
Toward PAC-Learning of Weights
from Qualitative Distance Information

Ken Satoh, Seishi Okamoto
Fujitsu Laboratories Limited

1015 Kamikodanaka, Nakahara-ku, Kawasaki 211, Japan
Emaihksatoh@flab.fujitsu.co.j p, seishiQflab.fujitsu.co.jp

Fax: +81-44-754-2664
Tel: +81-44-754-2661

Abstract

This paper discusses a mathematical analysis for
learning weights in a similarity function. Although
there are many works on theoretical analyses of case-
based reasoning systems (Aha et al. 1991; Albert 
Aha 1991; Langley & Iba 1993; Janke & Lange 1993),
none has yet theoretically analyzed methods of pro-
ducing a proper similarity function in accordance with
a tendency of cases which many people have already
proposed and empirically analyzed (Stanfill & Waltz
1986; Cardie 1993; Aha 1989; Callan ct al. 1991).
In this paper, as the first step, we provide a PAC learn-
ing framework for weights with qualitative distance
information. Qualitative distance information in this
paper represents how a case is similar to another case.
We give a mathematical analysis for learning weights
from this information.
In this setting, we show that we can efficiently learn a
weight which has an error rate less than ¢ with a proba-
bility more than 1-6 such that the size of pairs in qual-
itative distance information is polynomilally bounded
in the dimension, n, and the inverses of e and 6, and
the running time is polynomially bounded in the size
of pairs.

Introduction
One of the most important mechanisms of CBR sys-
tem is a similarity function. It, however, is usually
defined in such a way that it is closely dependent on
each considered domain. Thus, if we build a CBR sys-
tem in a new domain, we have to consider this mecha-
nism again by making various experiments to produce
a plausible similarity function. We, therefore, should
have some theoretical framework for this mechanism
to reduce costs of finding a proper similarity function.

Some people have been investigating theoretical
analyses of ease-based reasoning systems (Aha et
al. 1991; Albert & Aha 1991; Langley A Iba 1993;
Janke ~ Lange 1993). (Aha et al. 1991) analyses
the nearest neighbor algorithms in a framework simi-
lar to the PAC (probably approximately correct) learn-
ing (Valiant 1984) and (Albert & Aha 1991) general-
izes the results in (Aha et al. 1991) to the k-nearest
neighbor algorithms. (Langley & Iba 1993) analyses

an average case behavior of the nearest neighbor al-
gorithm, and (Janke & Lange 1993) compares case-
based learning with inductive learning in the context
of pattern language learnability. Although these theo-
retical results are important and give some insight for
designing similarity functions, these are analyses for
fized similarity functions and none has yet proposed
any theoretical analyses of producing a proper similar-
ity function in accordance with a tendency of cases.

On the other hand, there are many empirical pro-
posals of changing similarity functions based on stored
cases (Stanfill & Waltz 1986; Cardie 1993) or results
of classification (Aha 1989; Callan et al. 1991). (Stan-
fill & Waltz 1986) uses statistical information from the
stored data to compute weights in the weighted fea-
ture metric which is more successful in the English
pronunciation task than the simple nearest neighbor
algorithm without weights. (Cardie 1993) selects rele-
vant attributes by using a decision tree technique which
are subsequently used in the k-nearest neighbor al-
gorithm. These methods change metric by the ten-
dency of stored cases. (Aha 1989) changes weights 
weighted nearest neighbor in accordance with success
or failure of classification and (Callan et al. 1991) ad-
justs a weight vector in a weighted distance function so
that the distance to a near miss is made greater than
the distance between the current case and the correct
case. However, these are shown to be effective from
empirical evaluations and we need theoretical analyses
for these proposals to understand the behavior of these
changeable similarity functions in general.

In this paper, as the first step, we provide a frame-
work for learning weights from qualitative distance in-
formation. Qualitative distance information represents
how a case is similar to another case. We give a math-
ematical analysis for learning weights from this infor-
mation.

For example, suppose we have two attributes which
take the real value. Each case is represented as a point
in two dimensional Euclidean space. In Figure 1, we
show points in the Euclidean space. We assume that
we know that A is similar to B, and A is not simi-
lar to C without knowing why. This information can
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be represented as NEAR(A, B) and FAR(A, C) if we
assume a proper distance function. If we use a usual
(non-weighted) Euclidean distance function:

dist(A, B) = (A(~) - 2 + (A(y)- B(y) 2,

dist(A, C) is lesser than dist(A, B) and so the informa-
tion of qualitative distance is inconsistent. However, if
we shrink Y dimension to a half, that is, we use the
following distance function:

1
B 2dist(A, B) = (A(~) - 2 + -~(A(y) - (v)

then the information becomes consistent (Figure 2).
This distance function means that the importance of
the attribute Y is a quarter of that of the attribute X.
We would like to find such a proper transformation
consistent with qualitative distance information. This
corresponds with finding proper weights for attributes.

Learning weights in this manner is particularly im-
portant when no categorical information is available.
For example, (Callan et al. 1991) considers the do-
main of the game OTHELLO and retrieves a simi-
lar state to the current state in the previous game
plays. These states are not classified, and so, the
learning methods of weights in (Stanfill & Waltz 1986;
Cardie 1993) are not applicable. This kind of situation
seems to arise in synthesis problem domains such as
scheduling, design and planning.

By generalizing the above example, we consider two
qualitative distance information NEAR and FAR for
n-dimensional Eucledian space which consist of pairs
of points in the space. The intended meaning is that
if a pair in NEAR, distance of the pair should be less
than distance of any pair in FAR. Our problem is to
find some weight vector W in [0, c~)’~ and a positive
constant D such that:

For (A, B) E NEAR,

fi W(0(A(0 - B(0)~ _< D,
i--1

and for (A, B) E FAR,

fiW(o(A(o B(0)2 > 
i----1

where W(0, A(0 and B(0 are i-th component 
W, A and B respectively.

This corresponds with the problem to find a hyper-
oval in the n-dimensional Eucledian space such that

1. If (A, B) E NEAR, then B is inside the oval whose
center is A and vice versa.

2. If (A, B) E FAR, then B is outside the oval whose
center is A and vice versa.

In the above setting, we show that we can efficiently
learn a weight W which has an error rate less than e
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Figure 1: Original Space: inconsistent with the dis-
tance information (A,B) E NEAR and (A,C) 
FAR.

with a probability of at least 1 - 5 such that the size of
pairs in qualitative distance information is polynomi-
lally bounded in the dimension, n and the inverses of e
and 5, and the running time is polynomially bounded
in the size of pairs.

Formal Problem Description

Let P be any probability distribution over n-
dimensional Euclidean space, En. The teacher selects
a weight vector W* from [0, c~)’* and a positive real
number D* which we call a threshold.

The teacher also selects N pairs of points in En × E’~

according to p2 which denotes the two-fold product
probability distribution on E’~ × En. Let a set of se-
lected pairs be X = {(A1, B1), ..., (Alv, BN)}.

The teacher gives the following dichotomy of X,
NEAR and FAR which corresponds with the quali-
tative distance information:

if distw.(A, B) _< D* then (A, B) E NEAR
if distw.(A, B) > D* then (A, B) E FAR

where distw. (A, B) is defined as:

EWi*)(A(o- B(O)2.

i--1

The learning algorithm is required to approximate
the vector W* and D* from the given qualitative dis-
tance information in a finite time. Let W be a vector
in [0, oo)n and D be a positive real number.

The difference between a set of pairs according to
(W,D) and a set of pairs according to (W*,D*),
diff((W, D), (W*, D*)) is defined as the union of
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Figure 2: Transformed Space shrinked half in the Y-
dimension: consistent with the distance information
(A, B) E NEAR and (A, C) E FAR.

{(A,B) ~xE~]

distw(A,B) < and di stw.(A,B) > D*

and

{(A,B) Enx E~I
distw(A,B) > and di stw.(A,B) < D*}.

A pair (W,D) is said to be an e-approximation of
(W*, D*) w.r.t, difference vectors for P~ if the proba-
bility

P2(diff((W, D), (W*, D*)))
is at most e.

The following theorem shows that this framework is
PAC-learnable.

Theorem 1 There exists a learning algorithm which
satisfies the following conditions for all probability dis-
tribution over En, P, and all constants e and 5 in the
range (0, 1):

1. The teacher selects W* and D*.

2. The teacher gives N pairs according to P~ with qual-
itative distance information represented as two sets
of pairs NEAR and FAR according to W* and D*
to the algorithm.

3. The algorithm outputs a weight vector W and a
threshold D.

4. The probability that (W, D) is not 
e-approximation of (W*,D*) w.r.t, difference vec-
tors for p2 is less than 6.

5. The size of required pairs N is bounded by a polyno-
1 1mial in n, 7, "g and its running time is bounded by

a polynomial in the size of required pairs.

Proof: Let w be a vector in [0, oo)n and d be a positive
real number and P~ be a probability distribution over
[0, co)n. We say that (w, d) is an e-approximation 
(w*,d*) w.r.t, points for pi 

P’({x E [0, c~)~]w ̄  x _< d and w*. x > d*}
U{x E [0, oo)’~[w̄  x > d and w*. x _< d*}) _< 

where ̄ is the inner product of vectors.
According to the result in (Blumer et al. 1989) for

learning half-spaces separated by a hyperplane, there
exists a learning algorithm which satisfies the follow-
ing conditions for every distribution P~ on [0, c~)n and
every ¢ and 6 in the range of (0, 1),

1. The teacher selects w* in [0, c~)n and a positive real
number d*.

2. The teacher gives a set X of N points according to
P~ with dichotomy (X+,X-) of X defined below:

for every x E X+, w*. x _< d*, and

for every x E X-, w* ̄  x > d*.

3. The algorithm outputs a vector w and a positive real
number d such that the probability that (w, d) is not
an e-approximation of (w*, d*) w.r.t, points for 
is less than 5.

4. Since the VC dimension of this problem is n + 1,
according to Theorem 2.1 in (Blumer et al. 1989),
the number of required points N is at most

4 2 8(n+ 1) 1og213) (i)
max( logs 5’ ~ 

and any algorithm which produces consistent values
of w and d with the following constraints:

for everyxEX +,w.x<d, and

for every x E X-,w. x > d (2)

can be a learning algorithm.

We can use a linear programming algorithm (for
example, Karmarkar’s algorithm(Karmarker 1984))
for the above algorithm by considering the following
constraints:

for everyxEX +,w.x<d, and

for every x E X-,w ¯ x _> d+ 1.

Clearly, there exists a solution for these constraints if
and only if there exists a solution for the constraints
(2) and the time of finding w and d is bounded by 
polynomial of n.

Then, we translate the problem in the statement of
the theorem into the following:

1. Instead of a pair (A,B), we consider a point XA_B
in [0, oo)~ such that

XA-, = ((A(1)-B(1))2, (A(2)-B(2)):, ..., (A(n)-B(n))2).

The probability distribution P" for XA-B is defined
according to the original probability distribution P~.

Lw~
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Learn-from_qualitative_dist ance (e,5,n)
e: accuracy
5: confidence
n: the number of dimension
begin

Receive max(41og22 8(n+ 1)log213) pairs of
5’ e e

points and their dichotomy from the teacher.
for every pair (A, B) E NEAR

add the following inequality to the constraint set:

distw (A, B) < 

for every pair (A, B) E FAR
add the following inequality to the constraint set:

distw(A, B) > D + 

Get consistent values for the above constraint set
by linear programming and output W(i)s and 

end

Figure 3: algorithm for qualitative distance

2. Then, the condition that an e-approximation of
(W*,D*) w.r.t, difference vectors for p2 becomes
an e-approximation of (W*,D*) w.r.t, points for
the distribution pN.

3. And the qualitative distance information is equiva-
lent to the following conditions:

For every (A, B) E NEAR, W* ̄  XA-B D*,

and for every (A, B) E FAR, W* ̄  XA_B > D*.

From the above discussion, by using a linear program-
ming algorithm, we can find W and D such that the
probability that (W, D) is not an e-approximation 
(W*,D*) w.r.t, points for P" is less than 5 with re-
quired points bounded by (1) and the time of finding 
and d is bounded by a polynomial of n. Since if (W, D)
is an e-approximation of (W*, D*) w.r.t, points for pll
then (W,D) is an e-approximation of (W*, D*) w.r.t.
difference vectors for p2, W and D are a wanted weight
and a wanted threshold for the original problem. []

We show the overall algorithm to compute a weight
and a threshold from qualitative distance information
in Fig 3.

Extension
In this section, we discuss an extension to relative dis-
tance information. In the previous section, we divide a
sample set of pairs into two sets FAR and NEAR.
Instead of that, we now consider triples of points
(A, B, C) which express the order of distw. (A, B) and
distw.(A,C). This kind of setting has been used in
the multidimensional scaling and called the method of
triads (Torgerson 1952).

Let P be any probability distribution over n-
dimensional Euclidean space, En. The teacher se-
lects a weight vector W* from [0,~)n. The teacher
selects N triples of points in En × En x En accord-
ing to p3. Let a set of selected triples be X =
{(A1, B1, C1), ..., (AN, BN, ON)}.

The teacher gives the following relative distance in-
formation for every triple (A, B, C) E 

if distw.(A, B) < distw. (A, then (A,B) _< (A, 
if distw. (A, B) > distw. (A, then (A,B) >(A,

Let W be a vector in [0, co)n. The difference between
W and W*, diff(W,W*) is defined as the union of

{(A, B, C) E n xEnx En Idi stw (A,B) <_ dist w (A, 
and distw. (A, B) > distw. (A, C)}

and

{(A, B, C) E n xEnx En Idi stw (A,B) >distw(A, C)
and distw.(A, B) <_ distw.(A, C)}.

W is said to be an e-approximation of W*
w.r.t, relative distance for pa if the probability of
p3(diff(W, W*)) is at most e.

The following theorem shows that this framework is
also PAC-learnable.

Theorem 2 There exists a learning algorithm which
satisfies the following conditions for all probability dis-
tribution over E~, P, and all constants e and 5 in the
range (0, 1):

1. The teacher selects W*.
2. The teacher gives N triples according to p3 with rel-

ative distance information according to W* to the
algorithm.

3. The algorithm outputs a weight vector W.

4. The probability that W is not an e-approximation of
W* w.r.t, relative distance for p3 is less than 5.

5. The size of required triples N is bounded by a poly-
nomial in n, ~, ~ and its running time is bounded
by a polynomial in the size of required ~riples.

Proof: We translate the above problem into the fol-
lowing problem:

1. Instead of a triple (A,B,C), we consider a point
X(A,S,c) in E~ such that

x(A,B,C) = (x(1),..., x(,~))
where x(i ) = (A(i) - B(i)) 2 - (A(i) - C(0)2.
The probability distribution P~ for X(A s c) is de-
fined according to the original probab]lity distribu-
tion p3.

2. Then, the relative distance information is equivalent
to the following conditions:

For (A, B) <_ (A, C), W* ̄  X(A,S,C) 

and for (A, B) > (A, C), W* ̄  X(A,B,C) > O.
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Learn_from_relative_dist ance(e,5,n)
e: accuracy
6: confidence
n: the number of dimension
begin

4 2 8n 13
Receive max(Tlog2-~, --log2e ""~) triples of

points and their relative distance information
from the teacher.
for every triple (A, B, C)

if (A, B) < (A, 
then add the following inequality to the

constraint set:

distw(g, B) <_ distw(A, 

if (A, B) > (A, 
then add the following inequality to the

constraint set:

distw (A, B) > distw (A, C) + 

Get consistent values for the above constraint set
by linear programming and output W(i)s.

end

Figure 4: algorithm for relative distance

3. Then, the translated problem becomes a problem to
learn a half-space separated by a hyperplane through
the origin.

Since the VC dimension of translated problem is n, the
number of required triples is

4 2 8n. 13.
max( TlOg2-~ (3)-jlog2T)

and by using linear programming algorithm, we can
find a consistent W for the above relative distance in-
formation with the running time bounded by polyno-
mial of n. []

We show the overM1 algorithm to compute a weight
from relative distance information in Fig 4.

Conclusion
This paper discusses about a theoretical framework for
learning weights in a similarity function. In this paper,
we show that by using two kinds of qualitative distance
information NEAR and FAR, we can efficiently learn
a weight which has an error rate less than e with a
probability of at least 1 - 5. We also discuss an ex-
tension to learning a weight from relative distance in-
formation. We are now planning to make experiments
based on this method in various domains.
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