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Abstract

We argue that the process of designing effective systems for
case retrieval should not be divorced from the process of
evaluation. Developing a suitable representation vocabulary
for indices, and suitable mechanisms for case retrieval should
proceed in an iterative fashion, guided by the joint applica-
tion of sound AI principles, domain expertise, and empirical
evaluation.
We lay out the key components of a case retrieval system and
suggest procedures for evaluating each component. We illus-
trate our claims using the Metvuw Workbench, a system for
intelligent retrieval and display of historical meteorological
data.

Introduction
Case retrieval is an important component of case-based
reasoning. Design of a case retriever requires address-
ing the indexing problem (Domeshek 1991; Schank 1982;
Schank & Fano 1992): the problem of accessing appro-
priate cases using partial descriptions of their content. In
this paper, we argue that solutions to the indexing problem
should be developed by an iterative process of design and
evaluation, and that this process is to a significant extent an
experimental and empirical enterprise. Evaluation should
not be carried out only after completion of a system, but
should serve as an integral part of the development process.

We draw on our experience with the design and imple-
mentation of MetvOw Workbench, a system for intelligent
retrieval and display of historical meteorological data (Roy-
dhouse et al. 1993; Jones & Roydhouse 1994). The system
is intended to serve as a "memory amplifier" for meteorolo-
gists that allows them to rapidly locate historical situations
of interest. In particular, weather forecasters should be able
to use the system to quickly retrieve past cases that are
similar to the current situation in meteorologically signifi-
cant respects, providing them with an additional source of
information to supplement the output of numerical models.

Each case is a slice of time for which meteorological
data is available. The data available to us includes satellite
imagery stored both in digital form and on laser disc, a
document archive, and numeric fields from the European
Center for Medium-range Weather Forecasting (ECMWF).
Examples of numeric fields include pressure, temperature,
relative humidity, wind speed, and relative vorticity, all of
which are available at 14 different levels of the atmosphere.

We are working with a portion of this numeric data that
covers the Australasian region.

Cases are indexed and retrieved in terms of high-level
descriptions of the content of their numeric fields. Numeric
fields are available at 12-hour intervals. We currently pos-
sess 3.5 years (1.6Gb) of data, which allows us to build 
case base containing some 2500 cases. The experiments
described in this paper, however, were carried out on a 550-
case subset of the data. In the near future, we plan to obtain
an additional 10 years of data, allowing us to expand the
case base to 10,000 cases (6Gb).

Metvuw Workbench is intended to serve as an intelli-
gent assistant that empowers a human expert. For example,
forecasters at the Meteorological Service of New Zealand
currently engage in a "map session" every day at 10am,
at which they compare competing prognoses to arrive at
a consensus forecast. Metvuw Workbench is designed to
provide valuable input to discussions such as these. We
envisage that forecasters will follow three steps when using
the system:

1. Determine the meteorological processes and systems that
appear to be driving the current weather situation.

2. Formulate a query to Metvuw Workbench in terms of
these processes and systems.

3. Analyze and summarize the cases that the system returns,
or display any of the data associated with particular re-
trieved cases.

Metvow Workbench is a case retrieval system as opposed
to a full case-based reasoner. Case retrieval is viewed as
a process of comparing queries (sometimes called index
probes (Domeshek 1991)) against explicitly represented in-
dexlabels. Queries identify particular features of the current
situation that appear to be meteorologically significant. In-
dex labels are representations of high-level features of the
weather situation in the case. As far as possible, index la-
bels are extracted automatically or semi-automatically from
the raw data. We are currently focusing on features such as
local minima and maxima that are easy to derive automat-
ically from ECMWF fields. In the medium term, we plan to
address the much harder problem of extracting high-level
features from satellite imagery.

The remainder of this paper is structured as follows. We
first describe the architecture of Metvow Workbench and
identify four kinds of evaluation for Metvuw Workbench
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and other case retrieval systems with this architecture. Next,
we sketch MetVuw Workbench’s representations for index
labels and describe similarity assessment. We then intro-
duce important issues in case selection in Metvuw Work-
bench and report some preliminary evaluations of algo-
rithms for case selection, explaining how they have con-
tributed to a process of iterative design and evaluation. We
conclude with a brief discussion of future work.

System Architecture and Evaluation
The appropriate role of evaluation in the design of a case
retrieval system is in part a function of the architecture of the
retrieval engine. In this section, we describe the architecture
of Metvuw Workbench, and then use this description to
identify four kinds of evaluation that are appropriate for this
architecture.

The architecture of MetVUW Workbench
Figure 1 depicts the architecture of Metvuw Workbench.
The user interacts with the system via a query constructor,
which allows meteorologists to formulate queries in terms
of high-level descriptions of the meteorological systems and
processes that appear to be relevant in the current situation.
Users can describe high-level features of past weather situa-
tions. These features include low and high pressure systems,
ridges, troughs, and jet streams. Eventually, it should also
be possible to represent properties of these objects as they
develop over time, such as the track of the pressure mini-
mum of a low-pressure system.
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Figure 1: Architecture for case retrieval

Users construct queries by drawing representations of me-
teorological phenomena on a rectangular canvas that depicts
a region of the globe. These phenomena are represented by
points, lines, and regions, using a notation similar to an ab-
stract weather map. This kind of interface was chosen so
that the components of queries can be entered quickly and
easily using a notation that is familiar to forecasters.

A sample query is shown in figure 2. The query requests
a low-pressure system with an upper-level trough situated
to the northwest at a distance of 400--600km. The "+30rob"
marking indicates that there is a 30mb pressure difference
between the contour so labeled and the lowest pressure at
any point within it.

Figure 2: A query

After a query is constructed, a symbolic representation of
it is passed to the case selector, which uses key features of
the query as indices for retrieving past situations or cases.
The purpose of case selection is to allow the time it takes to
retrieve a given number of cases to scale sub-linearly with
the size of the case base. In particular, case selection cannot
simply scan the entire case base.l

Case selection presupposes a suitable memory organiza-
tion for index labels, and a retrieval mechanism that exploits
this memory organization to efficiently access cases whose
labels match a query. As we discuss in more detail below,
Metvuw Workbench uses an advanced relational database
called Postgres to implement case selection (Stonebraker 
Rowe 1986). This "heavy duty" machinery was chosen so
that the system can readily scale up to a very large case base.
Case selection is efficient because it employs a number of
sophisticated indexing strategies provided by Postgres, in-
cluding R-tree indexing of spatial data (Guttman 1984).

Once a collection of past cases has been retrieved, they are
passed to the similarity assessor, which uses a knowledge-
intensive partial matching process to rank them according to
how well they match the query. Those cases whose match
quality falls below some threshold are discarded.

Case retrieval thus proceeds in two stages. First, case
selection uses efficient retrieval machinery--in Metvow
Workbench, a sophisticated relational database--to quickly

~We assume serial computer hardware.
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identify a manageable number of candidate cases that need
to be explicitly considered. Second, these cases are fur-
ther filtered and ranked using a more costly but more ac-
curate process of similarity assessment. This combination
of case selection and similarity assessment facilitates fast,
high quality retrieval.

It is important to distinguish two notions of retrieval that
arise in this architecture: case retrieval itself, and what we
are calling case selection. Each has its own representation
vocabulary for index labels. Case selection employs simple
labels that meet the often strict constraints of its efficient
retrieval mechanisms. In contrast, case retrieval employs a
richer representation vocabulary that also supports similar-
ity assessment.

For example, Postgres’ R-tree indexing mechanism al-
lows efficient retrieval of rectangular regions oriented along
lines of latitude and longitude that are spatially related in
some way to a similarly oriented rectangular region in a
query. Spatial relations include contains, contained-in, and
overlaps. Because R-tree indexing is available, queries in
Metvuw Workbench employ rectangular bounding boxes
of low and high-pressure systems as index labels for case
selection. Moreover, queries request cases containing sys-
tems that bear one of Postgres’ build-in spatial relations to
the corresponding system in the query. In contrast, simi-
larity assessment uses arbitrary polygons to represent low
and high pressure systems, and computes a more complex
(and more informative) relation of graded match between
corresponding systems in the query and the case.

Four kinds of evaluation

The architecture of Metvuw Workbench suggests evalu-
ating the system along two dimensions. Along the first
dimension, it is possible to separately evaluate either case
selection or similarity assessment components. Along the
second dimension, one can evaluate either the effectiveness
of each component’s representations for index labels or the
utility of its algorithms. We now examine each of the four
kinds of evaluation that these possibilities give rise to.

Similarity assessment must be evaluated with respect to
the requirements of end users of the system. Recall that sim-
ilarity assessment produces a ranked list of cases for further
processing. Evaluation of similarity assessment focuses on
the following questions:

1. Representation vocabulary. Do the index labels encode
representational distinctions that matter to the user?

2. Algorithms. Do computations of graded match between
queries and cases produce an appropriate ranking of the
cases?

Answering these questions typically requires detailed con-
sultations with users and domain experts. We do not con-
sider evaluation of similarity assessment further in this pa-
per.

Case selection, in contrast, can often be evaluated without
consulting users or experts, assuming that appropriate pro-
cedures for similarity assessment are already in place. Case
selection exists for efficiency reasons only: if similarity
assessment were adequately efficient, or scaling considera-
tions unimportant, then case retrieval could be implemented

simply by applying similarity assessment to the entire case
base and returning those cases that well match the query. Let
us call the list of cases produced in this way the benchmark
list (for a given query).

Benchmark lists of cases produced by similarity assess-
ment provide a convenient standard for evaluating case se-
lection. A procedure for case selection cannot be faulted
if when using this procedure, case retrieval successfully re-
turns exactly the benchmark list.

Like similarity assessment, case selection can be evalu-
ated with respect to both index representations and algo-
rithms:

3. Representation vocabulary. Are the index labels suffi-
ciently expressive? Are they liberal enough to permit
retrieval of most cases judged to be a good match by sim-
ilarity assessment? Are they conservative enough to filter
out most of the irrelevant cases?

4. Algorithms. Does the time complexity of case selection
scale well with the size of the database?

In contrast to similarity assessment, however, questions
of efficiency are more central to case selection. This is not
to imply that efficiency is not also important for similarity
assessment. However, the quality of case selection directly
impacts the efficiency of the entire retrieval system: if case
selection retrieves many irrelevant cases, then similarity
assessment will take much longer, because it must scan
all of the cases that case selection returns.

Two standard evaluation metrics from the information
retrieval literature are useful in evaluation of case selec-
tion (Jacobs 1992):

¯ The precision of an information retrieval system is the
percentage of items retrieved in response to a query that
are good answers to the query.

¯ The recall of an information retrieval system is the pro-
portion of good answers to a query that the system re-
trieved, expressed as a percentage of the total number of
good answers that exist in the entire database.

In the context of case selection, precision measures the per-
centage of candidates returned by case selection that are
contained in a query’s benchmark list. In contrast, recall
measures the proportion of candidates returned by case se-
lection that are in the benchmark list.

For a wide variety of retrieval problems, there is a tradeoff
between recall and precision. A given algorithm for case
selection may be able to achieve a high level of recall, but
in general this requires sacrificing precision. The extreme
case is to retrieve the entire case base, which achieves 100%
recall at the price of very low precision.

It follows that a good measure of the overall quality of
a case selection algorithm is the precision it achieves for a
given (acceptable) level of recall. This measure is especially
useful for our purposes because it correlates closely with the
time efficiency of the overall case retrieval system.

In the next section, we outline some of MetVuw Work-
bench’s representations for index labels and algorithms for
case selection and similarity assessment. We then report on
some initial experiments concerning the evaluation of case
selection in Metvuw Workbench.
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Representing Queries and Index Labels

Queries are constructed using graphical objects such as
points, vectors, and regions, which denote high-level mete-
orological features. There are three kinds of features: static,
dynamic, and relational. Static features describe meteoro-
logical phenomena at particular points in time. Examples
include the center and extent of a low pressure system, the
orientation of a ridge or trough, and wind direction. Dy-
namic features encode properties of these phenomena as
they vary over time, such as the path followed by a low
pressure system or whether a trough is intensifying. Rela-
tional features encode spatial constraints between features.

Corresponding to each graphical object in a query there
is an underlying symbolic representation that is used in case
retrieval. Index labels are also constructed using the same
representation vocabulary. In this paper, rather than attempt-
ing a survey of the full range of available representations,
we restrict our attention to representation of low pressure
systems.

Our representation for low pressure systems encodes key
aspects of their shape, geographical extent, and intensity that
experts consider to have important meteorological implica-
tions. Simple low pressure systems--that is, systems with a
single pressure minimum---have few interesting shape prop-
erties; they are generally close to circular or elliptical. Only
the geographical extent of these systems and the location
of their pressure minima are considered meteorologically
significant by forecasters.2

Although simple low pressure systems have uninteresting
shapes, they are often clustered together into groups of two
or more that overlap; see figure 3. The entire region covered
by a cluster is likely to experience adverse weather, espe-
cially near centers of low pressure. It is therefore important
to encode the shape of clusters in a way that makes clear the
location of regions of low pressure.

l’_/

I J~

I ’~ II

00hrs, 4 Aug, 1990 NZST 00hrs, 17 Aug, 1990 NZST

Figure 3: Two complex low pressure systems.

A cluster is represented as a tree whose leaves are simple
low pressure systems and whose internal nodes are smaller
clusters. One cluster is an ancestor of another in the tree
if and only if there is a pressure contour associated with
the ancestor that completely encloses the contours of its
descendant. This tree structure is used during similarity
assessment to compute a measure of the degree of structural
match between a query and a case.

ZHigh pressure systems are another matter, as we discuss
in (Jones & Roydhouse 1994).
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Figure 4: Relation scheme for low-pressure systems.
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Figure 5: Representation of a typical cluster.

All of this information is automatically extracted from the
numerical ECMWF data, and stored in the Postgres relational
database using the relation scheme depicted in figure 4.
Each case is allocated a unique identifier, as is each region of
low pressure. Clusters are built up out of individual regions
of low pressure; the tree structure of a cluster is encoded
using the "Parent Id" field of the "Region" relation. Other
high-level features of cases such as ridges, troughs, and
high-pressure systems are encoded using further relations
similar to "Region."

Regions of low pressure are used to represent both the
simple low pressure systems at cluster leaves and the en-
closing contours that make up the internal nodes of the
tree. The algorithm that automatically extracts these con-
tours from the ECMWF data selects closed contours that are as
large as possible and yet preserve cluster structure. For each
region, we store the location and mean sea-level pressure
of the pressure minimum, together with a high-resolution
polygon that represents its outer boundary. Case selection
works with a rectangular bounding box that approximates
this polygon, but similarity assessment can access the full
polygon to compute such quantities as degree of overlap
with a region in the query. The mean sea-level pressure at
the polygonal boundary is also stored. The representation
of a typical cluster is depicted in figure 5.

Similarity Assessment
The similarity assessor is handed a query and a set of cases
retrieved by the case selector, and sorts the cases by their
degree of partial match to the query. Cases that match too
poorly are discarded.

Developing appropriate representations and algorithms
for similarity assessment requires exploring a space of de-
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sign decisions. It is useful to divide similarity assessment
into two subtasks: assessing similarity between individual
low pressure regions in a query and a case, and using clus-
ter structure to combine those assessments into an overall
assessment of goodness of match. We now consider each
of these subtasks in turn.

Assessing similarity of individual low-pressure
regions
For purposes of pairwise matching, similarity assessment
makes no distinction between regions internal to a cluster
and the simple low pressure systems at the cluster’s leaves.
To compute the similarity between a low pressure region
in a query and a corresponding region in a case, Metvuw
Workbench computes the following five parameters.

1. Relative location of pressure minimums. A measure of
the displacement between the pressure minimums of a
region in the query and a region in the case is computed.
Longitudinal (east-west) displacements are usually of less
concern than latitudinal (north-south) displacements, be-
cause weather systems tend to naturally progress from
west to east, and small displacements in this dimension
can be attributed to infrequency of sampling. Latitudi-
nal displacements, on the other hand, are penalized more
heavily because the observed weather at a given location
is considerably affected by such deviations, and because
the physical behaviour of weather systems is strongly
conditioned by their latitude.

Aspect ratio. The aspect ratio of a low pressure system
is the ratio of its lengths of the sides of its bounding box.
Aspect ratio gives a cheap measure of the shape of a low
pressure region.

Density. We define the density of a low pressure region
to be the ratio of the area of its high-resolution polygonal
approximation to the area of its bounding box. Density
gives a second inexpensive measure of region shape.
Aligned overlap. The pressure minima of two low pres-
sure systems to be compared are aligned, then the ratio
of the area of the overlap between their bounding boxes
to the combined area they cover is computed. This ratio
gives a third way of computing similarity of shape.
Area. The three previous parameters all facilitate compar-
isons of shape independent of a region’s size. However,
the relative size of low pressure regions to be compared is
also important, so the area of the high-resolution polygo-
nal approximation to each region is also considered as a
separate parameter (even though it is also used to compute
density).

These parameters are combined to compute a goodness of
match between a pair of low pressure regions. Eight num-
bers are computed in all: the degree of match on relative
location of pressure minima, the degree of aligned overlap,
and the aspect ratio, density, and area of each of the regions
to be compared. The goodness of match is computed as the
sum of the first two parameters together with the ratios of the
smaller to the larger value for each of the other parameters,
using appropriate weights for each summand. Similarity
assessment does not currently consider the intensity of low
pressure systems; this needs to be fixed.

.

.

.

.

Assessing similarity of clusters
Metvuw Workbench computes an overall goodness of
match between clusters in a query and a case by assess-
ing both the goodness of match between individual low
pressure regions and the degree of structural match between
the clusters. Exactly how these assessments should trade off
against one another is a difficult issue, and we are still exper-
imenting with different alternatives. Metvuw Workbench
currently employs a form of breadth-bounded depth-first
search with successor ordering (Pearl 1984) that appears 
strike an appropriate balance.

We enforce the following structural constraints on the
possible sets of correspondences between low pressure re-
gions of a query and a case. First, the relation that the
correspondences define must be one-to-one. That is, no re-
gion in a query can correspond to more than one region in
the case, and no region in the case can correspond to more
than one region in the query. Second, if a region Rq in the
query corresponds to a region Rc in a case, then no child
of Rq may correspond to a parent or sibling of Re, and no
child of Rc may correspond to a parent or sibling of Rq. A
correspondence that violates these constraints is said to be
structurally inconsistent with the correspondence ( Rq , Re).

An informal description of the matching algorithm is as
follows. First, the goodness of match between each pair of
low pressure regions in the query and the case is computed.
Pairs whose similarity falls beneath a certain threshold are
not considered further in the search. The remaining pairs
are sorted according to their goodness of match and stored
on an ordered list L.

Next, a breadth-bounded backtracking search is per-
formed through the space of possible correspondences be-
tween regions in the query and regions in the case. At each
stage of the search, the best remaining pair (Rq, Re) 
L is selected and used to extend the current partial match.
All pairs that are structurally inconsistent with (Rq, Re) are
removed from L. The search proceeds in a depth-first man-
ner, bottoming out when L is empty. Each terminal node
of the search represents a possible best match (set of pairs)
between the query and the case. Upon backtracking, the
previous value of L is restored (except that the pair most
recently used to extend that node of the search is discarded),
and the next best remaining pair on L is used to extend the
partial match. At each level of the search, only the k best
pairs are considered, for some small integer k. The param-
eter k constrains the breadth of the search, and can be tuned
as needed. A small k produces very fast search, but risks
not finding a good match.

Case Selection
High quality case selection requires a choice of indices that
achieve good recall without unduly sacrificing either preci-
sion or speed of case selection itself. This requires finding
indices that closely mimic the behavior of similarity assess-
ment. However, the available indices are constrained by the
kinds of index mechanisms that Postgres provides.

Two kinds of design decision must be made to arrive at a
procedure for case selection:

1. Representation choice. Which features of the full index
label should case selection be sensitive to? For example,
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Method Description Sample Postquel query

retrieve (r.situation) from r in region where r.classification 
1 The bounding boxes overlap "low"::charl6 and r.bounds && "(162.8,-53.8,183.6,-29.3)"::box

The pressure minimum of one sys- retrieve (r.situation) from r in region where r.classification 
2 tem is contained in the bounding "low"::charl6 and (r.centre ~ "(162.8,-53.8,183.6,-29.3)"::box 

box of the other "(173.1,-41.4)"::point ~ r.bounds)

Both the pressure minima are within
retrieve (r.situation) from r in region where r.classification 
"low"::charl6 and r.centre ~ "(162.8,-53.8,183.6,-29.3)"::box and3 the overlap of the bounding boxes r.bounds ~ "(173.1,-41.4)"::point

Figure 6: Index representations

should case selection be sensitive to cluster structure or
not? Should case selection consider the pressure mini-
mum of a low pressure region, or the region’s geographic
extent, or both?

2. Adjustable parameters. If geographic extent is consid-
ered, then Postgres’ R-tree indexing mechanism must be
employed to achieve adequate efficiency, with its restric-
tion to rectangular regions. How should suitable dimen-
sions for rectangular boxes in a Postgres query be com-
puted from the low-pressure regions present in a user’s
query? For example, should bounding boxes for these
regions be employed, or larger rectangles? As we will
see below, larger rectangles turn out to yield better perfor-
mance. A parameter describing exactly how much larger
to make these rectangles needs to be adjusted on the basis
of empirical data.

In the next section, we describe several alternative ap-
proaches to case selection in more detail.

Evaluation

It should be clear from the discussion so far that developing
representations and algorithms for case selection and sim-
ilarity assessment necessarily involves a large number of
design decisions, many of which should only be made on
the basis of empirical evaluation.

There is an important sense in which designing a case re-
trieval system requires a kind of hill-climbing search, guided
by empirical considerations. At each stage in the search, a
range of possible choices is considered and evaluated, and
the best one selected. To illustrate this process, we next
briefly describe two preliminary experiments regarding re-
trieval of low pressure systems that we carried out as part
of developing MetvUw Workbench’s current algorithm for
case selection.

Experiment 1: Representation choice for case
selection

We evaluated three possible index representations for case
selection involving queries that mention only low-pressure
systems. These index representations are summarized in
figure 6. The third column exemplifies actual queries to
Postgres that case selection constructs in response to a
query from the user involving a single low pressure system.
Queries to Postgres are represented in Postquel, Postgres’
query language.

Five representative queries were chosen and tested using
each index representation. The average precision and recall
of each was computed with respect to the "benchmark set"
obtained by applying similarity assessment to the entire case
base. The results of our analysis are presented in figure 7.

I Method [ Precision [Recall [
1 0.14 0.80
2 0.22 0.60
3 0.58 0.28

Figure 7: Results of experiment 1.

It is instructive to recount the history of design decisions
that led us to consider these choices of index representation
for case selection. Throughout the design process, our aim
was to maximize precision without unduly sacrificing recall.

We started with the most simple-minded approach pos-
sible: retrieve a case in response to a query if each low
pressure system in the query overlaps a low pressure system
in the case (method 1 in figure 7). We quickly discovered
that this strategy produces quite low precision. We therefore
tried incorporating pressure minima into case selection in
an effort to improve precision. As can be seen from figure 7,
quite high precision was obtained for method 3 but at the
cost of unacceptably low recall.

The results of this first experiment led us to explore new
ways to improve recall while maintaining precision. Our
next hypothesis was to modify methods 2 and 3 to retain
sensitivity to pressure minima, but allow a degree of lati-
tudinal and longitudinal displacement between systems in
a query and corresponding systems in a case. Our ratio-
nale was as follows: similarity assessment also permits a
certain amount of displacement, so if we also allow a little
displacement in queries, case selection should mimic simi-
larity assessment more closely. It is therefore reasonable to
expect an improvement in recall without incurring a huge
penalty for precision.

Experiment 2: Parameter choice---geographic
displacement
In this experiment, we made two changes to the Postgres
queries constructed by case selection to permit geographic
displacements between low pressure systems in queries and
cases. First, we introduced two new adjustable parameters
Lat and Long that specify amounts to expand rectangu-
lar bounding boxes of low pressure systems in queries in
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the north-south and east-west directions respectively. The
new queries permit a degree of geographical displacement
between regions in queries and corresponding regions in
cases. Second, we replaced each pressure minimum in the
query with a rectangular region whose dimensions are Lat
and Long, and we replaced each test of point containment
involving this minimum with a corresponding test of overlap
with the new region. It is easy to see that this partially re-
laxes the constraint that pressure minima in the query must
be contained in a low pressure system in the case.

We tried three different settings for Long and two different
settings for Lat. The results are summarized in figure 8. We
did not carry out tests for cells whose expected precision
was less than 10%. The results for method 2 are largely
negative: there appears to be a straightforward and relatively
uninteresting tradeoff between precision and recall, and no
choice of values for Lat and Long seems to yield results
clearly superior to the methods of experiment 1. It appears
that the requirement that only one pressure minimum be
approximately contained in the bounding box of the region
it is matched against does not sufficiently constrain case
selection to produce good results.

The results for method 3 are more encouraging. Rela-
tively high levels of both precision and recall are achieved
for a number of settings for Lat and Long. For example, the
setting {Lat = 4°, Lon9 = 10°} achieves the same recall
as method 2 of experiment 1, but with significantly better
precision.

Method 2 Method 3

o
0.60 0.68 0.75 0.28 0.32 0.35
0.22 0.18 0.14 0.58 0.31 0.27
0.73 0.82 0.87 0.45 0.53 0.57

5° 0.20 0.13 0.10 0.56 0.37 0.27
0.82 0.90 0.48 0.60 0.65

10° 0.17 0.10 0.48 0.34 0.21
0.82 0.53 0.68 0.73

15° 0.14 0.41 0.28 0.18

Lat = Permitted latitudinal displacement
Long = Permitted longitudinal displacement

Figure 8: Results of experiment 2 (recall/precision).

Conclusions and Future Work
The two experiments describe above only consider a small
region of the space of design decisions that have gone into
Metvuw Workbench’s case retrieval system. For example,
we have not discussed evaluation of similarity assessment.
Nevertheless, these experiments well illustrate the utility of
a process of iterative design. More generally, we believe
that the large number of decisions that go into the design of
a case retrieval system, and the difficulty of assessing their
impact a priori, make the design process an enterprise with
a necessarily empirical component.

Earlier we used a metaphor of hill-climbing search to
describe the design process. We are actively considering

whether it might be possible to take this metaphor liter-
ally, and automate part of the design-evaluation cycle. De-
sign decisions can be divided into two categories: choices
of appropriate representational distinctions and "parameter
tweaking," in which a good value for a numeric parame-
ter is selected. Decisions as to representational distinctions
cannot be easily automated, as formulating the available op-
tions appears to require both human intuition and A/exper-
tise. Choosing appropriate values for numerical parameters,
however, may be easier to automate.

In this paper, we have seen a number of adjustable nu-
merical parameters: weights for matching of latitudinal and
longitudinal displacement, aspect ratios, density, area, and
the like when matching regions of low pressure; width of
search in structure matching; and degree of allowed latitudi-
nal and longitudinal displacement in case selection. Perhaps
hill-climbing techniques from machine learning can be used
to explore this parameter space in an attempt to optimize the
choice of parameter values? We intend to explore this idea
in our future research.

Acknowledgements
This research was carried out in collaboration with James
McGregor of the Institute of Geophysics at Victoria Univer-
sity of Wellington. Thanks to Linton Miller for commenting
on a draft of this paper, and to Erik Brenstrum of the Me-
teorological Service of New Zealand for useful discussions
regarding the meteorologically significant features of low
and high pressure systems. The Meteorological Service of
New Zealand provided the situation maps in figure 3.

References
Domeshek, E. A. 1991. Indexing stories as social advice. In Pro-
ceedings, Ninth National Conference of Artificial Intelligence,
volume 1, 16-21. AAAI Press.
Guttman, A. 1984. R-trees: A dynamic index structure for
spatial searching. In Proceedings of the 1984 ACM-SIGMOD
Conference on Management of Data. Boston, Massachusetts:
ACM-SIGMOD.
Jacobs, P. S., ed. 1992. Text-Basedlntelligent Systems. Lawrence
Erlbanm Associates.
Jones, E. K., and Roydhouse, A. 1994. Intelligent retrieval of
historical meteorological data. To appear in AI Applications.
Also available as Technical report CS-TR-93/8, Victoria Univer-
sity of Wellington. URL: ftp://ftphost.comp.vuw.ac.nz/doclvuw-
publications/CS-TR-93/CS-TR-93-8.ps.gz.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Reading, MA: Addison-Wesley.
Roydhouse, A.; Miller, L.; Jones, E.; and McGregor, J. 1993.
The design and implementation of MetVUW Workbench ver-
sion 1.0. Technical Report CS-TR-93/7, Victoria University
of Wellington. URL: ftp://ftphost.comp.vuw.ac.nz/doc/vuw-
publications/CS-TR-93/CS-TR-93-7.ps.gz.
Schank, R. C., and Fano, A. 1992. A thematic hierarchy for
indexing stories in social domains. Technical report, The Institute
for the Learning Sciences, Northwestern University.
Schank, R. C. 1982. Dynamic Memory. Cambridge, England:
Cambridge University Press.
Stonebraker, M., and Rowe, L. 1986. The design of Postgres. In
Proceedings of the 1986 SIGMOD Conference on Management
of Data. ACM Press.

156




