
Generalizing the Claim Lattice
with Applications for Learning by Local Clustering

Robert McCartney* Dale E. Fish
Department of Computer Science and Engineering

University of Connecticut
Storrs, CT 06269-3155

robert@cse.uconn.edu fish@cse.uconn.edu

Abstract
A central problem in case-based reasoning systems is that of
salience: which features are important in determining
similarity, and how might the closeness of situations be
evaluated on the basis of their features. In this paper we use
a graphical representation of a feature space that represents
points in the space as nodes and links adjacent points by
edges. This structure supports certain local reasoning within
the feature space, allows the salience of features in particular
situations to be learned over time, and provides a basis for
predicting from situations of limited data.

Introduction
For case-based reasoning to be feasible, it must be possible
to find the appropriate cases given a situation. A particu-
larly efficient way to do so is to treat a case as a vector of
features, with the assumption that cases whose feature vec-
tors match those derived from a given situation will be use-
ful in that situation. This scheme has a number of draw-
backs in practice: if salient features are not represented in
the vector, cases that are indexed the same may not in fact
be sufficiently similar to be useful; if non-salient features
are in the vector, similar cases may be indexed differently;
and the feature vector for a given situation may not index
any cases.

In this paper, we propose a structure, the feature space
graph (FSG), as a solution to this problem. The FSG is
graphical representation of a feature space that represents
points in the space as nodes and links adjacent points by
edges. The FSG is appropriate for representing a finite
number of features that take on a finite or countable
number of discrete values. It supports certain local
reasoning within the feature space, allows the salience of
features in particular situations to be learned over time, and
provides a basis for predicting from situations of limited
data. We first describe the FSG, and discuss its
implementation in a program called Old Hand which plays
the two-player card game Set Back.

*This work has been supported in part by the National Science
Foundation, grant IRI-9110961

The Graph

The FSG is an extension of the Claim Lattice, a data
structure used in HYPO (Ashley 1988) which assigns
nodes to a current fact situation (CFS) and retrieves cases
on the basis of each node’s intersection with the facts in the
CFS, considering the partial order induced by the subset
relation. There is potentially a node for each element of the
power set of the CFS; these are arranged so the top element
is the CFS, and each node has its maximal subset nodes as
its immediate successors.

In this structure, the successors of the CFS are those
cases that differ the least from the CFS in that there are no
cases whose intersection with the CFS is a superset of any
of these. HYPO takes advantage of this structure to choose
the closest cases without having to determine the impor-
tance of any feature.

We can build a claim lattice from the power set of the
CFS; this "complete" claim lattice will include all of the
nodes of the original lattice, and will contain edges from
each set to all of its subsets of one less element. In this
structure, each edge corresponds to a difference of a single
feature; for any node, the set of nodes that are one edge
away in any direction consists of all the nodes that differ by
one feature, and the minimum distance between any two
nodes is equal to the number of feature value differences.
This seems like a potentially useful feature in finding
related cases-the cases that differ the least should be
proximate within the graph-and is the basic assumption
behind this work.

The FSG structure we present here is a generalization of
the complete claim lattice, differing in the following ways:
we remove the order inherent in presence and absence of
features, we remove the restrictions that features be binary,
and we allow traversal of the structure from arbitrary nodes
rather than just the top (since the order is removed, there is
no longer a top and the structure is no longer a lattice).
These differences notwithstanding, the FSG is closely
analogous to the claim lattice; both are structures for which
a fact situation corresponds to a node, and for which the

i18

From: AAAI Technical Report WS-94-01. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved.

most closely related fact situations are represented as prox-
imate neighbors or successors. They both have complete
analogs corresponding to a complete feature space. All of
the claim lattice operations can be done in the correspond-
ing FSG (see (Fish 1994) for details).

The Feature Space Graph

More formally, we can define the FSG in terms of the do-
main space of feature vectors. For convenience, we start
with the complete FSG, then show how the general FSG
follows by the process of node merging.

The FSG is based on a fixed-length vector of features,
each of which takes on a discrete set of values. There is a
node in the complete FSG corresponding to each possible
vector. For each feature’s set of values, some value pairs
are neighbors, so the values within each feature are ar-
ranged in a graph on the basis of these relations. These
within-feature graphs are expressed in the topology of the
FSG as follows: there is an edge between any two nodes if
their feature vectors differ by exactly one feature and the
differing feature values are connected by an edge in the
within-feature graph. It can easily be seen that the
undirected analog of the complete claim lattice is an FSG
where each feature can take on two values (present or ab-
sent) and that present and absent are neighbors within each
feature.

In general, an FSG is a graph that can be obtained from a
complete FSG by a sequence of pair-wise merges. These
reduce the number of nodes by combining two neighboring
nodes into one node, and reduce the number of edges by
eliminating edges between merged nodes and redundant
edges (edges between a node and more than one node that
has been merged together).

The intuitions behind this structure are as follows. We
are interested in some prediction to be made from a point in
the feature space (some function of the feature vector), and
associate an FSG with that function. If two adjacent nodes
give the same prediction, we merge them into a single
node; in that case, the difference in the one feature value
between the nodes is insignificant in terms of prediction.
What we envision is a structure to support local learning:
start with a complete FSG, observe the predictive function
over time, and merge neighboring nodes for whom the
value of the predictive function is equal. This local process
of merging adjacent nodes that predict the same outcome
should lead to a predictor whose domain is just the set of
distinguishable feature vectors; over time the non-salient
features will be ignored (that is, vectors that differ only on
non-salient features will be associated with the same node
in the graph).

In addition, this structure should prove useful in predict-
ing with insufficient data. In a standard CBR approach, we
would use the cases indexed by the appropriate FSG node

to predict behavior. If the cases among the "exact" matches
provide insufficient or contradictory information, we may
wish to broaden our set of cases to closely related situa-
tions. In the FSG, these situations are those associated with
neighboring FSG nodes, so should be easily retrievable via
a local search process.

Feature Types and the Resulting FSG

By the way we have defined the complete FSG, its topol-
ogy is exactly determined by the within-feature topology:
the number of nodes and the within-feature graph relating
values. We can identify four natural cases of features that
seem useful, and from these describe the resulting complete
FSG.

The feature space (the nodes in the FSG) is simply the
cross product of the feature value sets. The number of ele-
ments is the product of the cardinalities of the feature value
sets. In practice this may overstate the actual attainable fea-
ture space if features are not independent.

For every feature within the vector, we define a within-
feature graph based on the neighbor relations among the
possible feature values. The connectivity of feature values
depends on the nature of the feature. We define four natural
feature types where the connectivity of the feature values is
implied by the type: binary features (two values, each of
which is adjacent to the other), ordered features (values in
total order, neighbors of any value are the adjacent values
within the ordering), unordered features (every value is
neighbor of every other value), and cyclic features (similar
to ordered features except that the first and last values are
also adjacent). More general feature value relationships are
also possible, described by any irreflexive symmetric rela-
tion on the values, but these provide a natural starting
place. The average number of edges going out of each node
in the FSG is the sum of the average number of edges go-
ing out for each feature; multiplying this average by the
number of nodes gives the number of edges, so the number
of edges in the complete FSG can be given in terms of the
number of values and the number of within-feature graph
edges for each feature. The number of nodes and edges in a
complete FSG can be calculated from the features as

N[: HV,I

E -(nv,1. e,
~l<i~m / l<i<m Vi

where m is the number of features, Vi is the range of values
for feature i, and Ei is the set of edges in the within-feature
graph for feature i. The number of edges increases faster
than nodes; the additive increment IEil/IVil is 1/2 for binary

119

features, (n - 1) / n for ordered features, (n - 1) / 2 for
ordered features, and ! for cyclic features, where n is the
number of values associated with that feature.

The following figures illustrate two FSGs: A simple FSG
that consists of two binary features and an ordered three-
value feature (Figure 1) and two binary features and
unordered four-value feature (Figure 2).

Figure 1: Complete FSG for two binary features and one
ordered feature with three values.

Figure 2 Complete FSG for two binary features and one
unordered feature with four values.

Merging Nodes

The complete FSG provides us with a useful structure for
case-based reasoning as each node in the FSG corresponds
to a possible vector and can be used to index each case cor-
responding to that feature vector. The edges of the FSG
allow accessing of similar cases by locally traversing from
the node of interest to its neighbors. Many of the FSG
nodes may not be interesting for a given problem however:
cases that differ only in non-salient features might better be
grouped and indexed by the salient features only. To attain
this grouping with the FSG, we propose a merging mecha-
nism whereby neighboring nodes that are not different in
the context of the problem of interest are considered as one,
and used to index the same cases from a number of
different feature vectors.

We start with a complete FSG. The context of the FSG is
a function from the feature space to a set of responses
(which might be probabilistic) that we would like

predict. The purpose of merging is to combine neighboring
nodes in the FSG for which the function is equal, retaining
all of the predictive information with a smaller graph. This
is equivalent to determining that differences in certain
features (over a certain range in certain parts of the feature
space) have no effect on the function of interest.

Merging can be implemented as an incremental process:
take observations of the function of interest and associate
this information with the appropriate FSG nodes. As in-
formation increases at a node, test the hypotheses that the
function is the same for the node and each of its neighbors;
if the information is sufficient to say that the function is
equal for two neighboring nodes, those nodes are merged
into a single node. This new node is indexed by all of the
feature vector values that indexed either of the pair of
nodes being merged, and has as immediate neighbors all of
the immediate neighbors of the merged nodes. Over time,
the FSG reflects the information gained about the relation-
ships between feature vector values in the context of the
function.

For example, consider Figure 3, which is an FSG ob-
tained from the one in Figure 1. Suppose we determined
that the nodes (001), (010), and (0 I 1) have the
response, i.e. the associated feature vectors do not distin-
guish the situations. We obtain Figure 3 by merging these
three into a single node, reducing the number of nodes and
edges in the FSG by two and three respectively. This
merging has the effect that whenever we are interested in
predicting from either (001), (010), or (01 I) we predict
from a node having more information.

001
010
011

Figure 3. FSG after nodes (001), (010), and (011)
merged.

The existence of a merge operation does not preclude the
existence of an unmerge operation: one that allows nodes
that were aggregations of other nodes to be split into
groups on the basis of differences in the predictions as in-
formation increases. We did not implement such an opera-
tion, but empirical testing (see Results) suggests it would
be useful. Allowing such reformulation would require more
information to be stored about individual vectors within a
merged node.

120

In addition to merging nodes over time, it may be useful
to temporarily cluster groups of nodes. This can be a useful
strategy to deal with insufficient or contradictory evidence-
if the cases that match the situation are not sufficient to
lead to a decision, consider closely related cases as well. In
the FSG, these related cases are stored at adjacent nodes in
the graph so their information can be easily combined with
that from the matched cases when necessary.

Testing the FSG on Old Hand

The FSG has been implemented and tested in a computer
program called Old Hand which plays the two player card
game Set Back, which is a bidding game where players bid
on the strength of their hands for the right to choose the
trump suit, then are required to score a certain number of
points in the play of the hand. Old Hand has two players: a
procedural player that uses hard coded bidding and playing
rules, and a lattice player that uses FSGs to store and access
case information used in bidding (the lattice player uses
procedures for playing).

Rather than go through the details of how Old Hand op-
erates, we will summarize. The system starts with a set of
potential features, for which it generates an FSG with no
associated cases. For each hand, the lattice player uses the
information in the FSGs to bid. If the node corresponding
to the current hand does not have enough case information
to predict the outcome of a bid, the information from the
adjacent nodes is added in, clustering nodes until there is
sufficient experience (or no more nodes). After each hand,
the node corresponding to the hand is updated as to success
or failure. Periodically, the system scans the FSG and
merges any adjacent nodes for which the data are sufficient
to say that the success ratios are equal. The system contin-
ues playing hands and collecting statistics about the merges
and success rates. For details, see (Fish 1994).

Results

Old Hand has been run numerous times with the lattice
players using various feature sets. Lattice players typically
bid poorly and erratically early and fairly well after enough
hands have been played. They also make reasonable bids
even when a hand is seen for the first time by using the
neighbors of the initial node.

The effects of merging over time are often interesting.
When an inconsequential feature is included, the FSG will
frequently collapse entirely along that dimension. The
FSGs eventually stabilize, but the rate at which this occurs
is dependent on the size of the original graphs (as well as
the number of observations needed at each node before
merging is allowed and the number of non-salient features).
Figure 5 shows the average number of nodes vs. number of

hands for three different sets of features (FSGs with 56, 14,
and 8 nodes to start). In each test, we ran 2000 hands and
checked for possible merges every 100 hands. Merged
nodes were often simpler than a disjunction of the original
nodes (a superfluous feature will collapse along that di-
mension, for example). In some cases, a merged node can
be distilled to a single feature value.

60

50

.~ 40
~ 30
o
Z 20

o
10

0 I I : ’, I I ’, : I ’, ’, : : : ’,’,
o 8

of Cases

Figure 5. Number of nodes in FSG over time for initial
FSG node numbers of 56, 14, and 8.

One observed result is that sometimes nodes that are dis-
tinguishable in the long run will merge, and then their
combined observations are sufficiently different from their
neighbors that the new node will not merge again even if a
merge is appropriate. Suppose the expected response for
nodes A and B is .2 and the expected response for nodes C
and D is .4, but early on B and C are merged. In the long
run, the combined B-C may never merge, which suggests
either a more conservative merge strategy or the possibility
of unmerging.

Related Clustering and Similar Structures

HYPO, a case-based reasoning system that works in the
domain of trade secret law, uses a structure similar to the
FSG, and was discussed earlier.

A case space representation scheme described in (Farley
1991) for the purpose of case-based classification repre-
sents cases as a vector of positive integers with each ele-
ment of the vector representing some dimension of infor-
mation. Our scheme generalizes this representation in that
it can be implemented using our approach as an FSG of or-
dered features. Our incorporation of other feature types
with their implied connectivity is arguably suitable for a
wider range of domains.

Clustering is the partitioning of data into subset whose
in-class members are similar and whose cross-class mem-

121

bers are dissimilar. In this work, we use clustering in two
ways: whenever we merge nodes, and when we include
data from neighboring nodes when faced with insufficient
information; in any case, we cluster adjacent nodes in the
graph. In (Jarvis & Patrick 1973) a clustering technique
described which uses the metric of shared nearest neigh-
bors. Two data points are judged to be similar if their k-
nearest neighbor lists match. Although in the FSG adjacent
nodes will tend to share nearest neighbors (at least each
other), it is possible that nodes with identical nearest-
neighbor lists may not be adjacent, as in the case of an FSG
created by a feature set of two binary features. An agglom-
erative clustering technique is described in (Gowda
Krishna 1978) based on mutual neighborhood value which
indicates the mutual nearness of two points (as opposed to
the number of shared neighbors in (Jarvis & Patrick 1973)).
In this approach, two points are mutual nearest neighbors if
they both are each others nearest neighbor, as opposed to
only one of the points being nearer to the other than any
other point. This is similar to the merging that takes place
between indistinguishable neighbors in the FSG (those that
differ the least are merged), but the merge is based on both
the proximity (all neighboring nodes are mutual nearest
neighbors) and the associated observations.

The COBWEB system (Fisher 1990) is similar to Old
hand in that it is a general purpose incremental clustering
method motivated by the maximizatioin of inference abil-
ity. However, conceptual clustering judges class quality by
the quality of the concepts that describe them (e.g., simplic-
ity of concepts) and the resultant class structure is
hierarchical. Old Hand clusters cases solely on the basis of
their behavior or performance and the FSG is flat.
Although this often yields simple class descriptions, reclus-
tering would be motivated by diverging performance and
not the quality of the concepts.

Conclusions and Possible Extensions

We have presented a generalization of the claim lattice that
is promising for problems where the cases can be indexed
by a reasonably small set of feature vectors, and where the
salience of the features is not completely understood. The
FSG will support local merging, and can be used to learn
where feature differences are not significant locally; ulti-
mately this may lead to a global understanding of which
feature sets can be used to efficiently characterize cases.

Preliminary empirical work with Old Hand suggests that
the FSG (with non-salient features) will become smaller
a fairly rapid rate, but that a liberal merge policy may lead
to an incorrect structure relative to distinguishing feature
vectors. More systematic study is required to determine the
effects of the number of significant features versus

insignificant features, aggregation strategies to deal with
insufficient data, and so forth.

In the future, we would like to develop and evaluate
"unmerge" mechanisms to distinguish subsets of feature
vectors that are combined within an aggregate node, with
the eye toward a sequence of merge-do nothing-unmerge
decisions modifying the FSG. This could be used to deal
with the kinds of early over commitment problems that we
have seen empirically. Alternatively, rather than succes-
sively testing for the equality of nodes, we could use se-
quential tests that test the three-possibility hypothesis
same-different-no decision; once a decision is reached that
the nodes are the same, we merge as before, but if we get
enough information to determine that the nodes are differ-
ent we could forego further comparisons. Another direction
to explore is methods for assigning variable weights to the
edges in the graph so that there is a better distance metric
for distance of neighbors. An important first step could be
to compare the behavior of the FSG using edge counts as a
distance measure between nodes and the use of Euclidean
distance between the associated vectors when clustering.

References

Ashley, K., and Rissland, E.L. 1987. Compare and
Contrast, A Test of Expertise. Proceedings of AAAI-87,
273-278. Seattle, WA.

Ashley, K. 1988. Modeling Legal Argument: Reasoning
with Cases and Hypotheticals. Technical Report 88-01,
Dept. of Computer and Information Science, Univ. of MA.

Farley, A.M. 1991. Case-Based Classification: A New
Approach. Technical Report #CIS-TR-91-16, Department
of Computer and Information Science, University of
Oregon, Eugene, Oregon.

Fish, D.E. 1994. A Dynamic Memory Organization for
Case- Based Reasoning Supporting Case Similarity deter-
mination and Learning Via Local Clustering. M.S. Thesis,
Dept. of Computer Science and Engineering, Univ. of
Connecticut.

Fisher, D.H. 1990. Knowledge Acquisition Via
Incremental Conceptual Clustering. Readings In Machine
Learning, 267-283. Morgan Kaufman, San Mateo, CA.

Kolodner, J.L. 1993. Case-based Reasoning. Morgan
Kaufmann, San Mateo, CA.

Jarvis, R.A., and Patrick, E.A.. 1990. Clustering Using a
Similarity Measure Based on Shared Near Neighbors. In
Dasarathy, B.V., Ed. Nearest Neighbor (NN) Norms:
Pattern Classification Techniques, 388-397. IEEE
Computer Society Press, Los Alamitos, CA.

Gowda, K. C, and Krishna, G. Agglomerative Clustering
Using The Concept of Mutual Nearest Neighborhood. In
Dasarathy, 398-405. Op. cit.

122

