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Abstract

Indexing of cases is an important topic for Memory-
Based Reasoning(MBR). One key problem is how 
assign weights to attributes of cases. Although several
weighting methods have been proposed, some meth-
ods cannot handle numeric attributes directly, so it
is necessary to discretize numeric values by classifica-
tion. Furthermore, existing methods have no theoreti-
cal background, so little can be said about optimality.
We propose a new weighting method based on a statis-
tical technique called Quantification Method II. It can
handle both numeric and symbolic attributes in the
same framework. Generated attribute weights are op-
timal in the sense that they maximize the ratio of vari-
ance between classes to variance of all cases. Experi-
ments on several benchmark tests show that in many
cases, our method obtains higher accuracies than some
other weighting methods. The results also indicate
that it can distinguish relevant attributes from irrele-
vant ones, and can tolerate noisy data.

Introduction
Indexing of cases is an important topic for both Case-
Based Reasoning(CBR) and Memory-Based Reason-
ing(MBR) (Stanfill & Waltz 1986). Indexing is espe-
cially important in MBR because of the lack of case
adaptation phase, and the nearest instances’ classes are
directly mapped to a new instance. Usually, similarity
is calculated by summing up weights of matched at-
tributes. Therefore, weighting attributes is one of the
key points of case indexing. Good attribute weight-
ing can eliminate the effects of noisy or irrelevant at-
tributes.

Several weighting methods for attributes have been
proposed, but few address the two following points:

¯ Handling both numeric and symbolic attributes.

¯ Defining optimality criteria.

We propose a new weighting method based on a sta-
tistical technique called Quantification Method II. This
method solves the two problem: It can handle both nu-
meric and symbolic attributes in the same framework,
and produces weights that are optimal as they maxi-

mize the ratio of variance between classes to variance
of all cases.

Typical Weighting Methods for
Attributes

Per-/Cross-Category Feature Importance
Before explaining our method, let us review some typ-
icai attribute-weighting methods.

Per-category feature importance and cross-category
feature importance (in short, PCF/CCF) were pro-
posed in (Creecy et al. 1992). Both weighting methods
are based on conditional probabilities. In the case of
PCF/CCF, a symbolic attribute with N values is con-
verted to a set of N binary attributes.

Suppose u means a case stored in the database, and
v is a case for query, c= denotes the class of the case
u. u is stored in the database, so the class of u is
known already. Nc is the number of classes,and Na
is the number of attributes. Then the definitions of
similarity using the per-/cross-category feature impor-
tance are as follows:

Per-category feature zmportance:

No

Similarity(u, v) = E w(c,. a)~(u~, 

where w(c,a) P(cla)

~(~,y) = { o if(x=y)
1 if(x y£ y)

Cross-category feature importance:

N~

Similarity(u, v) -- E w(a)5(ua, 
a

Nv

where w(a) = E P(cila):
i=l

When an attribute a and a class c have high correla-
tion, the conditional probability P(c[a) is high, there-
fore, the weights of the attributes also become high.
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While per-category feature importance addresses the
classes of training data, cross-category neglects them,
and uses an average (in fact, summation of square) 
weight.

We have applied these per-/cross-category weighting
methods for a weather prediction task using memory-
based reasoning (Mohri, Nakamura, & Tanaka 1993).
In that paper, we show per-category importance is too
sensitive to the proportion of classes, and has a ten-
dency to answer the most frequent class too often.

Value Difference Metric

Stanfill and Waltz proposed the Value Difference Met-
ric (in short, VDM)(Stanfill & Waltz 1986), and 
plied it to the English word pronunciation problem.
VDM defines distance between cases as follows:

N~

distance(u, v) --- E w(a, ua)6(a, u~, 
a=l

where
w(a,p) I ~-~(Ca(p’c))2c=l C~(p)

No {Co(p,c) Co(q,c))
6(a,p,q) = Co(q)

c=l

where p and q are possible values of an attribute, Ca(p)
is the total number of times that value p occurred at
an attribute a, and C~(p, c) is the frequency that p was
classified into the class c at an attribute a.

In VDM, the distance between values is calculated
for every pair of values for every attribute. Each at-
tribute is weighted by w(a, u~).

Recently, Cost and Salzberg proposed MVDM
(Modified VDM) (Cost & Salzberg 1993). 
omits the attribute-weighting (the term w(a,u~)) of
VDM, and introduces weighting of cases. MVDM per-
forms well for some tests including prediction of protein
secondary structure and pronunciation of English text.
However, we have not tested the weighting of cases,
because we believe that weighting of cases should be
discussed separately from weighting of attributes.

IB4

Aha’s IB4(Aha 1989; 1992) is an incremental instance-
based learning algorithm. IB4 has many features in-
cluding noise-tolerance, low storage requirement, and
an incremental attribute-weighting function. Attribute
weights are increased when they correctly predict clas-
sification and are otherwise decreased. Weights are
calculated for each concept and each attribute, so its
similarity is concept-dependent.

IB4 can handle both numeric and symbolic at-
tributes. Numeric values are linearly normalized to
[0, 1]. The distance between symbolic values is the

Hamming distance. The similarity function of IB4 is
as follows:

]

~a-:l

{
6(u~,v~) if attributea

is symbolic
diff(u~,v~) = lua - va[ if attribute 

is numeric

Problems of These Weighting Methods
The weighting methods described above have some
drawbacks:

¯ The way to handle both symbolic and numeric at-
tributes
PCF/CCF and VDM are basically for symbolic at-
tributes, so in order to handle numeric attributes,
values must be quantized into discrete intervals.
A subsequent difficulty is that the discretization
method tends to be ad hoc. Moreover, when a dis-
cretization method is used, total order defined by
the numeric attribute is lost. For example, an in-
terval (0, 10) is divided into 10 intervals. Before
discretizing, the distance between 0.5 and 1.5 is 9
times smaller than that between 0.5 and 9.5. After
discretizing, however, the distance between the in-
terval (0,1) and (1,2) is 1. It is equal to the distance
between (0,1) and (9,10).
IB4 can handle both numeric and symbolic at-
tributes, but the distance between symbolic val-
ues are merely the Hamming distance. Meanwhile,
PCF/CCF calculates different weights for each sym-
bolic value, and VDM defines similarity from the fre-
quency of symbolic attributes and classified results.

¯ No statistical optimality criteria
Although the procedure to calculate weights is clear,
there is no explanation about whether they are op-
timal in any sense. Only benchmark tests support
any claim for utility. In fact, Bayesian classification
is an optimal method. However, if independence be-
tween attributes is not assumed, then probabilities
for combinations of any values in the all attributes
must be known. Therefore, strict Bayesian classifi-
cation is not practical. Although the independence
between attributes is usually assumed, this assump-
tion is often not satisfied.

A New Attribute-Weighting Method

based on Quantification Method II
Basic Explanation of Quantification
Method II

Quantification Method III (in short, QM2) is a kind 
multivariate analysis used to analyze qualitative data,

1In Japan, the Quantification Method is famous and
has been used since the 1950s. In Europe, USA and other
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and used for supervised learning problems. Basically,
its input and output variables are symbolic ones, but
an extension is easy to use numeric variables as input
data.

The strategy of QM2 is as follows:

1. quantify attributes

2. define a linear expression to calculate a criterion
variable (in terms of multivariate analysis) for each
case

3. decide the coefficients of the linear expression that
makes the ratio of the variance between classes and
the variance of all cases

4. At the prediction phase, QM2 predicts a criterion
value of a query by using the linear equation and
calculated coefficients. It selects the nearest class by
comparing the criterion value with classes’ averages
of each class.

Let us show how QM2 works by a simple exam-
ple. Consider possible values of symbolic attrl as
{YES,NO}, attr2 as {A,B,C}. Attr3 is numeric. Sup-
pose class is in {YES, NO}.

Table 1: A Simple Example
class attrl attr2 attr3
YES YES A 10.3
YES NO B 12.5
YES YES A 8.6
NO NO B 9.4
NO NO C 8.4

At the quantification phase of attributes, each sym-
bolic attribute is replaced with multiple new at-
tributes, the number of which is that of possible values
of the original attribute. If the value of the original
attribute is the i-th symbol, then the value of the i-th
new attribute is set to 1, and the remaining new at-
tributes are 0. That is to say, N binary attributes are
used instead of a symbolic attribute with N values. (In
fact, N-th binary attribute is redundant. When solving
an eigenvalue problem explained later, N-1 binary at-
tributes are used). Numeric attributes are not changed
at all. In the case of the example, Table 1 is converted
to Table 2.

Next, a linear equation is assumed to calculate cri-
terion variable Yci for all cases. Cases can be divided
into M groups by the class to which they belong. Sup-
pose e is an index of such groups, i is an index of a
case in a group, and nc is the size of each group. Wa is
a coefficient for the a-th attribute.

countries, it may be better known as "correspondence anal-
ysis" (J.P.Benz4cri et al. 1973) by J.P.Benz4cri of France
(Hayashi, Suzuki, & Sasaki 1992)

Table 2: A Simple Example (After Quantification)
class attrl attr2 attr3

Ul U2 U3 U4 U5 U6

1 1 0 1 0 0 10.3
1 0 1 0 1 0 12.5
1 1 0 1 0 0 8.6
0 0 1 0 1 0 9.4
0 0 1 0 0 1 8.4

For each case, a criterion variable Ycl is calculated
by the following equation:

N~

Yci : ~.~ WaUa
c~=1

where N~ is the number of quantified attributes. In
the example above, N~ = 6.

Then, from Yc~ of these cases, the variance of all
cases a2 and the variance between groups a2 can be
calculated as follows:

(72

The Quantification Method II provides the coeffi-
cient w~, which maximizes the ratio 72. This problem
results in an eigen value problem of a Na x Na square
matrix calculated by Ua of all instances. The elements
of the eigen vector become w~. For detailed calcula-
tion, please refer to (Kawaguchi 1978).

New Classification Methods based on
Quantification Method II
We introduce three methods based on Quantification
Method II. The first two (QM2m, QM2y) are instance-
based methods, and the rest is the original QM2 itself.

* QM2m (QM2 + matching)
Each attribute has its weight calculated by QM2.
Numeric attributes are directly used for matching.
In the case of symbolic attributes, quantified binary
attributes are used for matching. The absolute val-
ues of w~ are used as weights. The similarity be-
tween two cases is calculated as follows:

N~

Similarity(u, v) =  (Iwol.luo -  ol
a=l
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¯ QM2y (QM2 + matching by yc~)
The values Yci are computed for all training cases
before testing. When testing, Yc~ of the test case is
calculated and used for matching. The case whose
yc~ is the nearest to that of the test case is selected,
and its class is assigned to the test case. The simi-
larity between two cases is calculated as follows:

Similarity(u, v)

¯ QM2
QM2 is the direct use of the naive Quantification
Method II, and is not an instance-based method.
For each class, the average of the criterion variable
y--~ is calculated from training cases beforehand. For
a query, a criterion variable y of the test case is cal-
culated, and the class whose criterion value is the
nearest is selected as an answer.

QM2m uses the absolute values of the coefficient w~
as weights of attributes. This seems useful because the
coefficients indicate the importance of the attributes.
In general, the coefficient may be a positive or negative
value, so we take their absolute values. The advan-
tages of these QM2-based methods over other weight-
ing methods are as follows:

¯ It supports both numeric and symbolic attributes in
the same framework.
No symbolization or normalization of numeric val-
ues are necessary. All weights for both numeric and
symbolic attributes are calculated by the same pro-
cedure, so it can identify useless attributes.

¯ It is based on a statistical criterion.
The weights of attributes are optimal in the sense
that they maximize the variance ratio ~]2. Therefore,
they have a theoretical basis and clear meaning.

Experiments
The experimental results for several benchmark data
are shown in Table 3. Four data sets (vote, soybean,
crx, hypo) were in the distribution floppy disk of Quin-
lan’s C4.5 book (Quinlan 1993). The remaining four
data sets (iris, hepatitis, led, led-noise) were obtained
from the Irvine Machine Learning Database (Murphy
& Aha 1994).

Including our 3 methods,VDM, PCF, CCF, IB4, and
C4.5 are compared. Quinlan’s C4.5 is a sophisticated
decision tree generation algorithm, and used by default
parameters. The accuracies by pruned decision trees
are used in the experimental results.

All accuracies are calculated by 10-fold cross-
validation (Weiss & Kulikowski 1991). The specifi-
cations of these benchmark data are shown in Table

4. led has 7 relevant Boolean attributes, and 17 ir-
relevant (randomly assigned) Boolean attributes. The
attributes of led-noise is same as led, but 10 % of at-
tribute values are randomly selected and inverted(i.e.,
noise is 10%).

In the case of PCF, CCF and VDM, numeric at-
tributes must be discretized. In the following exper-
iments, normal distribution is assumed for data sets,
and the numeric values are quantized into five equal-
sized intervals.

In the case of QM2 methods, eigen values are calcu-
lated, and each eigen vector is treated as a set of coef-
ficients w~. At the weight calculations of soybean, led,
led-noise data, multiple large eigen values were found.
The number of such eigen values are 18, 7 and 7 respec-
tively. In the case of such data sets, wa for each eigen
value are used to calculate scores, and those scores were
summed to a total score. In the current program, the
largest eigen value is used and, if the next largest eigen
value is larger than half of the former one, w~ derived
from this eigen value is also used. This setting is ad
hoc.

Discussion
In the experimental results, accuracies of the QM2
family (QM2m, QM2y, QM2) is higher or comparable
to other weighting methods. Especially, QM2 becomes
the best method at four benchmark tests, and scores
among the top three at six tests. However, QM2 gets
an extremely low accuracy at the hypo test. The analy-
sis of this result is undergoing. One more claim is that
in led, 100% accuracy could be achieved by our meth-
ods. It indicates that the QM2 family can distinguish
relevant attributes from irrelevant ones. The result of
led-noise shows that the QM2 family can tolerate noisy
data.

One obvious drawback is that weight calculation of
our methods is computationally expensive. Therefore,
it is not economical to use the QM2 family incremen-
tally. Table 5 shows the calculation time for weights.
Our methods take between about ten to a hundred
times longer than PCF/CCF and VDM. However, let
us note two points. Firstly, for such benchmarks, cal-
culation time is at most several seconds. It is not exces-
sive, especially when weights can be calculated before-
hand. Secondly, our method achieve better accuracy,
so weight calculation time may be a reasonable cost to
bear.

Table 5: Weight Calculation Time [sec]

Method iris vote soy- crx hypo hepa-
bean titis

VDM 0.00 0.02 0.08 0.03 0.22 0.01
PCF/CCF 0.00 0.01 0.07 0.02 0.19 0.01

QM2 0.03 0.97 6.45 1.79 5.20 0.22
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Table 3: Experimental Results
iris vote soybean crx hypo hepatitis led led-noise

1 QM2 98.0 QM2 95.0 QM2y 93.4 IB4 86.7 C4.5 99.6 CCF 81.3 QM2y I00.0 QM2 74.3
2 qM2y 96.7 IB4 94.7 QM2 93.4 CCF 83.7 PCF 92.3 QM2y 80.6 QM2m 100.0 IB4 68.9
3 qM2m 95.3 qM2m 94.3 CCF 92.2 VDM 83.3 QM2m 91.0 QM2 80.6 QM2 I00.0 QM2m 66.5
4 CCF 94.7 VDM 93.0 VDM 91.8 QM2m82.9 VDM 90.7 C4.5 80.0 VDM i00.0 VDM 65.5
5 C4.5 94.7 QM2y 92.3 QM2m 91.2 QM2 82.9 CCF 89.2 PCF 79.4 C4.5 I00.0 QM2y 65.0
6 VDM 94.7 C4.5 92.3 IB4 90.3 C4.5 82.7 QM2y 85.8 VDM 79.4 IB4 99.8 C4.5 64.3
7 PCF 92.7 CCF 91.0 C4.5 89.6 QM2y 82.4 IB4 67.Z IB4 78.7 CCF 94.8 PCF 54.7
8 IB4 81.3 PCF 88.0 PCF 51.0 PCF 80.0 QM2 50.2 QM2m76.8 PCF 65.1 CCF 54.7

Table 4: Specification of Benchmark Data
iris vote soybean crx hypo hepatitis led(-noise)

of data 150 300 683 490 2514 155 1000
# of numeric attributes 4 0 0 6 7 6 0
# of symbolic attributes 0 16 35 9 29 13 24

Our method has a statistical optimality criterion
which is to maximize 72, the ratio of variance between
groups cr~ to total variance ~r2. Although this criterion
seems to be close to the optimality of accuracy, it’s not
obvious. To clarify the relation between this criterion
and accuracy needs further research.

Conclusions and Future Work
We proposed a new attribute-weighting method based
on a statistical approach called Quantification Method
II. Our method has several advantages including:
¯ It can handle both numeric and symbolic attributes

within the same framework.

¯ It has a statistical optimal criterion to calculate
weights of attributes.

¯ Experimental results show that it’s accuracy is bet-
ter than or comparable with other weighting meth-
ods, and it also tolerates irrelevant, noisy attributes.

Many things are left as future work including exper-
iments on other benchmark tests, to clarify the bias
of these algorithms(i.e, the relation between our algo-
rithms and natures of problems), combination of case-
weighting methods, and so on.
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