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Abstract

CBR seems well suited to fault diagnosis because
diagnostic episodes naturally form cases and much of
expert competence seems to be based on reuse of old
solutions. However, in many diagnosis problems it is
difficult to compile a complete case description in
advance, consequently the conventional one-shot case
retrieval methodology will not work. In this paper we
introduce a set of fault diagnosis problems that have this
characteristic and we describe a model-based goal-driven
system that produces focused questions that request extra
information required for diagnosis. The central
contribution in this paper is a description of a CBR system
that also has this characteristic of producing focused
questions in diagnosis. We describe the information
theoretic mechanism that allows the CBR system to do
this and we present an evaluation of the CBR system and a
comparison of the two systems.

Introduction

The major attraction of CBR is its cognitive plausibility. It
is clear that much of human expert competence is based on
the reuse of past solutions in solving new problems.
However, one restriction on the dominant CBR
methodology is that it tends to be one-shot, requiring that
the target case description be available in advance and that
the problem can be solved with a small number of
retrievals. This methodology can be problematic for some
diagnosis problems and in this paper we describe one such
situation. The problem in the situation that we describe is
that all information is not available in advance and there is
a cost associated with getting information. Consequently, it
is important that the amount of information requested is
minimised. What is needed is a CBR methodology that is
incremental1, one that can indicate what extra information

1 We believe that there are two important ways that a CBR
system can be incremental. CBR can be incremental in that it
builds its solutions using components taken from several cases
(Smyth & Cunningham 1992), (Redmond 1990). Alternatively
it can be incremental in the sense we me here; that is that the
target specification is composed during the CBR process.
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is needed during the diagnostic process. It is interesting to
note that backward-chaining systems have precisely this
advantage in fault-diagnosis; the goal-directed reasoning
asks the user only for information that contributes to the
hypothesis being examined.

In this paper we consider the problem of using CBR in
electronic fault diagnosis and discuss the re-engineering of
an existing model-based, goal-directed diagnosis system as a
case-based system. Fault diagnosis seems a good candidate
for CBR because it is clear that much of human expertise in
fault diagnosis is experience based. Further, fault diagnosis
seems naturally case-based with each diagnostic episode
constituting a case. The problem that we have encountered
is centred on the cost of gathering a useful case description.
In our problem domain there can be up to a hundred
symptoms that potentially impact on the diagnosis and
there is a cost associated with gathering most of these. For
this reason the naive solution of collecting these readings to
make a case is not practicable. This contrasts sharply with
the solution implemented in the existing model-based
system (called NODAL) (Cunningham & Brady 1987),
(Cunningham 1988). This system uses goal-directed
reasoning in the diagnosis and this has the advantage of
only querying the user for symptoms that will contribute to
the diagnosis. This parsimony dividend of backward-
chaining systems has been recognised since the early days
of MYCIN and, in this paper, we will examine
modifications to the CBR idea that can operate with the
same, or even less, information.

First we shall introduce the diagnostic task, describe the
existing model-based system and explain how the goal-
directed reasoning dictates the number of symptoms
requested from the user. This is covered in the next section.
Next we examine other case-based diagnosis and explanation
systems and consider how they tackle or avoid our problem.
In the final section we describe our approach to incremental
CBR for this particular diagnosis problem and compare it
with the existing model-based system (MBS).

Goal-driven diagnosis

It has long been recognised that goal-directed reasoning, or
backward rule-chaining, has specific advantages in
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diagnosis. In circumstances where there is a cost associated
with determining the various symptoms associated with the
fault or illness the goal-driven reasoning can focus the user
interaction and only request input that contributes to a
diagnosis. This advantage is not restricted to simple rule-
based systems; model-based systems can adopt a goal-driven
reasoning strategy and enjoy the same advantage. NODAL
is such a system for electronic fault diagnosis.

Fault diagnosis in switching mode power
supplies

NODAL is a model-based system for fault diagnosis of
switching mode power supplies (SMPS). The system 
implemented in KEE a hybrid expert systems development
environment. The original motivation for its development
was to produce a genetic diagnostic system for a class of
electrical devices. NODAL has a generic reasoning
mechanism and can be set up to work for a particular power
supply by encoding the model of that power-supply in the
system. The block diagram of one of the power-supplies
used in testing the system is shown in Figure 1.
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Figure 1. The block diagram of the 24V/12V power-supply.

The models in NODAL have a hierarchical structure. The
top-level represents the blocks in the block diagram as
frames, the main information on the frames being
interconneetion information and also some information
about the characteristics of the blocks. These blocks are
interconnected by nodes and these nodes themselves are
represented as frames. These node frames carry information
used during the diagnosis. For more complex power°
supplies these blocks were further divided into sub-modules.

The detailed level of representation corresponds to
detailed information available in schematics of the SMPS
circuit. An example of the detail of the Local Power Supply
module of the 24W12V unit is shown in Figure 2 (a). The
components are represented as frames that carry
interconnection information and details of the characteristics
of the components. Again, the interconnecting nodes are
also represented as frames. The frame for the Q1 transistor
is shown in Figure 2 (b).

NODAL was designed for use in a repair shop so the
assumption that the circuit under examination has worked at
some stage reduces the number of fault categories to be
considered. Component failure accounts for over 95% of
faults on SMPS that have failed in operation so NODAL is

designed to detect these. Fault diagnosis of these SMPS
involves locating the faulty module and finding the faulty
component in that module.
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Figure 2. The detail of the Local Power Supply module in the
24V/12 circuit and the frame for the QI transistor in that
circuit.

Since NODAL is designed to operate in a repair shop the
first input in the diagnosis is the results from the test
equipment on which it was confirmed that the unit was
faulty. This input is shown in Figure 3. These function
tests are performed on the unit as a "olack box’, and measure
outputs associated with test inputs. These tests will number
between twenty and forty depending on the complexity of
the circuit. However, because the internals of the unit are
not.being examined, the amount of diagnostic information
that they carry is limited. The test results are processed by
the Function Test Rules (a shallow reasoning component in
NODAL) and a set of candidate faulty modules is produced.

Voltages &Function Signals Measured
ResistancesTest Restdts

O..a.o.
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[ Rules I ~ Diagnosis ~ Diagnosis ] ~_
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Figure 3. Data input in NODAL and the related reasoning
processes.

In order to further isolate the fault it is necessary to
perform some internal measurements on the unit. These
measurements are taken at the nodes mentioned already.
Measurements may involve estimating the goodness of a
signal, or measuring voltages and resistances. This
information is stored in the frames during the diagnosis. A
typical circuit will have about 20 nodes at the module level
and approaching 100 nodes altogether. Consequently there
is a large number of measurements that can be taken during
the diagnosis. The advantage of the goal-driven diagnosis is
that it requests only measurements that contribute to its
current hypothesis. In a typical session only about 20% of
measurements are requested. This process will now be
described in more detail.
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Goal driven reasoning in NODAL

The output of the shallow reasoning process in NODAL is
a candidate set" of faulty modules. The model-based
reasoning takes over at this stage with the objective of
detecting the faulty module and the faulty component
within that module. The behavioural component of the
model is expressed as rules and the goal driven reasoning
involves backward chaining through these rules applied to
the model of the unit under test. A typical rule from the
module level reasoning is as follows:-

IF
(MODULE? HAS A BAD SIGNAL ON OUT-1 OR
MODULE? HAS A BAD SIGNAL ON OUT-2)

AND MODULE? HAS A GOOD SIGNAL ON IN-1
AND MODULE? HAS A GOOD SIGNAL ON IN-2
THEN THE STATUS OF MODULE? IS FAULTY

The rule is expressed in the TellAndAsk knowledge-base
query language of KEE as follows:-

IT-RULE-2-2
IF ((OWN.VALUE TYPE ?MODULE TWO-TWO) 

(OWN.VALUE SIGNAL(GET.VALUE ?MODULE OUT-1)?OS1) 
(OWN.VALUE SIGNAL(GET.VALUE ?MODULE OUT-2)?OS2) 
((EQUAL ?OS1 BAD) OR (EQUAL ?OS2 BAD)) 
(OWN,VALUE SIGNAL(GET.VALUE ?MODULE IN-l) ?1S1) 
(EQUAL ?1S1 GOOO) AND
(OWN.VALUE SIGNAL(GET.VALUE ?MODULE IN-2) ?1S2) 
(EQUAL ?1S2 GOOD))

THEN (A STATUS OF ?MOOULE IS FAULTY)))

A typical rule from the component level reasoning is:-

(NPN.B.E.DOD.RULE

(i~FIND’¢ (IN.CLASS ?NPN STD-NPN) DONT.ASK) 
(LISP (NOT (DIODE-BETWEEN-NOOES-P ’B-E-DIODE

(UNIT.NAME (GET.VALUE ?NPN ’BASE))
(UNIT.NAME(qGET.VALUE ?NPN ’EMITTER))))))

THEN (OWN.VALUE STATUS ?NPN FAULTY)))

This rule checks to see if there is the correct diode
voltage drop between the base and emitter of a transistor.
Using the model of the circuit, the goal-directed reasoning
uses these heuristics to determine first the faulty module,
then the faulty component.

An example of a dialogue with NODAL will illustrate
how this works in practice. The fault being analysed arises
from removing the zener diode (CR2) in the Local Power
Supply Module of the 24V/12V SMPS. This simulates
that diode blowing open-circuit. At the point when the
dialogue commences the system has already completed the
shallow reasoning based on the function test rules and has
established a candidate set of faulty modules. It then
proceeds to try and prove one of these to be faulty
(underlined text is input by the user):-

Setup for Test Vector 1

What is the SIGNAL of NODE-2? Good
What is the SIGNAL of NODE-3? Bad

It looks like the fault is in the LOCAL-POWER-SUPPLY
Switching to considering ~the circuit at a component level...

What is
What is
What is
What is

the VOLTAGE of NODE-2? 23.4
the VOLTAGE of LPS-I? 18.79
the VOLTAGE of NODE-3? 18.12
the VOLTAGE of NODE-9? 0

It looks like the fault is in CR2

Even by NODAL’s standards this dialogue is particularly
short as the first module to be examined proves to be the
faulty one (for more example dialogues see (Cunningham
1988)). Nevertheless it serves to illustrate how the goal-
directed reasoning focuses the requesting of measurements
from the operator. This brings our requirements on a CBR
system for the same task into focus. Since there is a cost
associated with determining the inputs to the diagnosis it is
important that the CBR system should not need to have all
the inputs in advance. It should be able to direct the
operator on what measurements are important just as the
goal-driven system does.

Existing diagnostic CBR systems

Despite this difficulty that we identify in the use of CBR in
diagnosis there has been considerable interesting and
successful research in the area. Some systems that are worth
highlighting are as follows:-

- The help desk application of Simoudis and Miller
(Simoudis & Miller 1991)

¯ CASEY: a system for managing the diagnosis of
cardiac disease (Koton 1988)

¯ PROTOS: a system for assisting in the diagnosis of
audiology disorders. (Porter et al 1990)

¯ The GE help desk application of Kriegsmann &
Barletta (Kriegsmann & Barletta 1993)

In the remainder of this section we will examine these
systems focusing on the aspects that are relevant to our
problem.

Simoudis & Miller’s Help Desk System.

This help desk application is designed to assist product
support engineers in diagnosing customer problems with
the VMS operating system. The system uses a two-phase
case retrieval process of surface feature-based retrieval
followed by model-based validation. The surface features are
inexpensive to obtain and include hardware and software
system descriptions and data obtained from the core dump
associated with the system failure. The first phase in the
retrieval process returns all cases from the case-base that are
similar according to these surface criteria. The model-based
validation uses validation information from these cases to
direct further inquiry into the target case. This validation
process will determine whether the new problem is in fact
similar to any of those retrieved from the case-base.

It appears that this strategy would not work in our
situation because there is not an obvious set of surface
features that would significantly reduce the case-base.

50



CASEY

In CASEY, Koton integrates case-based and model-based
reasoning techniques to produce an expert system for
managing the diagnosis of cardiac disease. Each case
represents a single patient diagnosis and is composed of
both descriptive features and solution features. The
descriptive features correspond to the patient’s observed
symptoms and test results, whereas the solution features
describe the diagnosis and suggested therapy.

Given some new patient description, CASEY will
attempt to identify the causality underlying the observed
disorder and propose therapy (the diagnosis solution) using
a three-step process. First, CASEY will search for a case
that is similar to the current patient diagnosis context.
Second, it evaluates the significance of any differences
between the target and base case. This evaluation is carried
out using a set of evidence principles and will reject a
match if these principles suggest that certain features of the
base case cannot be applied to the target. Third, if none of
these differences rule out the applicability of the case, then
it adapts the solution of the base case to fit the target
context. CASEY adapts a retrieved case using a set of
causal repair strategies to modify the nodes or links in the
casual explanation of the base case.

PROTOS

PROTOS is a classification and learning system for
operation in clinical audiology (Porter et al. ’90). PROTOS
implements a type of prototype based classification
whereby surfaces features of the case are used to identify a
set of candidate categories. The system uses prototypical
examples of these categories in the reminding process. The
highest ranking of these remindings is selected and the
system initiates a dialogue with a human expert to
determine whether it is a correct diagnosis. If the diagnosis
is incorrect the system attempts to adjust its links between
case features and categories in order to produce a correct
diagnosis. The focus of the work on PROTOS has been on
concept acquisition in a weak theory domain rather than on
the diagnosis itself. So, while PROTOS, does conduct a
dialogue with its operator, the motivation is different to
what we have in mind. It is concerned with knowledge
acquisition while we want the dialogue to further the
diagnosis itself.

The GE Help Desk System

Kriegsmann & Barletta view CBR as having a number of
advantages over more conventional text-based or rule-based
help-desk systems (Kriegsmann & Barletta 1993). Their
prototype system aimed at investigating the role of CBR in
providing help-desk functionality across a range of
computer hardware, software, and networking problems.
The problem being addressed in this system is similar to
ours in that there is a cost associated with determining the
case features.

The system offers the operator a template on which the
target specification is to be entered. The operator is free to
leave blanks in this template as the retrieval mechanism can
operate with incomplete information. The system uses an
inductively built decision tree to identify a group of
candidate cases with contextually similar features to the
target problem. For each candidate a score is computed
using nearest-neighbour methods. The score reflects the
similarity of the candidate to the target. If the initial target
specification is too general or sparse to result in the
retrieval of a single best case or even a small subset of
candidates the system allows the operator to specify
additional information to further focus the retrieval process.
The determination of which additional features to specify is
left to the operator.

Incremental CBR in NODALcBa

Our objective in this work is to explain how the desirable,
goal-directed behaviour of the NODAL model-based
diagnosis system might be transferred to an equivalent CBR
system, which we call NODALcnn. What we have
developed is a CBR system that can begin operation
without a complete target case description and can generate
queries that will help it to home in on a solution. We have
implemented an information theoretic mechanism that
identifies the maximally discriminant diagnostic features of
the retrieved cases. Thus, rather that expecting the operator
to chose the next test to apply, the system will propose one
automatically. In addition the test chosen should maximise
the amount of new information gained, and hence ensure the
most rapid route to the desired diagnosis.

Case Representation & Retrieval

Our first objective has been to replace the first two stages
of diagnosis in the old system (see Figure 3) with one CBR
stage. Consequently the cases features are the information
used in the diagnosis at this point, that is the function test
results and the module level signal information. The case
also contains a case name and the identity of the faulty
module associated with these symptoms (the solution). 
typical case structure is shown in Figure 4. It is in the
nature of the diagnosis task that the ease features are sparse.
There is often a small number of results to the function
tests because once a unit fails one of the early tests it is not
possible to proceed with subsequent tests. In addition, a
large portion of the signal features are not examined as the
diagnosis quickly concentrates in a specific part of the
circuit.

Case Name Faulty
Module Name |Function Module
(Solution)

Test Results Level Features

ayln’oz 20 to 40
~ ~

approx 10 Io30

Figure 4. A typical case structure in NODALo]R.
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We can now consider what happens during a typical run
of the CBR system. In this first scenario the unit fails one
function test, 3-POS-OUTPUT-VOLTAGE, after which it
is not possible to continue with further function tests.
Cases matching these function test results are returned from
the case-base. In this example these are cases with the
signal features shown in Table 1. At this stage the unit
under test has not been probed for this signal information
so we want the system to ask some discriminating
questions - this was the particular strength of the old
NODAL system.

Table 1. This chart shows the module level portion of several
cases returned during the diagnosis.

Nodes G: ~3d B:bad
1 i lil 1 1 1 1 1

Case Name 23,456789012345678
Input-Filter-1 B
Local-PS-1 GB
Driver&PS- 1 GG GIC B
Control-Cct-1 G G GGBG G G
Clock-Gen- 1 GG BBGG G
Clock-Gen-2 BGGG G

Clock-Gen-3 GG GBGG G
Driver&PS -2 GG GB G
Driver&PS-3 G G GB B
Xfmr-1 G G GGGG GBB B~B
Xfmr-2 [G G GGGG GBG BG
Xfmr-3 OG GGGG G B GB
Ou~ut-Rect-1 G G GGGG GG B
Output-Rect-2 O G! GGGG G G GB

The solution we have adopted is to use information
theoretic criteria similar to those used in ID3 (Quinlan
1986) to determine the most discriminating feature to be
measured at each stage in the narrowing down of this subset
of cases.

Selecting Discriminating Features

This selection of discriminating features amounts to
building a decision tree that will have leaf nodes
corresponding to the different diagnoses D and the set of
cases C will be located, or classified, on these nodes. It is
important that the tree is in some sense minimal so the
choice of which feature to test at any level of the tree is
critical. In ID3 this is done by selecting features based on
their information content or discriminatory power (Quinlan
1986). The process used in NODALcBR is similar to that in
ID3 except that the semantics of the branching in the
decision tree is slightly different because of the large
number of unknowns in the case features. A brief
explanation of how the discrimination works is as follows:-

Dffi {DI,...,Da} the set of possible classes or diagnoses
(7 in Table 1)

C={CI,...,Cc} the set of cases to classify
(14 in Table 1)

Fffi{Fb...,Ff} the set of descriptive features that will form
the nodes of the decision tree. (17 in Table 1)

We can view the decision tree as an information source
producing one of d messages from the set D. Let IDi I
represent the number of cases with diagnosis Dr. Then the
expected information needed to generate the appropriate
message, for some case, using the tree is:.

Io, I ,,,I(ID,I LID,I+...+ID, IJ)
Consider the root decision node of the tree (see Figm¢ 5).

Assume this node tests the feature FEF and this feature has
possible values V--{VI ..... V.}. Then V partitions (2 into 
groups of cases, GI ..... G.; where Gi contains those cases
that have value Vi for feature F.

F

V Vn

G1 ~’~--~ .......... --] n

Figure 5. The root classification of the cases in C.

Let Gi contain IDij I cases with diagnosis Dj, that is IDtj I
instances of class Dj. Then the expected information
required for the sub-tree of Gi is I(IDil I ..... IDidl). We call
obtain the expected information for the tree with F as root
by computing the weighted average over all value branches
of F as follows:-

n i iE(ID, I+’"+ID.I)E(F)-- ,-, I,[D,I+...+IDdl)° I(ID’I .....ID’ I)
(2)

The weight of the ith branch is the proportion of cases in
C that belong to Gi. The information gained from using F,
or the discriminatory power of F, is:-

DP(F) = I(ID,l ..... IO.l)- E(F) 
So, at each stage in the reduction of the set of cases, the

most discriminating feature is selected using this criterion.
The user is requested to determine the value of this feature
for the target case. The retrieved cases that cannot match on
this feature are removed from the relrieved set. This process
is repeated until the set reduces to one diagnosis or the
target case proves to be dissimilar to all the retrieved cases.
It is important to emphasise that a discrimination tree for
the set of cases is not being produced, instead local
discriminations are determined at run-time. This technique
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has proved remarkably successful; indeed it results in less
questions being asked of the user that was the case with the
original NODAL system.

Evaluation

In this section we will present a comparison of the MBR
and CBR systems and evaluate the strengths of the CBR
system. Returning to the example introduced earlier, we can
continue with the dialogue generated by NODALcBa:-

Selecting function test failure cases : Retrieved 14
> (INPUT-FILTER-1 LOCAL-PS-1 DRIVER&PS-1

CONTROL-CCT-1 CLOCK-GEN-1 CLOCK-GEN-2 CLOCK-
GEN-3 DRIVER&PS-2 DRIVER&PS-3 XFMR-1 XFMR-2
XFMR-30UTPUT-RECT-10UTPUT-RECT-1)

What is the value for N2 ? G
What is the value for N3 ? G
What is the value for N10 ? G
What is the value for N7 ? G
What is the value for N8 ? G
What is the value for N5 ? B
O.K .....

Selecting candidate modules ’ Retrieved 2
(CLOCK-GEN-1 CLOCK-GEN-2)

Validation:
The fault is in CLOCK-GENERATOR if
N6 is B or N6 is G

The 14 cases shown in Table 1 are returned and N2 is
found to be the first most discriminating criteria. After 6
questions the faulty module is discovered. This compares
with 7 questions in the model based reasoning of old
NODAL:-

Setup for Test Vector 1

What is the SIGNAL of NODE-2? Good
What is the SIGNAL of NODE-3? Good
What is the SIGNAL of NODE-10? G~d
What is the SIGNAL of NODE-8? Good
What is the SIGNAL of NODE-7? Good
What is the SIGNAL of NODE-5? Bad
What is the SIGNAL of NODE-6? Bad

It looks like the fault is in the CLOCK-GENERATOR
Switching to considering the circuit at a component

level.,.

The CBR system performs better than the MBR system
because it only requires enough information to uniquely
classify the case in the case-base. In comparison, the MBR
system requires enough information to verify a hypothesis
in its knowledge base. The CBR system has a further
validation phase where it informs the user of remaining

information that will confirm that the cases match. The
importance of this validation depends on the coverage of the
case-base. It is not required when coverage is good.

When we compared the CBR system with the old system
on a sample set of faults on the DC/DC circuit we found
that is required only 83% of the user input that the MBR
system did. This information is plotted on a case by case
basis in Figure 6. Two other smaller evaluations are shown
on Figure 7 (a) and (b). In these situations the number 
questions is reduced to 35% and 33% respectively. From a
situation where our initial aspiration was to produce a CBR
system that would have the informational parsimony of a
goal-driven system we find that the CBR system is better
than the old NODAL system.

,4aa

Category 1

XFMR-2

XFMR-1

XFMR-3

Output.Rectifle~-
Neg.t

Output-Rectifier-
Poe-1

Clock-
Genetarot-3

Clod~-
Generator-2

Clock-
Generator-1

Driver-and-
Power-Supply-2

i!iiii!iiiii~iii!iiiiiii~i~!i!!i!iiiii~iiiiii!iii
!

ililili!!’:W:’:’:’:’:::’:’:’:’:::~:’:’:’,’:’::l
I |
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Jl :

! ! i ~ i "L:’.’.!!!~ " i ! Li [ i~!~!!ffff’l

Control-Clrcult-1
I

Drlvor-and-
Power-Sul0ply-3 I

Driver-and-~[i[![[,iii,ili![[i!i!Power-Supply- 1

Local-Power- ~
Supply-1

Input-Filter-1 ~

0

I

1:3 Nodal CBR
!’,
I
I

S 10 15

Total Queries

Figure 6. A comparison of the numbers of questions generated
by the MBR and CBR systems in fault diagnosis.
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Category 2

{;.i.;°;.i.~.;,;.;.;.;|;.;.i°i.i°;°i.ioi

Generator- I .~. I I

’, l a Nodal CBRjill ¯ , i .....
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(a)
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Control-1

+5vt-Rectiflor-
&-Feedback- 1

Target +s~-R.~,.,.
Faults ~.F.~,~.2

+SvI-Rectifier-
&-Feedback-3

Control-Circuit-
2

Category 3

jii!i!j!iiiiiiiiii iiit

i!!!!i!!!iiiiiiiiii i!i/

~}i!iiiii!iiiiiiii::

0 $

I
I=lNodal CBR I

I I
10 15

Total Queries

(b)
Figure 7. Further comparisons of the numbers of questions

generated by the MBR and CBR systems.

Conclusion
We have described a class of diagnosis systems where

there is a potentially large amount of information that may
be used in the diagnosis process. There is a cost associated
with obtaining this information and a successful diagnosis
can be made using a portion of this information. It is part
of the conventional wisdom in AI that backward chaining
systems are good at these types of problem because the goal
directed reasoning produces focused questions, requesting
only information that is relevant to the hypothesis being
pursued. In the early part of this paper we have described
NODAL, a model-based system of this type.

The main contribution of this paper has been the
description of NODALcBR a case-based reimplementation of

a portion of the NODAL system. The important component
in this re-implementation is the information theoretic
criteria used to determine the next question to be asked of
the operator. An evaluation of the two systems has shown
that the CBR implementation can operate with less
information than the model-based system. This is because,
for our purposes, the criteria of minimum information is
more parsimonious than the knowledge based heuristics in
the MBR system.

We believe that many diagnosis problems have these
characteristics and this technique can improve the usefulness
of many case-based diagnostic systems.

References
Cunningham P.; Brady M. 1987. Qualitative reasoning in
electronic fault diagnosis, in Proceedings of Tenth
International Joint Conference on Artificial Intelligence,
443-445. ed. J. McDermott, Morgan Kaufmann, Milan
Italy.

Cunningham P. 1988. Knowledge Representation in
Electronic Fault Diagnosis. Ph. D. Thesis, Department of
Computer Science, Dublin University, Trinity College,
Ireland.

Koton P. 1988. Reasoning about Evidence in Causal
Explanations, in Proceedings of Workshop on case-based
reasoning (DARPA), 260-269, Clearwater, Florida, Morgan
Kaufmann.

Kriegsmann M.; Barletta R. 1993. Building A Case-Based
Help Desk Application. IEEE Expert, 8(6): 18-26.

Porter B.W.; Bareiss R.; Holte R.C. 1990. Concept
Learning and Heuristic Classification in a Weak-Theory
Domain, Artificial Intelligence, 45: 229-263¯

Quinlan J.R. 1986. Induction of Decision Trees, Machine
Learning, 1(1): 81-106.

Redmond M. A. 1990. Distributed cases for case-based
reasoning: Facilitating use of multiple cases, in
Proceedings of AAAI-90, AAAI Press/MIT Press, 304-309.

Simoudis E.; Miller J.S. 1991. The Application of CBR to
Help Desk Applications. In Proceedings of the Case-Based
Reasoning Workshop, 25-36. Washington D.C., U.S.A.,
Morgan Kaufmann.

Smyth B.; Cunningham P. 1992. Dtjh Vu: A Hierarchical
Case-Based Reasoning System for Software Design. In
Proceedings of European Conference on Artificial
Intelligence, 587-589, ed. Bernd Neumann, John Wiley,,
Vienna Austria.

54




