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Abstract
In this paper, we address the problem of case-based
learning in the presence of irrelevant features. We re-
view previous work on attribute selection and present
a new algorithm, OBLIVION, that carries out greedy
pruning of oblivious decision trees, which effectively
store a set of abstract cases in memory. We hypothe-
size that this approach will efficiently identify relevant
features even when they interact, as in parity concepts.
We report experimental results on artificial domains
that support this hypothesis, and experiments with
natural domains that show improvement in some cases
but not others. In closing, we discuss the implications
of our experiments, consider additional work on irrel-
evant features, and outline some directions for future
research.

1. Introduction

Effective case-based reasoning relies on the identifica-
tion of a subset of features that are relevant to the
learning task. Most work on this topic assumes the
developer makes this decision, but application of case-
based methods to complex new domains would be aided
by automated methods for feature selection. Some
researchers (e.g., Barletta ~ Mark, 1988; Cain, Paz-
zani, & Silverstein, 1991) have explored the use of
domain-specific background knowledge to select useful
features, but this approach will not work when little
domain knowledge is available. Domain-independent
methods for feature selection would augment the tech-
niques available for developing case-based systems.

Rather than selecting features, one might employ
all available features during case retrieval, giving them
equal weight in this process. Cover and Hart (1967)
have proven that a simple nearest neighbor algorithm,
probably the simplest case-based method, has excellent
asymptotic accuracy. However, more recent theoreti-
cal analyses (Langley &: Iba, 1993) and experimental
studies (Aha, 1990) suggest that the empirical sample
complexity of nearest neighbor methods is exponential
in the number of irrelevant features. This means that
the presence of irrelevant attributes can slow the rate
of case-based learning drastically.

A natural response is to draw on machine learn-
ing techniques to identify those attributes relevant to
the task at hand. For example, Cardie (1993) used 
decision-tree method (C4.5) to select features for use
during case retrieval. She passed on to a k nearest
neighbor algorithm only the features occurring in the
induced decision tree. She reported good results in
a natural language domain, with k nearest neighbor
in the reduced space outperforming both C4.5 and k
nearest neighbor using all the features.

Unfortunately, although the greedy approach of C4.5
works well for conjunctive and m of n concepts, it suf-
fers when attribute interactions exist. In this case, a
relevant feature in isolation may appear no more dis-
criminating than an irrelevant one. Parity concepts
constitute the most extreme example of this situation.
Experimental studies (Almuallim & Dietterich, 1991;
Kira & Rendell, 1992) confirm that, for some target
concepts, decision-tree methods deal poorly with irrel-
evant features.

Almuallim and Dietterich’s Focus (1990) tried 
address this difficulty by searching for combinations of
features that discriminate the classes. The accuracy
of this method is almost unaffected by the introduc-
tion of irrelevant attributes, but its time complexity is
quasi-polynomial in the number of attributes. Schlim-
mer (1993) presented a related technique that uses
knowledge about the partial ordering of the space to
reduce the search, but still had to limit the complexity
of learnable target concepts to keep the search within
bounds. Thus, there remains a need for more practi-
cal algorithms that can handle domains with complex
feature interactions and irrelevant attributes.

In the following pages, we present a new algorithm
- OBLIVION - that should handle irrelevant features
in a more efficient manner than Almuallim and Diet-
terich’s or Schlimmer’s techniques, and we show how
the method can be viewed as identifying and stor-
ing abstract cases. We report experimental studies of
OBLIVION’S behavior on both artificial and natural do-
mains, and we draw some tentative conclusions about
the approach to feature selection it embodies. Finally,
we consider some additional related work and suggest
directions for future research on this topic.
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2. Induction of Oblivious Decision Trees

Our research goal was to develop an algorithm that
handled both irrelevant features and attribute inter-
actions without resorting to expensive, enumerative
search. Our response draws upon the realization that
both Almuallim and Dietterich’s and Schlimmer’s ap-
proaches construct oblivious decision trees, in which
all nodes at the same level test the same attribute. Al-
though these methods use forward selection (i.e., top-
down search) to construct oblivious decision trees, one
can also start with a full oblivious decision tree that
includes all the attributes, and then use pruning or
backward elimination to remove features that do not
aid classification accuracy. The advantage of the lat-
ter approach is that accuracy decreases substantially
when one removes a single relevant attribute, even if it
interacts with other features, but remains unaffected
when one prunes an irrelevant or redundant feature.

OBLIVION is an algorithm that instantiates this idea.
The method begins with a full oblivious tree that in-
corporates all potentially relevant attributes and esti-
mates this tree’s accuracy on the entire training set,
using a conservative technique like n-way cross valida-
tion. OBLIVION then removes each attribute in turn,
estimates the accuracy of the resulting tree in each
case, and selects the most accurate. If this tree makes
no more errors than the initial one, OBLIVION replaces
the initial tree with it and continues the process. On
each step, the algorithm tentatively prunes each of the
remaining features, selects the best, and generates a
new tree with one fewer attribute. This continues un-
til the accuracy of the best pruned tree is less than
the accuracy of the current one. Unlike Focus and
Schlimmer’s method, OBLIVION’S time complexity is
polynomial in the number of features, growing with
the square of this factor.

There remain a few problematic details, such as con-
structing an initial tree that is exponential in the num-
ber of initial attributes, determining the order of the
retained attributes, and passing the results to some
learning method. However, none of these steps is actu-
ally necessary. The key lies in realizing that an obliv-
ious decision tree is equivalent to a nearest neighbor
scheme that ignores some features. In this view, each
path through the tree corresponds to an abstract case
that summarizes an entire set of training instances.
Because pruning can Produce impure partitions of the
training set, each such case specifies a distribution of
class values. When an instance matches a case’s condi-
tions, it simply predicts the most likely class. If train-
ing data are sparse and a test instance fails to match
any stored abstract case, one finds the nearest cases
(i.e., with the most matched conditions), sums the class
distributions for each one, and predicts the most likely
class. This insight into the relation between oblivious
decision trees and nearest neighbor algorithms was an
unexpected benefit of our work.

3. Experimental Studies of OBLIVION

We expected OBLIVION to scale well to domains that
involve many irrelevant features. To test this predic-
tion, we designed an experimental study with four ar-
tificial Boolean domains that varied both the degree of
feature interaction and the number of irrelevant fea-
tures. We examined two target concepts - five-bit par-
ity and a five-feature conjunction - in the presence of
both zero and three irrelevant attributes. For each con-
dition, we randomly generated 20 sets of 200 training
cases and 100 test cases, and measured classification
accuracy on the latter. In addition to varying the two
domain characteristics, we also examined three induc-
tion algorithms - simple nearest neighbor (which does
not carry out attribute selection), C4.5 (which employs
a forward greedy selection), and OBLIVION (i.e., near-
est neighbor with backward greedy selection). Finally,
we varied the number of training instances available
before testing, to obtain learning curves.

We had a number of hypotheses about the outcomes
of this study. First, we expected C4.5 to be unaffected
by irrelevant attributes in the conjunctive domain, but
to suffer on the parity concept, because none of the
five relevant features would appear diagnostic in isola-
tion. In contrast, we predicted that nearest neighbor
would suffer equally on both target concepts, but that
OBLIVION’S ability to remove irrelevant features even
in the presence of feature interaction would let it scale
well on both concepts. Finally, we hypothesized that
OBLIVION’s learning curve would closely follow that
for nearest neighbor when no irrelevants were present,
but that it would mimic C4.5 in the absence of feature
interactions.

Figure 1 (a) shows the learning curves on the parity
target concept when only the five relevant attributes
and no irrelevant ones are present in the data. In this
experimental condition, nearest neighbor and OBLIV-
ION increase their accuracy at the same rate, but sur-
prisingly, C4.5 actually learns somewhat more rapidly.
The situation changes drastically in Figure 1 (b), which
presents the results when there are three irrelevant fea-
tures. Here the learning curves for both nearest neigh-
bor and C4.5 have flattened considerably. In contrast,
the learning rate for OBLIVION is almost unaffected by
their introduction. A different situation holds for the
conjunctive target concept (not shown). In this case,
all three algorithms require about the same number of
instances to reach perfect accuracy when no irrelevants
are present, with nearest neighbor taking a surprise
lead in the early part of training. The introduction of
irrelevant attributes affects nearest neighbor the most,
and C4.5’s learning curve is somewhat less degraded
than that for OBLIVION.

These results support our hypothesis about OBLIV-
ION’s ability to scale well to domains that have both
irrelevant features and interaction among relevant at-
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Figure 1. Learning curves for nearest neighbor, C4.5 without pruning, and OBLIVION on the five-bit parity concept given (a)
zero irrelevant attributes and (b) three irrelevant attributes. The error bars indicate 95% confidence intervals.

tributes. However, we also wanted to evaluate the
importance of this finding on natural data. Holte’s
(1993) results with the UCI repository suggest that
these domains contain many irrelevant features but
few interactions among relevant ones; in this case, we
would expect C4.5 and OBLIVION to outperform near-
est neighbor on them. But it is equally plausible that
these domains contain many relevant but redundant
attributes, in which case we would observe little differ-
ence in learning rate among the three algorithms.

In four of the UCI domains - Congressional vot-
ing, mushroom, DNA promoters, and breast cancer -
we found little difference in the behavior of OBLIV-
ION, C4.5, and nearest-neighbor. All three algorithms
learn rapidly and the learning curves (not shown) are
very similar. Inspection of the decision trees learned
by C4.5 and OBLIVION in two of these domains re-
vealed only a few attributes. Combined with the fact
that nearest neighbor performs at the same level as the
other methods, this is consistent with the latter expla-
nation for Holte’s results, that these domains contain
largely redundant features.1

One domain in which Holte found major differences
was king-rook vs. king-pawn chess endgames, a two-
class data set that includes 36 nominal attributes. This
suggested that it might contain significant attribute in-
teractions, and thus might give different outcomes for
the three algorithms. Figure 2 (a) gives the result-
ing learning curves, averaged over 20 runs, in which
OBLIVION’S accuracy on the test set is consistently
about ten percent higher than that for nearest neigh-
bor, though presumably the latter would eventually

1A forward-selection variant of OBLIVION (basically 
greedy version of the Focus algorithm) also produced very
similar curves on these domains, providing further evidence
that they do not involve both feature interactions and ir-
relevant attributes.

catch up if given enough instances. However, C4.5
reaches a high level of accuracy even more rapidly than
OBLIVION, suggesting that this domain contains many
irrelevant attributes, but that there is little interaction
among the relevant ones. Inspection of the decision
trees that C4.5 generates after 500 instances is consis-
tent with this account, as they contain about ten of
the 35 attributes, but only a few more terminal nodes
than levels in the tree, making them nearly linear and
thus in the same difficulty class as conjunctions.

Figure 2 (b) shows encouraging results on another
domain, this time averaged over ten runs, that involves
prediction of a word’s specific semantic class from the
surrounding context in the sentence. These data in-
clude 35 nominal attributes (some with many possi-
ble values) and some 40 word classes. Nearest neigh-
bor does very poorly on this domain, suggesting that
many of the attributes are irrelevant. Inspection of
C4.5’s and OBLIVION’s output, which typically retain
about half of the attributes, is consistent with this ex-
planation. In the latter part of the learning curves,
OBLIVION’s accuracy pulls slightly ahead of that for
C4.5, but not enough to suggest significant interaction
among the relevant attributes. Indeed, Cardie (1993)
reports that (on a larger training set) nearest neighbor
outperforms C4.5 on this task when the former uses
only those features found in the latter’s decision tree.
This effect cannot be due to feature interaction, since
it relies on C4.5’s greedy forward search to identify fea-
tures; instead, it may come from the different represen-
tational biases of decision trees and case-based meth-
ods, which would affect behavior on test cases with
imperfect matches.

The above findings indicate that many of the avail-
able data sets contain few truly irrelevant features, and
none of these appear to involve complex feature inter-
actions. These observations may reflect preprocessing
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Figure 2. Predictive accuracy as a function of training instances for nearest neighbor, 04.5 with pruning, and OBLIVION on
(a) classifying chess endgames and (b) predicting a word’s semantic class.

of many of the UCI databases by domain experts to
remove irrelevant attributes and to replace interacting
features with better terms. The voting records, which
contain only 16 key votes as identified by the Congres-
sional Quarterly, provide an extreme example of the
first trend. As machine learning starts to encounter
new domains in which few experts exist, such data sets
may prove less representative than artificial ones.

The experiments with artificial domains, reported
earlier, revealed clear differences in the effect of irrele-
vant attributes and feature interactions on the behav-
ior of nearest neighbor, C4.5, and OBLIVION. The rate
of learning for the nearest neighbor method decreased
greatly with the addition of irrelevant features, regard-
less of the target concept. In contrast, irrelevant at-
tributes hurt C4.5 for the five-bit parity concept but
not the five-feature conjunction; top-down greedy in-
duction of decision trees scales well only when the rel-
evant features (individually) discriminate among the
classes. In contrast, the learning rate for OBLIVION
was largely unaffected by irrelevant features for ei-
ther the conjunctive or parity concepts, presumably
because its greedy pruning method was not misled by
interactions among the relevant features.

4. Discussion

We have already reviewed the previous research that
led to our work on OBLIVION, and we have drawn some
tentative conclusions about the algorithm’s behavior
from our experimental results. Here we consider some
additional related work on induction, along with direc-
tions for future research.

Kira and Rendell (1992) have followed a somewhat
different approach to feature selection. For each at-
tribute A, their RELIEF algorithm assigns a weight WA

that reflects the relative effectiveness of that attribute
in distinguishing the classes. The system then selects
as relevant only those attributes with weights that ex-
ceed a user-specified threshold, and passes these fea-
tures, along with the training data, to another induc-
tion algorithm such as ID3. Comparative studies on
two artificial domains with feature interactions showed
that, like Focus, the RELIEF algorithm was unaffected
by the addition of irrelevant features on noise-free data,
and that it was less affected than Focus (and much
more efficient) on noisy data.

The above algorithms filler attributes before passing
them to ID3, but John, Kohavi, and Pfleger (in press)
have explored a wrapper model that embeds a decision-
tree algorithm within the feature selection process, and
Caruana and Freitag (in press) have described a similar
scheme. Each examined greedy search through the at-
tribute space in both the forward and backward direc-
tions, including variants that supported bidirectional
search. John et al. found that backward elimina-
tion produced more accurate trees than C4.5 in two
domains but no differences in others, whereas Caru-
ana and Freitag reported that all of their attribute-
selection methods produced improvements over (un-
pruned) ID3 in a single domain.

One can also combine the wrapper idea with nearest-
neighbor methods, as in OBLIVION. Skalak (in press)
has recently examined a similar approach, using both
Monte Carlo sampling and random mutation hill climb-
ing to select cases for storage, with accuracy on the
training set as his evaluation measure. Both approaches
led to reductions in storage costs on four domains and
some increases in accuracy, and the use of hill climbing
to select features gave further improvements. Moore,
Hill, and Johnson (in press) have also embedded near-
est neighbor methods within a wrapper scheme. How-
ever, their approach to induction searches not only the
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space of features, but also the number of neighbors
used in prediction and the space of combination func-
tions. Using a leave-one-out scheme to estimate ac-
curacy on the test set, they have achieved significant
results on two control problems that involve the pre-
diction of numeric values.

Some researchers have extended the nearest neigh-
bor approach to include weights on attributes that
modulate their effect on the distance metric. For ex-
ample, Cain et al. (1991) found that weights derived
from a domain theory increased the accuracy of their
nearest-neighbor algorithm. Aha (1990) presented 
algorithm that learned the weights on attributes, and
showed that its empirical sample complexity grew only
linearly with the number of irrelevant features, as com-
pared to exponential growth for simple nearest neigh-
bor. In principle, proper attribute weights should pro-
duce more accurate classifiers than variants that sim-
ply omit features. However, search through the weight
space involves more degrees of freedom than OBLIV-
ION’s search through the attribute space, making their
relative accuracy an open question for future work.

Clearly, our experimental results are somewhat mixed
and call out for additional research. Future studies
should examine other natural domains to determine
if feature interactions arise in practice. Also, since
OBLIVION uses the leave-one-out scheme to estimate
accuracy, we predict it should handle noise well, but
we should follow Kira and Rendell’s lead in testing
this hypothesis experimentally. OBLIVION’s simplicity
also suggests that an average-case analysis would prove
tractable, letting us compare our experimental results
to theoretical ones. We should also compare OBLIV-
ION’s behavior to other methods for selecting relevant
features, such as those mentioned above.

Despite the work that remains, we believe that our
analysis has revealed an interesting relation between
oblivious decision trees and abstract cases, and ’that
our experiments provide evidence that one such algo-
rithm outperforms simpler case-based learning meth-
ods in domains that involve irrelevant attributes. We
anticipate that further refinements to OBLIVION will
produce still better results, and that additional exper-
iments will provide a deeper understanding of the con-
ditions under which such an approach is useful.
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