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Abstract
This paper describes an experimental evaluation of

the diagnostic concepts implemented in a prototypical
case-based reasoner (CBR), called Epaion. The
reasoner operates in the domain of in-flight fault di-
agnosis and prognosis of aviation subsystems, par-
ticularly jet engines. The evaluation used actual air-
craft accidents and incident cases, which were simu-
lated to assess the effectiveness of Epaion in diag-
nosing failures. Results of this evaluation, together
with a brief description of Epaion, are presented.
Additionally, these results are compared with the re-
suits achieved by the rule-based and the model-based
processes of another reasoner which operates in the
same domain.

Introduction

The current state of knowledge-based systems offers a
variety of reasoning methodologies and tools. Rule-based
and model-based reasoning are the most popular reasoning
paradigms used in a variety of domains. On the other
hand, recent advances in Case-based reasoning (CBR)
research have moved CBR from the research bench into
the applications arena at a rapid pace.

Reasoning about physical systems is a difficult process,
and any attempt to automate this process must overcome a
number of challenges. Among these are the tasks of gen-
erating explanations of normal behavior, fault diagnoses,
explanations of the various manifestations of faults, pre-
diction of future behavior, etc. The reasoning process be-
comes even more difficult when physical systems must
remain in operation. During operation, a physical system
is changing dynamically by modifying its set of compo-
nents, the components’ states and pattern of interconnec-
tions, and the system’s behavior.

To address these concerns a research effort has been
initiated at NASA/Langley Research Center aiming at the
study, design, and development of AI-based systems for
in-flight fault management (Abbott 1991, Karamouzis 

Feyock 1993a). The research deals with the domain of in-
flight fault diagnosis and prognosis of aviation
subsystems, particularly jet engines. Automation of in-
flight fault diagnosis and prognosis can be used as an aid
to the flight crew for early detection of a problem or
failure. This provides the crew with more time to respond
more effectively and reduce potential damage due to the
failure.

The research effort at Langley produced two reasoners.
The first reasoner, called DRAPHYS, performs a two-fold
reasoning process, one that is based on a set of rules and
the other that is based on models of the aircraft. The sec-
ond reasoner, called Epaion, involves the use of case-
based techniques in conjunction with models that describe
the aircraft.

This paper is an extension of (Karamouzis and Feyock
1993b) that described an evaluation of the diagnostic con-
cepts implemented in Epaion. The evaluation used reports
of actual aircraft accidents and incident cases, which were
input to Epaion to assess its effectiveness in diagnosing
failures. The results of this evaluation, together with a
brief description of Epaion, are presented. Additionally, in
the present paper these results are compared with the re-
suits achieved by the rule-based process and the model-
based process of DRAPHYS.

Overview of Epaion

Epaion* contains a self-organizing memory structured as a
frame-based abstraction hierarchy, as defined by (Schank
1982), for storing previously encountered problems. Cur-
rently each case has been represented in a memory organi-
zation packet (MOP) as implemented in (Riesbeck 
Schank 1989), but eventually MOPs will be implemented
using LIMAP, a matrix-based knowledge representation
tool (Feyock & Karamouzis 1993).

Each case is derived from an actual aircraft accident re-
port and consists of a set of features that identify the par-
ticular accident, a list of the relevant context variables and
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their particular status, a set of observable symptoms, the
fault, and a causal explanation that connects the
observable symptoms to a justifying cause. The set of
identifying features includes information such as aircraft
type, airline, flight number, date of the accident, and
similar data. The list of context variables includes
information such as the phase of flight, weather, etc. The
set of symptoms includes information about abnormal
observations from mechanical sensors such as the value of
the exhaust gas temperature, the value of engine pressure
ratio, or from "’human sensors", such as the sound of an
explosion, or the smell of smoke in the passenger cabin.
Cases containing all of this information are called library
cases, whereas cases where the fault and the causal
explanation are not available are called input cases. The
following depicts a portion of an input case:

id: Overseas National Airways
date: November 12, 1975
phase-of-flight: take-off
fuel-flow: 1 normal

2 fluctuates
3 fluctuates
4 low

fault: bird-ingestion
causal-eventl: ante bird-ingestion

cnsq fan-blade-damage
causal-event2: ante fan-blade-damage

cnsq fan-rotor-imbalance

In the medical domain (Koton 1988) reports a system
that is most closely related to ours. In contrast to this and
most other CBR research efforts, each case in
our methodology consists not only of a set of previously
observed symptoms, but also represents sequences of
events over certain time intervals, The time intervals are
of unknown and uneven length; it is the event ordering
that it is of importance. Such temporal information
is necessary when reasoning about operating physical sys-
tems, since the set of symptoms observed at a particular
time may represent improvement or deterioration from a
previous reading, or may reveal valuable fault propagation
information. In a jet engine, for example, the fact that the
fan rotational speed was observed to be abnormal prior to
an abnormal observation of the compressor rotational
speed is indicative that the faulty component is the fan and
that the fault propagated to the compressor, rather than the
reverse.

In addition, the system incorporates a model called the
world knowledge model This model consists of two
submodels: a functional dependency submodel with deep
domain information about the functional dependencies be-
tween the components of the physical system, and a sub-

model representing causal information concerning transi-
tions between various states of the physical system.

The functional dependency submodel is a digraph
model of an aircraft system, with nodes representing
primitive components, and "arrows" connecting nodes
representing functional dependencies. Component B is
said to be functionally dependent on component A if the
proper functioning of B depends on the proper functioning
of A. For example, the control surfaces of an aircraft are
functionally dependent on the hydraulic system, since they
will cease operating if the latter falls. The functional
dependency submodel contains two kind of arrows,
representing immediate and non-immediate links between
components. Two components C1 and C2 are connected
via an immediate link (I-link) when abnormal function 
C1 at time t l results in abnormal function of C2 at time t2
and (always) 1 =t 2. If t2 > t1 then C1 is said to be
connected to C2 via an non-immediate link (N-link). For
example, the engine driven pump (EDP) bypass valve 
connected via an N-link to the EDP filter, but the EDP
filter is connected to EDP bypass valve via an I-link.

The causality submodel of the world model contains
information such as "’fan-blade separation causes the ro-
tational speed of the fan to fluctuate" and "’the rotational
speed of the fan causes the engine pressure ratio to fluctu-
ate." Along with the causal information between two
states, e.g. "’inefficient air flow" and "’slowing down of
the engine", the model maintains a frequency count of the
number of times that the system witnessed that inefficient
air flow caused the engine to slow down.

Epaion’s input constitutes a set of symptoms experi-
enced by an airplane’s crew during a flight. When the sys-
tem experiences a new set of symptoms, i.e., when
faced with an input (new) case, it searches its case library
for the most similar case. This is done by placing the in-
put case in self-organizing MOP memory under the most
appropriate parents, determined as described in (Riesbeck
& Schank 1989). The siblings may therefore be as-
sumed to be closely related. The nearest sibling is re-
trieved as the case that is most on-point with respect to the
input case.

When the system finds and retrieves a similar case,
Epaion assumes that the current fault is the same as the
fault in the retrieved case and adapts the causal
explanation of the retrieved case to fit the current case.
The fault and the causal explanation are both stored in the
case library for future usage. The system is provided with
a set of adaptation rules which, in addition to adapting
the retrieved causal explanation to fit the current case, find
possible gaps in the causal explanation and fill in the
missing causalities by using the model. This causal
explanation connects the symptoms to a justifying cause,
and thus the system’s causal reasoning ability produces a
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causal analysis of the new case, rather than simply
a reference to a previous solution. The new causal
analysis is not only stored in the case library as part of the
input case, but is used to augment and modify the causality
knowledge of the world model.

At present, Epaion is implemented to diagnose faults in
the engine subsystem of a generic twin engine transport.
The programs currently run on various platforms using
Common LISP,

Epaion’s Evaluation Approach

This section describes the experimental evaluation of
Epaion on actual aircraft accident/incident cases involving
engine faults. Information provided in the individual acci-
dent/incident reports from the National Transportation
Board (NTSB), the British Air Accidents Investigation
Branch (AAIB), and data collected from test accidents
staged at Boeing Inc. (Shontz et. al. 1992) was used to de-
rive the appropriate information constituting each case, a
process called accident reconstruction. We reconstructed a
total of eighteen cases, of which twelve were used as li-
brary cases, and six as input cases.

Accident reconstruction is not a straightforward process
and has its limitations. In the reconstruction process the
symptoms from all accidents had to be identified from the
sources that described the accidents. Unfortunately,
numerical sensor data from the engine parameters was not
available, so the symptoms were used as reported in
(Shontz et. al., 1992), or derived based on the descriptions
in the NTSB or AAIB analysis of each accident. NTSB
and AAIB reports did not always explicitly describe the
symptoms in each case; even in those cases where
symptoms were mentioned explicitly they were usually
only those described by the flight crew. The sequence of
symptoms could therefore not always be determined
completely.

In addition a chain of causalities had to be constructed
for each of the accidents used as library cases. This chain
explains each observed ~ymptom by connecting the symp-
tom to a justifying cause. Determining the causal explana-
tion of the symptoms for each case was a difficult task be-
cause of a paucity of definitive experts who could provide
this information. While pilots, maintenance personnel,
and aircraft system designers are all knowledgeable about
some aspects of aircraft diagnosis, each has deficiencies in
one area or another. The causal explanations used in each
library case were constructed after interviewing personnel
with expertise in the above fields, and consulting NTSB
and AAIB reports.

The evaluation process required that each input case be
presented to Epaion separately, and that the system pro-
duce a diagnosis along with a causal explanation. The di-
agnosis produced by Epaion was then compared with the
correct diagnosis for the particular scenario. In addition,
the reasoner was evaluated based on the number of symp-
toms for which the reasoner was able to find a justifica-
tion. A "correct diagnosis" is the diagnosis determined by
NTSB, AAIB, or by (Shontz et. al. 1992). Epaion is said 
have produced a complete explanation if the system was
able to explain each observed symptom by connecting the
symptom to a justifying cause.

Table 1 presents a summary of the results. The first two
columns identify each scenario that was presented to
Epaion as an input case. The following two columns iden-
tify the appropriate classification of the accident/incident
along with the actual fault as determined by either the
NTSB, the British Air Investigations Branch, or Boeing’s
test data. The fifth and sixth columns present the classifi-
cation of each accident/incident done by Epaion along
with the fault assumed by Epaion. The last column tabu-
lates the result of Epalon’s adaptation phase. Epaion’s ex-
planatory performance was characterized as complete in
the cases where the system was able to causally justify
every symptom experienced in the input case.

Case Correct Epaion’s
Classification Fault Classification [Fault [ Explanation’

1
I Identification

G-OBMG Rotor Scenario Fan Blade Rotor Scenario Fan Blade Complete
2 American Rotor Scenario Turbine Blade Rotor Scenario Fan Blade Complete

Airlines 566
3 China Air 006 Fuel Scenario Fuel Controllel Fuel Scenario Fuel Subsystem Complete
4 Galunggung Volcanic Scenark Volcanic Volcanic Scenario Volcanic Complete

Ingestion Ingestion
5 Southern Water Scenario Water Miscellaneous Foreign Object Complete

Airways 242 Ingestion Scenario Ingestion
6 Boeing Test Icing Scenario Ice Ingestion Icing Scenario Ice Ingestion Incomplete

Flight F5

Table 1: Summary of Epaion’s Results
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A Rule-Based/Model-Based Approach

In this section Epaion’s method is compared to a rule-
based/model-based approach, as exemplified by
DRAPHYS.

DRAPHYS* operates in the same domain as Epaion. It
consists of by two discrete subsystems; a rule-based
reasoner and a model-based reasoner. DRAPHYS’ rule-
based reasoner involves compiled knowledge about the
association between symptoms and faults. Its output is a
set of fault hypotheses.

DRAPHYS’ model-based reasoner operates as follows.

model-based reasoner produced the correct diagnosis. The
rule-based reasoner contains no rules that can identify a
fan failure, thus due to the similarities in the symptoms for
turbine blade separation and fan failure the rule-based
reasoner misdiagnosed the fault as a turbine blade separa-
tion.

Although there is a rule that may identify foreign object
ingestion, the rule-based reasoner failed to produce any
diagnosis for the fourth case. For the same case the model-
base reasoner assumed that all the major components in
the engine were valid fault hypotheses. The failure to trim
the set of suspected components is due to the fact that
symptoms occurred on all major engine sensors si-

Case Rule-Based Model-Based
Identification Actual Fault Reasoner Reasoner

1 United Flight 611 Turbine Blade Turbine Blade Turbine Blade
2 National Flight 27 Fan Failure Turbine Blade Fan Failure
3 Northwest Flight 79 Fan Failure Turbine Blade Fan Failure
4 Overseas National Foreign Object (none) (not complete)

Flight 32 Ingestion
5 Southern Airways 242 Water Ingestion Flameout (incorrect set)
6 American Flight 191 Engine Separation Flameout Engine - Fan
7 Air Florida Turbine Disk Turbine Blade Combustor,

Flight 2198 Turbine, EPR
8 Eastern Airlines Bearing Failure Flameout, Compressor

Flight 935 Turbine Blade

Table 2: Summary of

First, based on the observed symptoms, the fault is
localized to a particular subsystem in the aircraft. Each
component in that particular subsystem is suspected as the
source of the fault. Then for each suspected component the
reasoner uses simulation to determine the fault propa-
gation behavior. The simulation is done with the help of
the same functional and physical dependencies models as
used in Epaion. The fault propagation behavior produced
by the simulation is then compared with the current status
of the components. If this fault propagation involves
components which currently are not affected, then the
suspected faulty component no longer constitutes a
possible source of the fault. The output of this reasoning
process is a list of fault hypotheses which hopefully is
smaller than the entire set of components in a particular
subsystem of the aircraft.

An empirical evaluation of DRAPHYS was performed
by presenting eight aircraft accident/incident cases which
were reconstructed from actual NTSB reports (Abbott
1991; Schutte). Table 2 presents a summary of the results.

For the first case both reasoners in DRAPHYS produced
the correct diagnosis. For the second and third cases the

* Diagnostic Reasoning About Physical Systems

DRAPHYS’ Results

multaneously.
In the absence of rules that could identify massive water

ingestion and engine separation for the fifth and sixth case
the rule-based reasoner diagnosed a flameout. This may be
considered as the correct diagnosis, since a flameout is a
direct consequence of both faults. The model-based
reasoner produced an incorrect set of hypotheses for the
fifth case. For the sixth case it hypothesized a physical
propagation from an engine failure to the hydraulic
subsystem. Worth mentioning here is that the model-based
reasoner recognized that the abnormal sensor readings
from the hydraulic system sensors were not the result of a
failure in the hydraulic system, but a physical propagation
from an engine failure.

For the seventh case the rule-based reasoner assumed a
turbine blade as being the responsible faulty component.
This diagnosis may be considered correct since all the
blades and the disk were separated. For the same case the
reason that the model-reasoner could not identify the tur-
bine as the sole responsible component is that there is no
specific sensor monitoring the turbine. For the last case an
incomplete rulebase resulted in an incorrect diagnosis by
the rule-based reasoner, while incompleteness in the
physical dependencies model - no physical link in the
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model between the compressor and the hydraulic line -
lead to misdiagnosis by the model-based reasoner.

Conclusions

This paper gives a brief description of two different rea-
soning approaches in the domain of in-flight fault man-
agement of aviation subsystems, particularly jet engines.
From the empirical evaluation of these approaches it is
evident that despite the minor shortcoming of each ap-
proach automation of inflight diagnosis and prognosis as
an aid to the flight crew has great potential for improving
the general safety of civil transport operations.

Generally we see that when the rule-based approach
failed to produce the correct diagnosis this was mainly due
to the absence of specific rules that could identify certain
faults. The incompleteness of the rule-base was the
reflection of the difficulty for knowledge elicitation in this
domain rather than the product of a "sloppy" imple-
mentation. On the other hand the inability to model and
monitor the world at a great level of detail degraded the
performance of the model-based reasoner.

The case-based reasoner achieved its results by not re-
lying exclusively on the models. Additionally, inherited by
the nature of the case-based methodology, Epaion reduced
the problem of knowledge elicitation to mere description
of past experiences. Based on the results of Epaion’s
empirical evaluation we make the following observations:

a. An expanded case library will enhance the systems
classification capability and therefore offer better matches
for each additional input case.

b. Presenting the system with cases which are
reconstructed based on an accurate set of symptoms is vital
for correct matching and therefore correct diagnoses.

c. The more knowledge that the system contains in its
abstraction hierarchy, the better its explanation capability
will be.

A major concern of this project has been to create a
system capable of achieving a practically useful level of
performance on a case base of significant size, thereby
avoiding the "toy problem" trap besetting many AI
systems. The extensive use of a classification hierarchy

allows the system to achieve O(log n) search times, while
the information abstraction attendant on accident
reconstruction produces space-efficient representations.
The system is currently hosted on a desktop personal
computer, and is estimated to be capable of storing the full
set of propulsion related aircraft accident for the last 20
years. These considerations, together with the encouraging
level of success achieved by Epaion, support the
expectation that this system will prove to be an effective
contributor to aircraft safety.
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