffe-
rence is that the case-based variant VS-CBR computes
a classification for every case of the universe (because
the distance measure is total) while the symbolic VS
classifies only if it knows that the proposed classifica-
tion must be correct. Otherwise (i.e. the case fulfills 
concept from G hut not the concept in S) it will not
produce any classification at all. If we add a test, whe-
ther the classification of the nearest neighbor is correct
to VS-CBR, we can force VS-CBR to produce only cer-
tain classifications, too. But this test would more or
less be a variant of the original VS algorithm.

Relationships between CB, sim, and C
We have shown that it is possible to reformulate the
Version Space algorithm in a case-based manner so
that the case-based variant behaves as the symbolic
algorithm. It is important to understand the implica-
tions of a measure of similarity to the set of represen-
table concepts.

On one hand, case-based systems (CB, sire) use the
cases in the case base CB to fill up the equivalence
classes induced by the measure sire. On the other
hand, they use the cases to lower the number of equi-
valence classes by changing the measure sire. Thereby,
the target concept C may be identified by fewer cases.
But, a lower number of equivalence classes means that
the modified measure sire~ can distinguish between fe-
wer concepts. Having this in mind, we can be compa-
re case-based systems with respect to two dimensions:
minimality and universality. The first dimension re-
lates to the implicit knowledge that is coded into the
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used measure sim. Because we are not able to mea-
sure this implicit knowledge directly, we have to look
at the size of the case base instead. More knowledge
coded in the used measure sire will result in a smaller
(minimal) size of the case base CB within the classifier
(CB, sim).
Definition I The similarity measure sire1 of a case-
based system (CBl,siml) is called better informed
than a measure sire2 of a system (CB2,sim2) iff
both systems are classifiers for the same concept C,
]CBll < ICB21 holds, and there is no CB~ C CBi so
that (CB,’, sims) is classifier for the concept C.
The second dimension relates to the set of learnable
concepts. We must distinguish between the represen-
tability and the learnability of a concept. A concept C
is called representable by a measure sim, if there exists
a finite case base CB such that (CB, sire) is a classifier
for C. A concept C is called learnable by a measure
sim, if there exists a strategy to build a finite case base

CB such that in the limit (CB, sim) is a classifier for
the concept.

Definition 2 A similarity measure sirnl is called mo-
re universal than a similarity measure sire2 iff the set
of concepts that are learnable by sire2 is a proper subset
of the set of concepts that are learnable by sire1.

Using an universal similarity measure conflicts the mi-
nimality of the case base. Reducing the size of the case
base, which means to code more knowledge into the
measure, usually results in a less universal similarity
measure. We can distinguish two extreme situations:

All knowledge is coded into the case base: The
similarity is maximal if and only if the compared
cases are identical, i.e. sim(x,y) = ~ x = y,
0 otherwise. The measure is universal because it
is able to learn every binary concept Ci in the
given universe U. But to do so, it needs the whole
universe as a case base, i.e CB := U. Thus, the
resulting system (U, =) is universal but not minimal.

All knowledge is coded into the measure: The
similarity is maximal if and only if the classification
of the compared cases C(x) is identical, i.e. the
measure of similarity sim knows the definition of
the concept C to learn. Nearly the whole knowledge
about the concept is then coded into the measure.
The case base contains almost one positive c+ and
one negative case c- and is used only to choose
between some trivial variations. The measure
sim(x,y) := 1 ¢=:v C(x) = C(y) otherwise)
can only distinguish between four concepts (C,
-,C, True - i.e. all cases are positive, False -
i.e. all cases are negative). Thus, the resulting

system ({c+, c-}, C(x) C(y)) is minimal but not
universal.

In a case-based learner, two processes - reducing the
size of the set of learnable concepts (hypothesis space)
and increasing the size of the case base - should be
performed. The measure sim(x,y) ~ C(x) = 
indicates a simple way to reformulate any symbolic al-
gorithm in a case-based manner, i.e. use the actual
symbolic hypothesis to construct such a measure and
store one positive and one negative case in the case
base.

Discussion
The symbolic as well as the case-based approach com-
pute a classification when a new case is presented. If
only the input and the output of the algorithms are
known, we will not be able to distinguish between the
symbolic and the case-based approach. The symbo-
lic algorithm builds up its hypothesis by revealing the
common characteristics of the cases in a predefined hy-
pothesis language. The hypothesis describes the rela-
tion between a case and the concept. One component
of a case-based learner is a measure, that states the
similarity or the distance between cases. The measu-
re defines a preference relation between two cases and
is therefore independent from the existence of a con-
cept. A main difference between case-based and sym-
bolic classification algorithms is the representation of
the learned concept. A case-based classifier (CB, sim)
consists of a case base CB and a measure of similarity
sim. It is possible to represent the same concept C
in multiple ways, i.e. by different tuples (CBi, simi).
But, neither the case base CB nor the measure sim
is sufficient to build a classifier for C. The knowledge
about the concept C is spread to both. Thus, the hypo-
thesis produced by a case-based algorithm represents
the concept only implicitly, while symbolic procedu-
res build up an explicit representation of the learned
concept.

If the problems and the power of case-based and
symbolic approaches are similar as we have seen for
our simple scenario, the question arises whether the
two approaches can be interchanged in all situations.
We assume that we want to get a classifier only and not
an explicit description of the concept. In the second
case, a case-based system cannot be the appropriate
choice. Within this perspective, the symbolic and the
case-based approach seem to be interchangeable in the
described context. The symbolic approach corresponds
to a kind of compilation process whereas the case-based
approach can be seen as a kind of interpretation during
run time. Which approach should be used in a concre-
te situation is a question of an adequate representation
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of the previous knowledge. If previous knowledge con-
tains a concept of neighborhood that leads to appropria-
te hypotheses, a case-based approach is a good choice.
In this scenario we are able to code the neighborhood
principle into the measure used. The case-based ap-
proach will then produce good hypotheses before the
concept is learned, i.e. when not all equivalence classes
of the measure are filled.

We have analyzed the relationship between the mea-
sure of similarity, the case base, and the target con-
cept in the described scenario of classification tasks (cf.
(Globig & Wess 1994)). The learning algorithm needs
strong assumplions about the target concept in order
to solve its task with an acceptable number of cases.
Assumptions exclude certain concepts from the hypo-
thesis space. Symbolic learners use these assumptions
to restrict the language to represent their hypotheses.
A case-based learner have to code this assumptions in-
to the measure of similarity. These restrictions of the
hypothesis space are called bias. (Rendell 1986) divides
the abstraction done by a learning system in two parts:
the bias (to describe the amount of assumptions), and
the power of the learner. We have characterized case-
based systems by the number of learnable concepts and
the number of cases they need to identify a target con-
cept. Case-based algorithms use the cases of the case
base to fill equivalence classes induced by the measure
used. On the other hand, they use the knowledge from
the cases to lower the number of equivalence classes
by changing the measure. Thereby, the target concept
may be identified by fewer cases. The used measure
defines the set of the learnable concepts and the cases
in the case base select a concept from this set.

The bias relates to the restriction of the set of learna-
ble concepts induced by the measure of similarity and
is therefore comparable to the degree of universality.
The minimal size of the case base reflects the informa-
tion the learner needs to come to a correct hypothesis,
i.e. the power of the learner (Rendell 1986). Using
an universal similarity measure conflicts the minima-
lity of the case base. Reducing the size of the case
base, which means to code more knowledge into the
measure, usually results in a less universal similarity
measure. We have stressed that the measure (respec-
tively the way to modify the measure) is the bias of
case-based reasoning. Because case-based systems are
based on a bias that cannot be deduced from the cases,
we reject the thesis (Cost & Salzberg 1993) that case-
based classification is more appropriate in situations
with a low amount of previous knowledge.

We conclude that for classification tasks there is
no fundamental advantage in the learning power of
case-based systems as maintained by (Cost ~ Salzberg

1993). Since the number of cases an algorithm need
to learn a concept is directly related to the size of the
hypothesis space, the used bias must have a compa-
rable strength in both approaches. While symbolic
approaches use this extra evidential knowledge to
restrict the language to represent their hypotheses,
the case-based algorithms need it to get appropriate
measures of similarity.
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