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Abstract

The usual case-based reasoning approach assumes that
for each given problem instance it is necessary to retrieve
from scratch a similar case from the case base. Therefore,
an indexed memory stmctare or other means of facilitat-
ing fast access is typically needed. Moreover, a complete
solution is usually stored together with each case, that can
be adapted to the given problem. We developed a differ-
ent approach for multi-step problems. It utilizes the in-
formation about the relevant case for the last step to
quickly find the appropriate case for the current step from
only few relevant cases that are connected. Therefore, no
special indexing schemata are required. Instead, we store
a value for each case and similarity links to other cases,
but no solution. For situations outside the scope of the ca-
se base we integrated case-based reasoning in several
ways with heuristic search. We performed experiments in
a game domain, that showed the usefulness of our ap-
proach. In particular, we achieved a statistically signifi-
cant improvement through combination of case-based
reasoning with search over pure search or pure case-
based reasoning. For multi-step problems, our approach
appears to be more useful than the standard approach to
case-based reasoning.

Introduction

In recent years, case-based reasoning (CBR) has become
more and more popular. However, there appears to be a lack
of theory of how to apply it best to multi-step problems.
Multi-step problems are very common in industrial applica-
tions like, e.g., factory and power plants, railway and net-
work control. Such problems require several steps in order
to achieve a solution. A step has to be chosen before finding
a complete solution is feasible in real time. Consequently,
it is rarely possible to find optimal solutions. However,
complete solutions to multi-step problems are often not
found at all. Therefore, they are unavailable for storage in
a case base.

From a planning perspective, this means that plan gen-
eration and execution are intertwined. While such problems
are common also in single-agent problem solving, we pri-
marily studied case-based reasoning in the context of two-
player games with perfect information. In particular, we ex-
perimented with a strategic game named Abalone (see
Appendix).

Usually, access to a case base is done during problem

solving in two parts: through an index, and using a similari-
ty metric. Apart from the effort involved in building such
an index structure, its compatibility with the similarity met-
ric is an important issue. In our context, the index part can
be omitted, since our approach utilizes the information
about the relevant case for the last step to quickly find the
appropriate case for the current step from only few relevant
cases (that are connected).

Moreover, in the classic CBR approaches, a complete
solution is stored with each case, and this solution is
adapted to the given problem. For dealing with multi-step
problems in real time, we prefer a different memory orga-
nization. We store a value for each case and similarity links
to other cases instead of a solution. These values give
"hints" for the selection of the next step. For dealing with
situations outside the scope of the case base we show sever-
al ways to integrate case-based reasoning with heuristic
search.

Our approach described in this paper specially copes
with multi-step problems and incomplete solutions. Find-
ing the appropriate case is optimized and no complete solu-
tion is stored explicitly in the case base.

First, we describe our novel approach to case-based re-
asoning for multi-step problems in a real-time environment.
Then we present our concepts for integrating it with heuris-
tic search. Empirical results show the usefulness of our
overall approach. Finally, we discuss its relation to other
work.

Our Approach to Case-Based Reasoning for
Multi-Step Problems

Memory Organization of the Case Base

The case base contains a number of states (positions of the
game). Each such state is one case. For each case the state
information (the board configuration) and the value of the
state (from the evaluation function) is stored.

No solution is stored directly with the case (for large
problems such a solution may not even be known). Howev-
er, relations between similar cases are explicitly stored (see
the bottom of Figure 1). Hence, information about other
relevant cases is available.

In our approach, no further memory organization like in-
dexing schemata is needed. Instead we use a history pointer
which indicates the relevant case for the current state.
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Figure 1: Interplay between the multi-step
problem and the case base

The retrieval and adaptation algorithm described below
uses these cases as a hint to the solution for the current case
(cf. subgoals in planning). The current case is the case in the
base which is one of those most similar to the current state.

The Retrieval and Adaptation Algorithm

Our retrieval and adaptation algorithm uses a case base of
the type described above to determine the next step. A histo-
ry pointer always points to the case used for the last retriev-
al. At the beginning, it is initialized with the start state (of
the game).

When the next retrieval occurs, the relevant case for the
current state is either the case to which the history pointer
points or, one of the cases to which a similarity relation ex-
ists in the case base from this case. So the search for the rele-
vant case is reduced to a limited number of cases.

The adaptation algorithm calculates all states reachable
from the current state and checks which of them is the
"best". For each of these states both the similarity to a case
in the base and the value of this case (from an evaluation
function) are taken into account, because a more similar ca-
se is easier to reach and a high value should be found.

Figure 1 shows the interplay between the multi-step
problem (above the line) and the case base (below). The 
trieval and adaptation algorithm can be sketched as follows:
1. Locate the case referred to by the history pointer and all

cases directly related to this one in the case base, and de-
termine among these the case C that is most similar to
the current state S (Smax).

2. Generate all states Si which are reachable from S in one
step by applying the operators Oi defined in the domain
(e.g., possible moves).

3. Calculate the similarities sij between the states Si and the
cases Cj for which similarity relations with C are stored
in the case base.

4. Combine the similarities sij with the values of the cases
Cj with a function, which weights the similarity versus
the value, and select the step which leads to one of the
states Si with the best result. This step is selected and
performed in the real world.

5. Check, if the new state is more similar to one of the’cases
Cj than to C. If so, change the history pointer to this case.
The similarity metric -- which also exists in classical ca-

se bases -- is more important in this approach, since togeth-
er with the history pointer it also replaces the indexing
mechanism normally used to find the relevant case. More-
over, the similarity relations stored in the case base can also
be based on this metric (see below).

The adaptation algorithm introduced here uses multiple
cases to find a solution, but it does not split the cases. It se-
lects a step by comparing several ones.

How to Generate a Case Base
When there is a large number of possible states, it is hard to
generate a case base by hand. All relevant states have to be
found and additional states in between have to be generated,
so that the similarity between the cases is high enough.

When case bases are generated by hand, parts of earlier
step sequences are taken, some of the states are removed
and the remaining ones are used as cases. Each case has a
similarity relation to its predecessor and successor in a se-
quence and additional relations are introduced between
parts of different step sequences. (The relations between the
cases of a step sequence are a useful optimization, but the
case base can also be based only on the similarity metric.)
Such a generation requires much knowledge about the ap-
plication domain.

Less sophisticated but more easily achievable case bases
were generated automatically for the game used for our ex-
periments as follows.

With the algorithm described below, 100 different realis-
tic game positions (states) were generated. An iterative ct[3
search played against itself, and the records of these games
were used to generate case bases.

Depending on the target size of the case base every nth
position was converted into a case with similarity relations
to its predecessor and successor. These cases were added to-
gether, where each new case was linked with a similarity
relation to the most similar case already in the base, using
the similarity metric. The values of the cases are the static
values of the positions assigned by the static evaluation
function that is also used by the search heuristic (see be-
low).

These case bases are independent of human skill and can
be used for an objective comparison of different algorithms.

Integration of Case-Based Reasoning with
Heuristic Search

When following the case base as described above, states
may occur that are not sufficiently similar to any case in the

102



case base used. In such a situation, it is possible to switch
to another problem-solving method: heuristic search.

For two-player games with complete information, there
exists a well-developed theory about using heuristic search
(for a review see, e.g., (Kaindl 1990)). The standard 
proach is to perform iterations of deeper and deeper mini-
max searches. These can be performed using several algo-
rithms (for a comparison see (Kaindl, Shams & Horacek
1991)). The best-known of these is the ctl3 algorithm.

Sometimes it may be known a priori that in certain situa-
tions the case base is inappropriate. In the game-playing
context this applies to "tactical" situations, where large dif-
ferences in the evaluation may occur (cf. the concept of
quiescence in (Kaindl & Scheucher 1992)). Cases repre-
senting such situations can be labeled. Whenever a given
state is most similar to such a labeled case, heuristic search
is used instead of case-based reasoning. In some sense,
these labels represent meta-knowledge about the case base
itself, i.e., its (in-)competence.

Another useful possibility for switching to the search
mode occurs in situations where a tactical move is possible.
This means that the case base is considered incompetent in
all such situations (or at least it is safer to use search here).
In this variant the decision to switch is based on the actual
problem, not on the case base.

These approaches represent an integration of case-based
reasoning with heuristic search, but a rather loose one.
Tighter integrations are possible when using the knowledge
in the case base for guiding a search.

One possibility is to search branches deeper that contain
favorable steps according to the case base. This leads to
variable-depth search (see, e.g., (Kaindl 1983)).

When the branching degree of the given domain is high
(as in the game we used for our experiments), an old ap-
proach called forward pruning becomes of interest. While
it turned out to be not the first choice in highly tactical do-
mains like chess, we investigated its integration with the ca-
se base in one of our variants. With the exception of steps
that lead to material change (in order to cope with tactics),
the search prunes away all the moves that are not considered
useful according to the case base.

Empirical Results

The procedure to statically evaluate a position (the heuristic
evaluation function) was used both in the c~[3 algorithm and
to assign a value to the cases in the base. In this way, the
same domain knowledge about the quality of positions is
available both for the search approach and for case-based
reasoning.

This static evaluation function (for Abalone) takes into
account the material balance, the distance of the balls from
the border, and their compactness.

Similarity Metric

The similarity metric is an essential part of our case base
and the appropriate retrieval and adaptation algorithm. We
defined and used one that compromises between exactness
and run-time cost.

In order to use the value 0 for identical positions, actually
the difference rather than the similarity is expressed by this
metric. Low values indicate similar states and high values
dissimilar ones. A detailed description and a proof that it is
a metric can be found in (Reiser 1994).

Experiment Design

Since all of the investigated algorithms are deterministic,
some special means have to be taken to gather statistical
data. The games in the tournaments between the algorithms
were started with automatically generated start states. 200
different states were generated as described below.
1. The algorithm for iterative t~ search was changed so

that it does not use the best but randomly 1 of the 5 best
steps.

2. Using a random number generator, 5 - 40 steps were
played with this changed algorithm.

3. The resulting state was statically evaluated and rejected
if the absolute value was larger than a certain limit, i.e.,
the advantage of one of the colors was decisive.

4. The colors of the states were exchanged to get another
position.

Since the automatically generated case bases provide
different information for different colors, it is not possible
to compare our algorithm with another one by having it play
once as black and once as white on the same start position.
This is compensated by exchanging the colors of the posi-
tion as described above.

In our experiments, the influence of different sizes of ca-
se bases as generated from the same "training" games as
well as different combinations of the case base with search
algorithms were investigated.

We compared all our algorithms using the case-base with
an iterative et~ search with variable search depth. Since all
our algorithms were tested against the same opponent,
comparing them is possible.

Results

The difference in size of case bases generated from the same
set of games showed no statistically significant difference
in their results (according to the sign test) when at least ev-
ery 16th position is inserted in the case base. We used the
case base containing every 4th position for the experiments
of comparing several variants of case-based reasoning (in-
tegrated with search) against the pure iterative al3 search.

A small selection of the most interesting results of our
experiments is summarized in Table 1. (More details can be
found in (Reiser 1994).) This table shows the results of three
variants playing against pure (iterative) t~13 search. The first
column gives the percentage of wins for each variant in
these games. The data in the Significance column are based
on the sign test. The null hypothesis is that the algorithms
are equally good. These data signify the probability that the
result is from chance fluctuation. The third column gives
the time consumption relative to the pure search approach.
"Forward Pruning" wins 83.33%, but this result is less sig-
nificant than that of "Fastness" (77.78%) because more
games were drawn.
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Algorithm wins n% Signifi- needs n%
cance of time

Switch 58.33 0.06332 81.8

Forward 83.33 0.01046 100.0
Pruning

Fastness 77.78 0.00921 40.82

Table 1: Selected Results of our Experiments

The "Switch" algorithm used here is an instantiation of
the one described above that switches to the a[3 search
whenever a tactical move is possible. More precisely, it
does so whenever a pushing move is possible in the actual
position. It wins in 58.33 of the cases versus the pure search
approach, though using less time.

"Forward pruning" only searches the steps with immedi-
ate material change, and those recommended by the case
base. The latter ones are all steps where the product of simi-
larity and value of the case is highe~ than for the current
position, i.e., improvements according to the knowledge in
the case base. The highly significant win of this approach
vs. pure search indicates the potential of such combinations
of case-based reasoning with search.

The table entry "Fastness" shows the result of having the
pure case-based algorithm play vs. the pure search algo-
rithm, when the latter may only use 2 seconds instead of 10
seconds as in all the other experiments. Still, the case-based
algorithm is faster in our environment. The highly signifi-
cant result indicates the power of our case-based reasoning
approach in situations with small and strict time limits.

Related Work
Well-known CBR Systems use flat memory (Hypo (Ashlez
& Rissland 1988)), shared feature network (MicroMOPs
(Kolodner & Riesbeck 1989)), priorized discrimination
nets (CHEF (Hammond 1989)) or redundant discrimination
nets (Julia (Hinrichs & Kolodner 1991)) as memory orga-
nization for the case library together with some sort of in-
dexing for retrieval. In these kinds of case-base organiza-
tion all cases can be equally reached.

Work done for multi-step problems in the current case-
based reasoning research can be found, e.g., in (Zito-Wolf
& Alterman 1993). This paper introduces multi-cases as
memory (space) optimization of micro-cases (see (Good-
man 1991)). Both micro and multi-cases are designed for
"procedural knowledge" (as multi-step problems are called
there). Every case is reachable in retrieval for every prob-
lem.

Our case-base memory organization is problem oriented.
In multi-step problems it is not necessary to reach all cases,
but using the similarity relations and the history pointer,
relevant cases can be found easily with less effort.

In CBR Systems where multiple cases are used for one
request (e.g., (Sycara & Navinchandra 1991)) the problem
of splitting these cases for adaptation exists. We reason

from multiple cases, but no splitting is done. The cases have
weights and the step is selected which leads to the state most
similar to the worthiest case.

CBR integrated with heuristic search can be found in
(Lehnert 1987, Bradtke & Lehnert 1988). Case bases orga-
nized in discrimination nets and equivalence classes are
used for forward pruning. In our work, where the cases are
connected by similarity links, forward pruning is one of
several possibilities to use the case base and similarity met-
ric. We developed a pure case-based algorithm and com-
bined it with other ways of heuristic search. Since we use
a similarity metric instead of equivalence classes, the densi-
ty of the case base is less important, and by combining the
similarity value with the value of the case we have the possi-
bility of explicitly representing the importance of certain
cases. In (Bradtke & Lehnert 1988) neither a possibility 
assigning "importance" to the cases can be found nor a pos-
sible use of the case base for other algorithms than heuristic
search. Furthermore, it is not described, how a case base is
designed. Our case-base algorithm can also work by itself,
and the case base used was generated automatically.

Conclusion
In summary, we developed a novel approach for applying
case-based reasoning to multi-step problems. In particular,
we designed a new memory organization for this class of
problems. Our approach avoids the compatibility issue of
index structure and similarity metric in only using a similar-
ity metric. Although it may be possible to view our ap-
proach as a form of caching, the use of a similarity metric
and the combination of similarity value and case value
makes it a form of reasoning based on cases.

Moreover, we integrated case-based reasoning in several
ways with heuristic search. The results of our experiments
show a statistically significant improvement through com-
bination of case-based reasoning with search over pure
search or pure case-based reasoning.

Our approach does not even require knowledge about
complete solutions. In real-world problems, complete solu-
tions are often unavailable, and just an appropriate next step
is selected. Our algorithm selects such a step based on
knowledge about preferable cases and their similarity to the
achievable states in the given situation.

Similarity links and values organize the case base in a
kind of subgoal structure, that is used for the selection of the
next step. However, the cases are not subgoals in the usual
sense of planning. They are more like prototypes of achiev-
able states.

We primarily studied case-based reasoning in the context
of two-player games. However, the approach appears to be
general enough to be also applicable to single-agent prob-
lem solving. In particular, we propose it for real-time pro-
cessing.

The applicability of our algorithm for real-time proces-
sing in environments of realistic size still has to be eva-
luated. Furthermore, it has to be focused on the generation
of real-world case bases and the testability for applications
in a safety critical real-time system.
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Appendix: The Game Abalone

Abalone is a two-player game with perfect information like,
e.g., chess or checkers, developed by the French computer
scientists Michel Lalet and Laurent Levi. It focuses on the
idea of synergy.
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Figure 2: Abalone

Rules

1. The player who first pushed 6 balls of the opponent out
of the board wins.

2. Each player performs one step in turn.
3. In one step 1, 2, or 3 balls of the player may be moved

according to Figure 2 "possible moves".
4. In one step 1 or 2 opponent’s balls may be pushed if they

are in one line with the player’s balls, the player has
more balls in the line and the hole behind the opponent’s
ball(s) is empty, or the ball is pushed out of the board
(see Figure 2 "possible pushes").

5. The opponent’s balls do not necessarily have to be
pushed or pushed out of the board.

For a detailed description of the rules of Abalone see (Ab-
alone 90).

Special Characteristics

Two special characteristics of the game Abalone are impor-
tant for our experiments. The "branching degree" of the
game in a typical position is between 50 and 120 different
moves, and "strategy" is more important than "tactics".
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