
Feature Selection for Case-Based Classification
of Cloud Types: An Empirical Comparison

David W. Aha
Navy AI Center

Naval Research Laboratory
Washington, DC 20375
aha@aic.nrl.navy.mil

Richard L. Bankert
Marine Meteorology Division
Naval Research Laboratory

Monterey, CA 93943
bankertQnrlmry.navy.mil

Abstract

Accurate weather prediction is crucial for many
activities, including Naval operations. Re-
searchers within the meteorological division of
the Naval Research Laboratory have developed
and fielded several expert systems for problems
such as fog and turbulence forecasting, and trop-
ical storm movement. They are currently devel-
oping an automated system for satellite image in-
terpretation, part of which involves cloud classi-
fication. Their cloud classification database con-
tains 204 high-level features, but contains only
a few thousand instances. The predictive accu-
racy of classifiers can be improved on this task
by employing a feature selection algorithm. We
explain why non-parametric case-based classifiers
are excellent choices for use in feature selection
algorithms. We then describe a set of such algo-
rithms that use case-based classifiers, empirically
compare them, and introduce novel extensions of
backward sequential selection that allows it to
scale to this task. Several of the approaches we
tested located feature subsets that attain signifi-
cantly higher accuracies than those found in pre-
viously published research, and some did so with
fewer features.

Motivation
Accurate interpretation of maritime satellite imagery
data is an important component of Navy weather fore-
casting, particularly in remote areas for which there are
limited conventional observations. Decisions regard-
ing tactical Naval operations depend on their accuracy.
Unfortunately, frequent personnel rotations and lack of
training time drastically reduce the level of shipboard
image interpretation expertise. Therefore, the Naval
Research Laboratory (NRL) in Monterey, CA is build-
ing an expert system named SIAMES (Satellite Im-
age Analysis Meteorological Expert System) that aids
in this task (Peak & Tag, 1992). Inputs to SIAMES,
including cloud classification, are not yet fully auto-
mated; the user must manually input details on cloud
types. Bankert (1994) addressed this problem. Given 
database containing 204 continuous features describing

ten classes of clouds, he used a standard feature selec-
tion technique and then applied a probabilistic neural
network (PNN) (Specht, 1990; Welch et. al, 1992) 
classify cloud types3 Current plans include using this
network in SIAMES.

This paper extends the work reported by Bankert
(1994). We argue for the use of case-based classifiers
in domains with large numbers of features. We show
they can locate smaller feature subsets leading to sig-
nificantly higher accuracies on this task. We begin by
describing the cloud classification task and Bankert’s
study. Next, we explain the benefits of using case-
based classifiers in feature selection, and argue why
such approaches should outperform the approach pre-
viously used. We then describe a set of feature selec-
tion algorithms that we tested on the cloud classifica-
tion task. Finally, we report our results, and discuss
them in the context of related work.

This paper has three primary contributions. First,
we show further evidence that feature selection algo-
rithms should use the classifier itself to evaluate feature
subsets. Second, we show that a case-based algorithm
is a particularly good classifier in this context. Finally,
we introduce a method that allows the backward se-
quential selection algorithm to scale to large numbers
of features.

Cloud Classification Task
Bankert (1994) describes the cloud classification task.
The original data were supplied and expertly labeled
by Dr. C. Wash and Dr. F. Williams of the Naval
Postgraduate School. They were in the form of four
advanced very high resolution radiometer (AVHRR)
local area coverage (LAC) scenes with size 512 × 512
pixels. An additional 91 images were labeled indepen-
dently by four NRL Monterey experts under the direc-
tion of Dr. C. Crosiar. The scenes were not confined
to a specific location nor time of year. Sample areas
of 16x16 pixels that were covered by at least 75% of

1PNN uses a standard three-layer network of nodes and
a Bayesian classification strategy to select the class with the
highest value of the a posteriori class probability density
function.

106

From: AAAI Technical Report WS-94-01. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved. 



a particular cloud type were expertly labeled for each
image. A total of 1633 cases were extracted using this
procedure, where each case was labeled according to
one of ten cloud classes.

The features used to describe each case consist of
spectral, textural, and physical measures for each sam-
ple area. Examples of each group respectively include
such features as maximum pixel value, gray level en-
tropy of the image, gray level distribution of adjacent
pixels in the horizontal dimension, and cloud-top tem-
perature. Latitude was included as a final feature. All
features are defined over a continuous range of values.

The space of feature subsets (i.e., the power set of
all features) for this task is 2204 = 6.4 x 106°. Bankert
(1994) used a standard feature selection approach from
the pattern recognition literature. This reduced the
number of features used from 204 to 15. He then ap-
plied PNN (Specht, 1990; Welch et al., 1992), which
has a 10-fold cross validation (CV) accuracy of 75.3%
on the initial feature set. Its accuracy improves to
78.9% when using the selected 15 features.

Feature Selection

The objective of feature selection is to reduce the num-
ber of features used to characterize a dataset so as to
improve an algorithm’s performance on a given task.
The task studied in this paper is classification. Our
objectives are to maximize classification accuracy and
minimize the number of features used to define the
cases. Feature selection algorithms input a set of fea-
tures and yield a subset of them.

Several knowledge-intensive CBR algorithms have
been used to perform feature selection (e.g., Ashley
& Rissland, 1988). However, domain specific knowl-
edge is not yet available for the cloud classification
task. This prevents us from using explanation-based
approaches for indexing and retrieving appropriate fea-
tures (e.g., Cain, Pazzani, &: Silverstein, 1991; Ram,
1993). Furthermore, the same set of features are used
to describe each case in this case base, their values
have been pre-computed, and no further inferencing is
required to access these values. Therefore, we do not
address the cost of evaluating features (Owens, 1993).
Thus, this study was restricted to using knowledge-
poor feature selection approaches (e.g., Devijver ~ Kit-
tler, 1982), although we plan to work with knowledge-
based techniques for feature extraction in the future.

Feature selection algorithms have three components:

1. Search algorithm This searches the space of fea-
ture subsets, which has size 2u where d is the number
of features. Points in this space are called states.

2. Evaluation function This inputs a state and out-
puts a numeric evaluation. The search algorithm’s
goal is to maximize this function.

3. Classifier This is the target algorithm that uses
the final subset of features (i.e., those found by the
search algorithm to have the highest evaluation).

Filter Control Strategy

r
Features

I Search 1

Algorithm

Evaluation 1

Function

Selected I
Features

ClassifierI

Wrapper Control Strategy

Features I Search 1

Algorithm

Figure 1: Common Control Strategies for Feature Se-
lection Approaches

Typically, these components interact in one of the two
ways described in Figure 1. Either the search and eval-
uation algorithms locate the set of features before the
classifier is consulted, or the classifier is itself the eval-
uation function. We adopt the terms filter and wrapper
control strategies, respectively, from John, Kohavi, and
Pfleger (1994), who argued that the wrapper strategy
is superior because it avoids the problem of using an
evaluation function whose bias differs from the classi-
tier. Our empirical results strongly support this claim.

Since many feature subsets are evaluated during the
feature selection search, classifiers that require man-
ual tuning of their parameters (e.g., PNN) cannot 
used as the evaluation function. Since Bankert (1994)
chose PNN as his classifier, he used a different func-
tion to evaluate states. We hypothesize that better re-

107



sults can be obtained by using a wrapper model. Non-
parametric case-based classifiers are excellent choices
for feature selection classifiers because they often ob-
tain good accuracies and can also be used as evaluation
functions. Thus, we used IB1 (Aha, Kibler, & Albert,
1991) in our studies for these two purposes; it is an
implementation of the nearest neighbor classifier.

Doak (1992) identifies three categories of search al-
gorithms: exponential, sequential, and randomized.
Exponential algorithms have exponential complexity in
the number of features. Sequential search algorithms
have polynomial complexity; they add or subtract fea-
tures and use a hill-climbing search strategy. Ran-
domized algorithms include genetic and simulated an-
nealing search methods. Sequential search algorithms
seem most appropriate for our task because exponen-
tial search algorithms (e.g., FOCUS (Almuallim 
Dietterich, 1991) are prohibitively expensive and ran-
domized algorithms, unless biased as in (Skalak, 1994),
tend to yield larger subsets of features than do sequen-
tial strategies (Doak, 1992). Sequential algorithms per-
formed comparatively well in Doak’s study. Thus, we
chose to use them in our study. We have not yet inves-
tigated strategies that combine algorithms from differ-
ent categories (e.g., Doak, 1992; Caruana & Freitag,
1994).

The most common sequential search algorithms for
feature selection are variants of forward sequential se-
lection (FSS) and backward sequential selection (BSS).
FSS begins with zero attributes, evaluates all feature
subsets with exactly one feature, and selects the one
with the best performance. It then adds to this sub-
set the feature that yields the best performance for
subsets of the next larger size. This cycle repeats un-
til no improvement is obtained by extending the cur-
rent subset. BSS instead begins with all features and
repeatedly removes the feature that, so removed, the
maximal performance increase results. Doak (1992)
reported that variants of BSS outperformed variants
of FSS, probably because BSS evaluates the contribu-
tion of a feature when all others are available, whereas
FSS suffer when features individually don’t contribute
to performance but do so when jointly considered with
other features (i.e., they interact).

BSS’s computational expense prevents it from be-
ing easily applied to our task. It would require ap-
proximately 21,000 applications before it could find a
subset of size found using Bankert’s approach. Each
application would involve an application of IB 1, whose
costs are O(FxI2), where I is the number of instances
and F is the number of features. Therefore, we mod-
ified BSS (see below). Because of this modification,
it is not obvious whether it would perform as well as
FSS in our study.

A Framework of Algorithms
In our experiments, we focussed on the four categories
of feature selection algorithms shown in Table 1. The

Table 1: Four Types of Feature Selection A1 3rithms
Control Strategy Search Algorithm

Filter FSS

Filter BSS

Wrapper FSS

Wrapper BSS

rest of this section describes the algorithms we applied.

Filter Control with FSS

Bankert’s (1994) approach is a member of the first 
these four categories. He used FSS with the Bhat-
tacharya class separability index as the evaluation
function - it measures the degree to which classes are
separated and internally cohere. Many such indices
have been proposed and evaluated (e.g., Devijver 
Kittler, 1982). They are usually less computationally
expensive than the classifier and are nonparametric,
which allows them to be used without requiring man-
ual parameter tuning. However, if their bias does not
match the bias of the classifier, then they can lead to
suboptimal performance.

Filter Control with BSS

The second category combines a filter control strategy
with BSS search. Since it is difficult to apply BSS
to a task with 204 features due to its computational
complexity, we introduce BEAM, a novel extension
of BSS that allows it to work with larger numbers of
features.

BEAM is somewhat similar to Doak’s (1992) ran-
dom generation plus sequential selection (RGSS) al-
gorithm. They both begin with a feature subset found
through random selection of features, and they both
use a form of sequential feature selection after locating
this initial subset. After choosing the initial set of fea-
tures, RGSS uses FSS and then BSS in the hope of
overcoming the drawbacks of both approaches. These
sequential search algorithms suffer from beginning with
extreme subsets of features (i.e., none and all features
respectively). Thus, it makes sense to begin with some
other subset of features, to extend them with FSS,
and then use BSS since it has proven itself to perform
well on many tasks. Doak (1992) reports good perfor-
mance with I%GSS on a heart disease database with
75 features.

BEAM differs from RGSS in three ways. First,
instead of beginning with a random selection of fea-
tures, BEAM randomly samples the feature space for
a fixed number of iterations and begins with the best-
performing feature subset found during those itera-
tions. BEAM’s performance in informal experiments
without this more careful selection of an initial feature
set was much lower.

108



Second, BEAM is biased in the initial number of
features it selects. For the cloud classification task,
BEAM initially sampled only in the space of 25 fea-
tures among the 204 available. This is required be-
cause the space of features is large, and we know from
Bankert’s (1994) study that a small number of features
(i.e., 15) significantly improves predictive accuracy 
this task.

Third, BEAM employs a beam search (hence its
name) during BSS. It maintains a fixed-sized queue
of the best-performing states it has visited along with
a list of the features in it that have already been re-
moved by BSS for evaluation. The states on the queue
are ordered by decreasing accuracy, and the queue is
updated each time a state is selected and evaluated.

A parameter to BEAM determines whether a state
evaluation consists of evaluating all subsets of one
smaller number of features (full evaluation) or only a
single feature subset (greedy evaluation). When using
greedy evaluation, a random element is used to select
both which state on the queue to examine next and
which feature to remove from it. The probability that
a state is chosen is a decreasing function of its location
in the queue. A state in location i of a queue of size n
is selected with probability

n-i-1
P(i) ~-~j~l J

Let L be the subset of features in the selected state,
with features F, that have been removed for evalua-
tion. The next feature selected from this state is cho-
sen randomly according to a uniform distribution from
F-L.

BEAM’s algorithm is summarized in Figure 2. The
subfunctions have been previously explained except for
update_queue, which during greedy evaluation adds f
to L, removes the selected state from (and reduces the
number of states in) the queue when F = L, and prop-
erly inserts the state with features F-{f} in the queue
if its evaluation (i.e., 10-fold CV accuracy) is among
the best n whose features have not yet been exhaus-
tively removed by BSS for evaluation.

For this category, we selected as BEAM’s evalua-
tion function a separability index that is similar to the
one used by Bankert and performed best in compar-
ison with many other indices (Skalak, 1994). A full
evaluation function was used with a queue size of 1.2

Wrapper Control with FSS

For this category, we combined FSS search with IB1
as both the evaluation function and classifier. We also
tested a second variant of this combination in which
we used BEAM, but substituted FSS for BSS. When

2Since a larger queue could contain feature subsets of
different sizes, and since most separation indices are sen-
sitive to feature subset size, we decided to not experiment
with the greedy evaluation function for this category.

Figure 2: BEAM: A Biased Variant of BSS for Feature
~election with Large Numbers of Features

Inputs:
r: # randomly-selected feature subsets

to evaluate
d: # features in each randomly-selected

subset
n: Size of queue
e: type of evaluation (full or greedy)
I: Number of select/evaluate iterations

Key:
F: A subset of features
L: Features in F such that:

Vf E L, F- {f} has not been evaluated

BEAM(r,d,n,e,I)
1. F = best.random_state(r,d)
2. queue = initialize.queue(F)
3. best_evaluation = 0.0~
4. For I iterations:

h. {F,L} = Select~tate(queue)
B. f = randomly~elect~eature(F- L)
C. evaluation = evaluate(F- {f},e)
D. queue = update_queue(F,f,evaluation,n)
E. if (evaluation > best_evaluation)

i. best_evaluation = evaluation
ii. best_state = F- {f}

5. Output: best_evaluation and best_state

using the greedy evaluation function, we initialized
BEAM with a randomly chosen subset of three fea-
tures (i.e., the best among 25 subsets tested for that
size), and used a queue size of 25. A queue size of one
was used when using full evaluation, which began with
the empty subset of features. In both cases, feature
subsets were constrained to have size no more than 25.

Wrapper Control with BSS

The fourth category combines a wrapper control strat-
egy with BSS search. We again used the BEAM al-
gorithm, but in this case we used IB1 (Aha, Kibler,
& Albert, 1991) as the evaluation function. Again, we
tested BEAM using both the full and’single state eval-
uation functions, and using queue sizes of one and 25
respectively.

Other Algorithms

We included two other case-based feature selection al-
gorithms in our study. IB4 (Aha, 1992a) was chosen 
an example of a classifier that hill-climbs in the space
of reM-vMued feature weights. Several such algorithms
exist (e.g., Wettschereck & Dietterich, 1994). Al-
though these algorithms have performed well on some
datasets, they tend to work best when features are ei-
ther highly relevant or irrelevant. We hypothesized

109



that IB4 would not work well on the cloud classifica-
tion task, which contains many partially-relevant fea-
tures.

We also included Cardie’s (1993) approach. She used
C4.5 (Quinlan, 1993) to select which features to use 
a case-based classifier and reported favorable results.
This method has not previously been used on tasks
involving more than a few dozen features, and some
reports suggest that C4.5 does not always perform well
when the features are all continuous (e.g., Aha, 1992b).
Thus, we suspected that it may not perform well on the
cloud classification task.

Empirical Comparisons

We examined two hypotheses concerning the sequential
search framework described in the previous section:

1. The wrapper control strategy is superior to the filter
control strategy for this task.

2. Variants of BSS tend to outperform variants of FSS
for this task.

The first hypothesis is based on evidence that using the
classifier itself as the evaluation function yields better
performance on some tasks (e.g., Doak, 1992; Vafaie 
De Jong, 1993; John, Kohavi, ~ Pfleger, 1994). Sim-
ilar evidence exists for the second hypothesis (Doak,
1992). However, these hypotheses have not been pre-
viously investigated for tasks of this magnitude. We
also have secondary hypotheses concerning the other
two algorithms in our study:

3. Searching in the 2d space is superior than searching
in the ~a space, at least when initially determin-
ing which features are needed to attain good perfor-
mance on the cloud classification task.

4. C4.5 will not perform particularly well as a filter al-
gorithm because this dataset contains only numeric-
valued features.

Hypothesis three is based on the observation that ~d
is much larger than 2d, which is itself large for our
task. Thus, a hill-climbing algorithm such as IB4 will
have difficulty locating a set of weights that yield good
performance on this task. Finally, although C4.5 has
performed well as a feature selection algorithm in pre-
vious studies, it has not been used for this purpose
with numeric-valued data.

Baseline Results

When using all 204 attributes, IBl’s 10-fold CV accu-
racy is 72.6% while PNN’s accuracy is 75.3%. The
most frequent concept in the database occurs for
15.4% of the cases. Both IB1 and PNN signifi-
cantly increase accuracy, although PNN fares bet-
ter here because IB1 does not perform well for high-
dimensional tasks involving many partially relevant at-
tributes (Aha, 1992a).

Table 2: Best and Average (10 runs for the non-
deterministic algorithms) 10-fold CV Percent Accura-
cies (Ace) and Feature Set Sizes (Sz) for Feature 
lection Algorithms on the Cloud Classification Task,
where "Bs" and "B]" Indicates Using BEAM with
the Single and ~ll Evaluation Strate~;ies Respectively

Control Search rage
Strategy Alg. ~ zS-/--
Random Selection 75.9 83 69.9 103.4

Filter FSS 78.6 15

Filter BSS 75.4 24 69.8 21.3

Wrapper FSS 88.0 10

Wrapper FSS B, 87.2 25 83.1 24.9

Wrapper BSS BI 82.4 13 79.7 17.0

Wrapper BSS Bs 85.1 5 81.0 9.1
IB4 73.3 204
C4.5 76.5 79.4

Comparison Results

Table 2 displays the best and average results when us-
ing the eight feature selection algorithms described in
the previous section. Additionally, the first line refers
to the results when randomly selecting subsets of fea-
tures. The algorithms using the wrapper control strat-
egy all used IB1 as their evaluation function, while the
filter strategy algorithms used a separability index to
evaluate states. IB1 was used as the classifier for all
the algorithms.

The second line in Table 2 refers to using the subset
found by Bankert (1994) and using IB1 rather than
PNN as the classifier. This method is at a disadvan-
tage because the bias of the index separation measure
may not match the bias of the classifier. Thus, the set
of features selected by the index measure may not yield
comparatively high accuracies, as is true in this case.

The third line refers to using BSS search, a sepa-
ration index, and the IB1 classifier. This approach
also performed comparatively poorly. Our other re-
sults suggest this is due to using a separation index as
the evaluation function.

Line four of Table 2 replaces Bankert’s use of a sep-
arability index with IB1 as the evaluation function.
This single change yields the highest accuracy in our
study. Thus, this is strong evidence that using the
classifier also as the evaluation function yields better
performing algorithms for feature selection.

Line five reports a similar approach, but in this case
each run was initialized with the best-performing sub-
set of three randomly chosen features. BEAM was
used (with FSS rather than BSS) with a queue size
of 25. The sizes of feature subsets were constrained
to not exceed 25. This algorithm found a subset with
high accuracy but required a relatively larger number
of features.

110



The sixth and seventh lines in Table 2 lists BEAM’s
results when using BSS as the search algorithm (r 
25, d = 25, and I = 1000) and IB1 as the classifier.3

These settings have not been optimized. Line six refers
to using a queue size of one and the full evaluation
strategy. Line seven refers to using a queue size of
25 and the greedy evaluation strategy. This latter ap-
proach performed well; it located a subset containing
only five features that attained an accuracy of 85.1%.

The eighth line in Table 2 refers to using IB4 (Aha,
1992a). Like most weight-tuning case-based algo-
rithms, IB4 does not perform well unless each feature
is either highly relevant or irrelevant. Its poor perfor-
mance here is not surprising.

The final line refers to using C4.5 (Quinlan, 1993)
to select features for IB1. Using C4.5’s default param-
eter settings, it yields pruned trees that have a large
number of features that do not deliver high predictive
accuracies. We have not investigated whether alterna-
tive parameter settings will improve its performance.

Summary
The highest accuracy (i.e., 88.0%) was obtained when
using the FSS search algorithm combined with IB1
as the evaluation function. A students one-tailed t-
test confirmed that the accuracies obtained using the
feature subset found by this approach, as tested on
the ten folds, are significantly higher than the best
accuracies obtained by using the other approaches at
either the 95% confidence level or higher. In partic-
ular, using IB1 rather than a separability index for
the evaluation function significantly improved perfor-
mance when using either FSS (97.5% confidence level)
or BSS (99.5%). Thus, this provides evidence for our
hypothesis that using the classifier as the evaluation
function improves performance.

The combination of BSS with IB1 as the evaluation
function, as implemented in BEAM with the single
evaluation option, also performed well. However, FSS
with IB1 located a five-feature subset with even higher
accuracy (i.e., 85.9%). Thus, we found no evidence
that BSS outperformed FSS, but this may be due to
the differences between BSS and its modification in
BEAM.

As expected, the final two algorithms performed
comparatively poorly in terms of accuracy (i.e., they
were significantly lower than the accuracies recorded by
the wrapper algorithms at either the 95% confidence
level or higher). Furthermore, neither algorithm found
small-sized feature sets in this study.

Related Work
Feature selection has its roots in pattern recogni-
tion and statistics and is addressed in several text-
books (e.g., Devijver & Kittler, 1982). Mucciardi

3The average 10-fold CV accuracy of fifty random selec-
tions of 25 features was 66.7%, while the same average for
BEAM’s initially selected feature sets was 74.6%.

and Gose’s (1971) empirical study fostered much in-
terest on heuristic approaches for feature selection that
use filter control strategies. Cover and van Campen-
hout (1977) later proved that, under some assump-
tions, such heuristic algorithms can perform arbitrarily
poorly. Yet exhaustive (exponential) search algorithms
are prohibitively expensive for non-trivial tasks. Their
seminal paper greatly influenced the pattern recog-
nition community, and arguably reduced interest in
heuristic approaches using filter strategies.

In contrast, several feature selection algorithms have
been recently described in the AI literature. Many
weight-tuning algorithms have been proposed (e.g.,
Aha, 1992a; Wettschereck & Dietterich, 1994), al-
though it is not feasible to explore the space of real-
valued weights in ~d when d is large. Also, these algo-
rithms work best when the features are either highly
relevant or irrelevant, which doesn’t appear to be true
for the cloud classification task. However, it is possible
that the notion of locally warping the instance space
(e.g., Aha & Goldstone, 1992) can be used for feature
selection (i.e., the relevance of features varies in a given
instance space).

We suspect that FOCUS (Almuallim & Dietterich,
1991) and RELIEF (Kira & l~endell, 1992) would 
perform well on this task since the former uses exhaus-
tive search and the latter assumes that features are,
again, either highly relevant or irrelevant. Vafaie and
De Jong (1993) instead used a genetic algorithm to se-
lect features for a rule induction program. Like John,
Kohavi, and Pfleger (1994), they found that filtering 
inferior to the wrapper control strategy, although the
database in their study again involved only a compar-
atively small number of features.

The results from Doak’s (1992) survey suggest using
feature selection algorithms similar to BEAM. Doak
combined random with sequential searching, suggested
using a beam search to guide BSS, and suggested that
genetic search approaches can be improved by bias-
ing them towards smaller-sized feature subsets. Skalak
(1994) recently demonstrated that this approach is ef-
fective. BEAM extends some of these ideas by adding
a strategy for selecting a good initial set of features,
implementing a beam search, and introducing random
elements in the state selection process, and may ben-
efit from using a more intelligent method for selecting
its initial feature subset.

Conclusions and Future Research

This paper focuses on improving predictive accuracy
for a specific task: cloud classification. Properties spe-
cific to this task require the use of feature selection
approaches to improve case-based classification accu-
racy. We explained the motivation for using sequen-
tial selection algorithms for this task, tested several
variants, and introduced a novel modification of BSS
named BEAM for problems with large numbers of fea-
tures. Our results strongly indicate that, when using

\\\

Iii



these algorithms, the evaluation function should be the
same as the classifier. This leads to significantly higher
accuracies than those previously published for this task
(Bankert, 1994).

We have not yet evaluated BEAM on Other prob-
lems with large numbers of features to better analyze
its benefits. While we anticipate that some of its prop-
erties will prove generally useful, we do not yet have ev-
idence for such claims. Also, several of BEAM’s design
decisions have not been justified, and we plan to ex-
amine these decisions systematically in future research.
Another goal is to integrate the capabilities of genetic
search in BEAM, such as by using it whenever back-
ward sequential selection depletes the queue of good
feature subsets. Similarly, C4.5 can be utilized by se-
lecting feature subsets from the power set of features it
finds to be relevant for classification. Many other com-
binations might prove useful. A promising direction
of future research should involve using domain-specific
knowledge concerning feature relevance. Methods used
in case-based reasoning should prove highly valuable
once such domain expertise becomes available.

Acknowledgements Thanks to Paul Tag, John
Grefenstette, David Skalak, Diana Gordon, and Ash-
win Ram for their feedback on this research.

References

Aha, D. W. (1992a). Tolerating Noisy, Irrelevant,
and Novel Attributes in Instance-Based Learning Algo-
rithms. International Journal of Man-Machine Studies,
36, 267-287.

Aha, D. W. (1992b). Generalizing from case studies: 
case study. In Proceedings of the Ninth International
Conference on Machine Learning (pp. 1-10). Aberdeen,
Scotland: Morgan Kaufmann.

Aha, D. W., & Goldstone, R. L. (1992). Concept learning
and flexible weighting. In Proceedings of the Fourteenth
Annual Conference of the Cognitive Science Society (pp.
534-539). Bloomington, IN: Lawrence Erlbaum.

Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-
based learning algorithms. Machine Learning, 6, 37-66.

Almuallim, H., & Dietterich, T. G. (1991). Learning with
many irrelevant features. In Proceedings of the Ninth
National Conference on Artificial Intelligence (pp. 547-
552). Menlo Park, CA: AAAI Press.

Ashley, K. D., & Rissland, E. L. (1988). Waiting 
weighting: A symbolic least commitment approach. In
Proceedings of the Seventh National Conference on Arti-
ficial Intelligence (pp. 239-244). St. Paul, MN: Morgan
Kaufmann.

Bankert, R. L. (1994). Cloud classification of AVHRR
imagery in maritime regions using a probabilistic neural
network. To appear in Journal of Applied Meteorology.

Cain, T., Pazzani, M. J., & Silverstein, G. (1991). Using
domain knowledge to influence similarity judgement. In
Proceedings of the Case-Based Reasoning Workshop (pp.
191-202). Washington, DC: Morgan Kaufmann.

Caruana, R., & Freitag, D. (1994). Greedy attribute se-
lection. To appear in Proceedings of the Eleventh Inter-

national Machine Learning Conference. New Brunswick,
N J: Morgan Kaufmann.

Cardie, C. (1993). Using decision trees to improve case-
based learning. In Proceedings of the Tenth International
Conference on Machine Learning (pp. 25-32). Amherst,
MA: Morgan Kaufmann.

Cover, T. M., & van Campenhout, J. M. (1977). On the
possible orderings in the measurement selection problem.
IEEE Transactions on Systems, Man, and Cybernetics,
7, 657-661.

Devijver, P. A., & Kittler, J. (1982). Pattern recognition:
A statistical approach. Englewood Cliffs, N J: Prentice-
Hall.

Doak, J. (1992). An evaluation of feature selection meth-
ods and their application to computer security (Technical
Report CSE-92-18). Davis, CA: University of California,
Department of Computer Science.

John, G., Kohavi, R., & Pfleger, K. (1994). Irrele-
vant features and the subset selection problem. To ap-
pear in Proceedings of the Eleventh International Ma-
chine Learning Conference. New Brunswick, N J: Mor-
gan Kaufmann.

Kira, K., & Rendell, L. A. (1992). A practical approach
to feature selection. In Proceedings of the Ninth Interna-
tional Conference on Machine Learning (pp. 249-256).
Aberdeen, Scotland: Morgan Kaufmann.

Mueciardi, A. N., & Gose, E. E. (1971). A comparison 
seven techniques for choosing subsets of pattern recog-
nition properties. IEEE Transaction on Computers, 20,
1023-1031.

Owens, C. (1993). Integrating feature extraction and
memory search. Machine Learning, 10, 311-340.

Peak, J. E., & Tag, P. M. (1992). Towards automated in-
terpretation of satellite imagery for navy shipboard ap-
plications. Bulletin of the American Meterological Soci-
ety, 73, 995-1008.

Quinlan, J. R. (1993). C~.5: Programs for machine learn-
ing. San Mateo, CA: Morgan Kaufmann.

Ram, A. (1993). Indexing, elaboration, and refinement:
Incremental learning of explanatory cases. Machine
Learning, 10, 201-248.

SkaJak, D. (1994). Prototype and feature selection 
sampling and random mutation hill climbing algorithms.
To appear in Proceedings of the Eleventh International
Machine Learning Conference. New Brunswick, N J:
Morgan Kaufmann.

Specht, D. F. (1990). Probabilistic neural networks. Neu-
ral Networks, 3, 109-118.

Vafaie, H., & De Jong, K. (1993). Robust feature selection
algorithms. In Proceedings of the Fifth Conference on
Tools for Artificial Intelligence (pp. 356-363). Boston,
MA: IEEE Computer Society Press.

Welch, R. M., Sengupta, S. K., Goroch, A. K., Ra-
bindra, P., Rangaraj, N., & Navar, M. S. (1992). Polar
cloud and surface classification using AVHRR imagery:
An intercomparison of methods. Journal of Applied Me-
teorology, 31, 405-420.

Wettschereck, D., & Dietterich, T. G. (1994). An exper-
imental comparison of the nearest neighbor and nearest
hyperrectangle algorithms. To appear in Machine Learn-
ing.

112




