
Case-Based Anytime Learning

Connie Loggia Ramsey and John J. Grefenstette
Navy Center for Applied Research in AI
Naval Research Laboratory, Code 5514

Washington, DC 20375-5337
{ ramsey,gref} @ aic.nrl.navy.mil

Abstract

We discuss a case-based method of initializing
genetic algorithms that are used to guide search in
changing environments. This is incorporated in
an anytime learning system. Anytime learning is
a general approach to continuous learning in a
changing environment. A genetic algorithm with
a case-based component provides an appropriate
search mechanism for anytime learning. When
the genetic algorithm is restarted, strategies which
were previously learned under similar environ-
mental conditions are included in the initial popu-
lation of the genetic algorithm. We have
evaluated the system by comparing performance
with and without the case-based component, and
case-based initialization of the population results
in a significantly improved performance.

INTRODUCTION

We discuss a case-based method of initializing genetic
algorithms in changing environments. This work is part
of an ongoing investigation of machine learning tech-
niques for sequential decision problems. The SAMUEL
learning system employed in this study has been
described in detail elsewhere (Grefenstette, Ramsey and
Schultz, 1990). SAMUEL learns reactive strategies
expressed as condition-action rules, given a simulation
model of the environment. It uses a modified genetic
algorithm, applied to sets of symbolic reactive rules, to
generate increasingly competent strategies.

This work focuses on detectable changes in the
environment. The system monitors the external environ-
ment and when a change is detected, the learning
mechanism is updated with this new information. Since
the changes are monitored, they can be classified and
stored, and we can use case-based methods when learning
with genetic algorithms in these environments.

These ideas are incorporated in an approach we call
anytime learning (Grefenstette and Ramsey, 1992). The
basic idea is to integrate two continuously running
modules: an execution module and a learning module.
The agent’s learning module continuously tests new stra-
tegies against a simulation model using a genetic algo-
rithm to evolve improved strategies, and updates the
knowledge base used by the agent with the best available

results. The execution module controls the agent’s
interaction with the environment, and includes a monitor
that dynamically modifies the simulation model based on
its observations of the environment. When the simulation
model is modified, the genetic algorithm is restarted on
the modified model. The learning system is assumed to
operate indefinitely, and the execution system uses the
results of learning as they become available.

Genetic algorithms are well-suited for restarting learn-
ing in a changing environment. We have enhanced the
approach by including strategies, which are learned under
similar environmental conditions, in the initial popula-
tion. Previous cases are stored, and a nearest neighbor
algorithm is used to index into the most similar previous
cases. We call this approach case-based initialization of
the genetic algorithm. This method was evaluated by
comparing the performance of the anytime learning sys-
tem with and without the case-based component, and we
will discuss results from this evaluation.

ANYTIME LEARNING

An architecture for anytime learning is shown in Figure 1.
The system consists of two main components, the execu-
tion system and the learning system. The execution sys-
tem includes a decision maker that controls the agent’s
interaction with the external environment based on its
active knowledge base, or current strategy. The learning
system attempts to provide the execution system with an
improved strategy by experimenting with alternative stra-
tegies on a simulation model of the environment. For a
more complete discussion of the basic anytime learning
model, see (Grefenstette and Ramsey, 1992).

GENETIC ALGORITHMS AND

CASE-BASED INITIALIZATION

Genetic algorithms provide an effective mechanism for
guiding behavioral learning in systems such as classifier
systems (Booker, 1988) and SAMUEL (Grefenstette,
Ramsey and Schultz, 1990). For a good current descrip-
tion of genetic algorithms see (Davis, 1991).

Genetic learning systems need not learn from scratch.
If aspects of the task environment are directly measur-
able, case-based reasoning (Hammond, 1990) can be used
to initialize the population. Zhou (1990) explores case-

91

From: AAAI Technical Report WS-94-01. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved.

EXECUTION r----------,
SYSTEM ~ Monitor

LEARNING
SYSTEM

Figure 1: Anytime Learning System

based methods applied to classifier systems. He uses past
experience to recall similar cases when faced with a new
environment. If no relevant past cases exist, then the
standard classifier system algorithm learns a new solution.

In a different, interesting combination of case-based
methods and genetic algorithms, Skalak (1993) utilizes
genetic algorithm to identify small, reliable sets of
instances to reduce the number of instances used for
nearest neighbor retrieval. Kelly and Davis (1991) use
genetic algorithm to find a vector of weightings of the
attributes used in a nearest neighbor calculation in order
to reduce the effects of irrelevant or misleading attributes
and thus to make the distance measure more meaningful.

Ram and Santamaria (1993) use continuous case-based
reasoning to perform tasks such as autonomous robotic
navigation. They learn cases which provide information
for the navigation system to deal with specific environ-
ments encountered.

Our anytime learning system employs genetic algo-
rithms to learn the most effective strategies for each
environmental case encountered. When a change is
detected, the genetic algorithm is restarted with a new ini-
tial population. This work incorporates case-based ini-
tialization of the genetic algorithm into the anytime learn-
ing system. As the simulation model changes, we can
develop a history of past cases (of previous environments)
seen, and we can use the best solutions found so far for
previous similar cases to seed the population of new
cases.

TASK ENVIRONMENT

AND LEARNING SYSTEM

The task used in this case study is a two-agent game of
cat-and-mouse in which certain environmental conditions
change over time. The tracker agent (the cat) must learn
to keep the target (mouse) within a certain distance,
called the tracking distance. The target follows a random
course and speed. The tracker agent can detect the speed
and change in direction of the target as well as keep track

of time, its last turn, and its bearing, heading, and range
relative to the target. The tracker must learn to control
both its speed and its direction. For further details, see
(Grefenstette and Ramsey, 1992).

The anytime learning system uses a competition-based
production system as the execution system and SAMUEL
as the learning system. The system learns a reactive stra-
tegy consisting of a set of situation-response rules. In
these studies, the monitor measures several aspects of the
environment: the speed distribution, the turn distribution
(in degrees) and the size of the target agent. The speed
and turn distributions are assumed to be Gaussian distri-
butions, and the size of the target is a discrete integer
representing the current size. The monitor’s task is to
decide how well the observed speeds, turns and size of the
target in the external environment match the current dis-
tributions or values assumed in the simulation model of
the SAMUEL learning system. Using the 50 most recent
samples of the target’s speed and turns, the monitor com-
putes the observed mean and variance of these samples,
and compares the observed values with the current simu-
lation parameters, using the F-test to compare the vari-
ances and the t-test to compare the means. If either sta-
tistical test fails, the monitor changes the simulation
parameters to reflect the new observed mean and variance
of the target speed or turn. When a new size is detected,
the monitor updates this value in the simulation model. A
change in simulation parameters then causes the genetic
algorithm to restart.

Strategies are selected by the learning system for use by
the execution system, as follows: The genetic algorithm
in SAMUEL evaluates each strategy by measuring the
performance of the given strategy when solving tasks on
the simulation model. At periodic intervals a single best
strategy is extracted from the current population to
represent the learning system’s current hypothetical stra-
tegy. If the current hypothesis outperforms (in the simu-
lation model) the execution system’s current strategy, the
execution system accepts the learning system’s strategy as
its new current strategy.

Table 1: Population when Resetting the Learning System

Best Solutions of Similar Cases (50%)
Members of Previous Population (25%)

Default Strategies (12.5%)
Exploratory Strategies (12.5%)

When the learning system receives a restart notice from
the monitor, it begins a new epoch of learning on its
updated simulation environment by formulating a new
initial population for the genetic algorithm. The initial
population represents the system’s initial set of hypotheti-
cal strategies for the new environment. In this study, we

92

seed the initial population with four classes of strategies,
as shown in Table 1. One eighth of the population is ini-
tialized with default strategies that are known to perform
moderately well against a broad range of cases. The
default strategies will provide useful starting points for
the learner if the environment is changing from an
extreme special case back to what the simulation designer
considered a more normal case. One eighth of the popu-
lation is initialized with strategies that generate essen-
tially random behavior by the tracker (exploratory stra-
tegies). These strategies will provide useful starting
points for the genetic algorithm if the environment is
changing in a direction that has not been encountered
before. Next, one quarter of the strategies in the current
population are chosen to survive intact. This provides a
bias in favor of the assumption that the new environment
is essentially similar to the previous one. Also, it helps to
guard against the effect of restarting learning when an
irrelevant parameter has changed. Finally, case-based
initialization is used to seed the other half of the popula-
tion; it is initialized with the best strategies previously
learned in up to five similar epochs. This group is given
the greatest emphasis because it should provide the most
useful strategies for dealing with the new environment,
once a case history is established. A nearest neighbor cal-
culation is performed to find the five closest matches to
the current simulation’s set of parameters, as follows:
Each epoch encountered by the system is indexed by its
observed parameters. When a new environment is
encountered, the current parameters are compared against
all previous cases by taking the Euclidean distance of the
current set Enew and each previous set of parameters Ei
as shown:

[k~l(pn]1/’2d(Enew , Ei) i,k-Pnew, k)2

where n = the number of parameters, and Pi, k = parame-
ter k in Epoch i. We intend to look into algorithms which
will reduce the number of instances for nearest neighbor
retrieval since this will become very costly as the case
history grows. Also, we intend to weight the cases by
how recent they are, since recent similar cases usually
contain higher performance strategies. In the current
method, the five lowest differences in distance and the
corresponding past case numbers are then used to index
into the best strategies of these five nearest neighbors.
Then the best strategies of these cases are placed in the
new population, and replicated as necessary to fill up half
of the initial population. This restart policy illustrates the
advantage of the population-based approach used by the
genetic algorithm: it allows the learning system to hedge
its bets, since the competition among the strategies in the
population will quickly eliminate the strategies that are
not appropriate for the new environment, and will con-

verge toward the appropriate strategies.

EXPERIMENTS AND RESULTS
The experiments were designed to explore how well the
anytime learning system with case-based initialization of
the genetic algorithm responds to multiple changing
environmental conditions. For this study, we test the
hypothesis:

Dynamically modifying the simulation model
and initializing the population with members
of previous similar states will accelerate
learning in a changing environment.

Our tests involved both relevant and irrelevant parame-
ters. The distributions of the speed and turning rate of the
target are relevant and the size of the target is irrelevant.
Three distinct relevant environmental states occur during
each experiment: a baseline state, a high-turn state, and a
high-speed state. The tracking task is much more dill]cult
in the high-speed and high-turn states.

PREVIOUS RESULTS

To test the major components of the approach, we previ-
ously compared three modes of operation (Ramsey and
Grefenstette, 1993). The first mode was case-based any-
time learning, (anytime learning with case-based initiali-
zation of the genetic algorithm). The second mode was
anytime learning in which case-based initialization is dis-
abled. After each restart, the new population is
comprised only of copies of a default strategy plan, a gen-
eral plan, and members of the most recent previous popu-
lation. The third mode was baseline learning, in which
the monitor was disabled. In this mode, the learning sys-
tem receives no notification of environmental changes,
and continues to learn on the baseline state simulation for
the entire experiment. However, if the learning system
finds a strategy that tests better on the simulation model,
it passes this to the execution system for use against the
environment.

The performance of the case-based anytime learning
system achieves significantly better performance than the
baseline run. The case-based anytime learning continues
to learn not only within each epoch, but also from one
epoch to the next similar epoch. Furthermore, little time
is lost in bringing the performance back up to the level of
performance on the previous occurrence of the same
environmental state. For a more complete discussion of
these and other previous results, see (Ramsey and Grefen-
stette, 1993).

NEW RESULTS

Our current efforts have focused on assessing the robust-
ness of case-based learning when irrelevant parameters
vary, when much longer runs are performed, and when

93

past cases are similar, but not identical.1

We compared a new mode of operation, in which we
varied irrelevant parameters, against the results of the
previous experiment. The experiment begins and ends
with the baseline state, and the high-turn and high-speed
states occur during alternate time periods of 150 episodes.
Within each of these time periods, the size of the target,
an irrelevant parameter, was varied every 50 episodes.
Figure 2 shows the results of comparing case-based any-
time learning in which irrelevant parameters were not
changed during the high-turn and high-speed 150-episode
time periods to case-based anytime learning in which
irrelevant parameters were changed. The main result is
that learning is hampered because epochs are much
smaller and more frequent. There is less time for learning
before unnecessarily restarting the learning process. If
the irrelevant parameters do not change much, then they
have little effect, but if they do change often, then perfor-
mance can worsen.

o
lOO

Success80 -
Rate 60--
Of

Current 40 --
StrategY20 _

0

0

100 200 300 400 500 600 700 800 900 1000

~u~ i I I i I I .
I i i i i i[

¯ .Ip. -Irrele i~tn, Cas~s
:~

’ lit I

’l I" I’l l" I’l r j’
100 200 300 400 500 600 700 800 900 1000

lOO

- 80

- 60

- 40

- 20

o

Episodes

Figure 2: Case-Based Anytime Learning
vs. Case-Based Anytime Learning with Irrelevant Parameters

In a second experiment, a much longer run containing
many more epochs was performed to assess the robustness
of the case-based learning component as the number of
cases increases. There were 30 alternating high turn and
high speed epochs. The results, in Figure 3, verify that
the increased performance using case-based initialization
continues to hold after many epochs, and the increased
performance is almost always statistically significant.

In a third experiment, we evaluated the case-based ini-
tialization component by varying the values of the high

, The graphs were generated as follows: During each run of the system,
the strategy used during each 10-episode block by the execution system was
stored, and later tested on 1000 randomly selected episodes, using the same
environment that it encountered during the run. Each data point in the
graphs represents the average performance of a strategy over these 1000
episodes. The data is averaged over 10 independent sets of runs for each
experiment. The dashed vertical lines indicate the points at which the
environment changes. A vertical bar between two corresponding points on
the two graphs indicates a statistically significant difference at the 0.95 level
(using a t-tes0.

turn and high speed cases, and also by combining the high
turn and high speed parameters in some of the epochs (a
combined state). The tracking task is much more difficult
when these conditions are combined. The results, in Fig-
ure 4, show that case-based initialization still allows for
significantly increased performance when there are simi-
lar, though not identical, past cases. The high speed
epochs are showing more significance in increased perfor-
mance than the high turn epochs. We conjecture that the
learned behavior is more sensitive to the variance in the
turn range we chose. Also, there is not much gain in per-
formance when past cases are used in combination. For
the case-based initialization runs, the later combined turn
and speed epochs do have slightly increased performance,
but this seems to be more due to having seen these combi-
nations together previously, since the earlier combined
epochs are not performing any better.

A limitation to the case-based anytime learning system
is shown in these experiments. If the environment
changes too rapidly due to relevant or irrelevant parame-
ters, then the learning system will not have enough time
to learn against the current simulation, and other methods
would be needed to learn in this situation. Also, if the
environment always changes to very different states and
has no history of previous similar states, then case-based
anytime learning should perform as the original anytime
learning system did. The cost to the system in overhead
for storing the history of past cases, and doing the nearest
neighbor calculations is currently negligible. However,
this cost will grow as the case history increases, and this
must be addressed in future work.

The most promising aspect of these results is that,
within each of the epochs after an environmental change,
the case-based anytime learning system generally
improves the performance of the execution system over
the course of the epoch. Furthermore, through case-based
initialization of the genetic algorithm, the learning system
continues to improve on cases it has seen before, and
there is a substantial reduction in the initial cost of a res-
tart in learning. The case-based anytime learning system
remains robust as the number of cases grows and also
when previous cases are similar, but not identical.

SUMMARY

This paper presents a novel combination of two methods
of machine learning (genetic algorithms and case-based
approaches) to perform learning in a changing environ-
ment in which we can monitor the changes. Anytime
learning with case-based initialization shows a consistent
improvement over anytime learning without cage-based
initialization. Case-based initialization automatically
biases the search of the genetic algorithm toward relevant

94

0

100 -

Success80 --
Rate 60--
Of

Current 40 --
Strategy20 _

0

0

1000 1500 2000 2500 3000 3500 4000 4500

I’ 100
- 80

-- 60

- 40

- 20

Io
1000 1500 2000 2500 3000 3500 4000 4500

Episodes

Figure 3: Case-Based Anytime Learning vs. Anytime Learning

0

100

Success80 -
Rate 60-
Of

Current 40 -
Strategy20 _

0

0

50O IOO0 1500 2OOO 25OO

! I I , ,ooI I I" I I I I I I I I I I I I
I + I 0 I + O+ l 0 I + I I O+ I + I 0 I + I O+ I 0 I + | 0 I O+ I /

80
-1

I I t ~ L [[I I I I I t I I
t t i II r~ I r ~n~nt t t ,~f ~

’I"A°yt’, : !
_2o

0

500 1000 1500 2000 2500
Episodes

Figure 4: Case-Based Anytime Learning vs. Anytime Learning
Note: + indicates high turn epoch, o indicates high speed epoch and o+ indicates a combination

areas of the search space. Little time is lost attaining a
similar level of learning as in the previous same cases,
and then improving on that performance.

The approach presented here assumes that there is a
simulation model available for learning, and that environ-
mental changes can be monitored and accommodated by

changing the simulation parameters. Obviously, the value
of monitoring the environment will be most significant

when the external environment differs from the simulation
designer’s initial assumptions. The method is intended to

be applied to environments with multiple parameters and
possibly infinite cases over very long periods of time. If
the complexity and uncertainty about the environment
prevents the use of look-up tables, and the environment

changes slowly with respect to the speed of the learning
system, the approach to anytime learning using case-
based initialization of genetic algorithms is promising.

References

Booker, L. B. (1988). Classifier Systems that Learn Internal
World Models. Machine Learning 3(3), 161-192.

Davis, L. (1991). L. Davis (editor). The Handbook of Genetic
Algorithms. Van Nostrand Reinhold, N.Y., 1991.

Grefenstette,]. J. and C. L. Ramsey (1992). An Approach
Anytime Learning. Proceedings of the Ninth International
Conference on Machine Learning, (pp 189-195), San Mateo,

CA: Morgan Kaufmann.

Grefenstette, J. J., C. L. Ramsey and A. C. Schultz (1990).
Learning sequential decision rules using simulation models and
competition. Machine Learning 5(4), 355-381.

Hammond, K. J. (1990). Explaining and Repairing Plans That
Fail. Artificial Intelligence 45, 173-228,

Kelly, J. D. and L. Davis (199l). A Hybrid Genetic Algorithm
for Classification. Proceedings of the 12th International Joint
Conference on Artificial Intelligence (pp 645-650).

Ram, A. and J. C. Santamaria (1993). Continuous Case-Based
Reasoning. Case-Based Reasoning: Papers from the 1993
Workshop, Tech. Report WS-93-01, (pp 86-93). AAAI Press,
Washington, D.C.

Ramsey, C. L and J. J. Grefenstette (1993). Case-Based Initiali-
zation of Genetic Algorithms. Proceedings of the Fifth Interna-
tional Conference on Genetic Algorithms (pp 84-91).

Skalak, D. B. (1993). Using a genetic algorithm to learn proto-
types for case retrieval and classification. Case-Based Reason-
ing: Papers from the 1993 Workshop, Tech. Report WS-93-01
(pp 211-215). AAAI Press.

Zhou, H. H. (1990). CSM: A computational model of cumula-
tive learning. Machine Learning 5(4), 383-406.

95

