\$7?

From: AAAI Technical Report WS-94-01. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved.

Evaluating a Case-Based Planning System *

Brian Kettler and James Hendler

Department of Computer Science
University of Maryland
College Park, MD 20742

{kettler,hendler }@cs.umd.edu
Phone: 301-405-7027

Abstract

CaPER is a case-based planning system that makes
use of the massive parallelism of the Connection Ma-
chine to access a large memory of hundreds or more
cases that are not pre-indexed. Preliminary empirical
results of these retrieval methods indicate their via-
bility and scalability. These results have motivated
the retrieval-intensive design of the complete system,
which includes proposed plan adaptation methods
that use plan validation structure information and a
proposed retrieval planning procedure. The design
tradeoffs in the plan retrieval and adaptation processes
are discussed, and criteria for empirically evaluating
these processes are presented. Many of the proposed
areas for evaluation apply to other case-based plan-
ning and case-based reasoning systems.

Introduction

There are two aspects of the evaluation of any large
computer system, particularly in AI. There is for-
mal evaluation, in which experimental comparisons are
made between one technique and others, or on varied
aspects within the system. There is also the develop-
ment of a set of axes on which to evaluate such systems
and the placing of the individual system along these
axes. In this short paper, we will try to develop such
a set of dimensions on which to compare case-based
systems, and we’ll show how the case-based planning
system we are developing, CaPER, fits into such a cat-
egorization.

We also describe some early evaluation of aspects of
the CaPER system, particularly its memory retrieval
performance. While this does not provide a direct com-
parison between CaPER and other case-based planning
(CBP) systems, it does let us evaluate the performance

*This research was supported in part by grants from
NSF(IRI-8907890), ONR (N00014-J-91-1451), AFOSR
(F49620-93-1-0065), the ARPA/Rome Laboratory Plan-
ning Initiative (F30602-93-C-0039 and by ARI (MDA-903-
92-R-0035, subcontract through Microelectronics and De-
sign, Inc.).

157

of a critical aspect of our system, and provides a ba-
sis for later comparisons between CaPER and other
CBP systems. Thus we also describe some of the ex-
perimentation which we hope to perform in the future
to compare CaPER’s techniques with other systems
and/or approaches.

The CaPER System

CaPER is a case-based planning system that makes use
of the massive parallelism of the Connection Machine
to retrieve cases from a large case memory. The fo-
cus of this research is to determine how to exploit the
fast and flexible retrieval provided by the massively-
parallel methods used. The primary potential ben-
efits of case-based planning over generative planning
include efficiencies through plan reuse (by remember-
ing past successes and failures) and the ability to func-
tion in domains for which complete causal knowledge
(i.e, fully specified plan operators) is lacking. On the
other hand, CBP systems may waste time searching
irrelevant parts of case memory or in trying to apply
an irrelevant previous plan retrieved. In the absence of
strong causal domain knowledge, heuristic plan adap-
tation methods may produce incorrect plans.

There have also been few empirical studies of CBP
systems. The benefits of plan reuse have been shown
in PRIAR (Kambhampati and Hendler 1992) and
PRODIGY/Analogy (Veloso 1992), for example. Nei-
ther of these systems are general-purpose CBP systems
(both, for example, work in conjunction with a gener-
ative planner), although many of their techniques are
certainly widely applicable. Few CBR systems have
been evaluated using real-world-sized casebases of hun-
dreds or thousands of cases, and thus it remains un-
clear whether their methods will scale up.

Empirical evaluation of CBR/CBP systems can be
done in at least three areas: performance, domain-
engineering effort, and applicability (i.e., class of prob-
lems they solve). This evaluation should be done on
varying casebases, problem specifications, etc. This
evaluation can take place for individual components,
as well as the aggregate system.

We have done some preliminary evaluation of the

CaPER’s retrieval component on different domains.
Once the complete system is implemented, a full eval-
uation will be performed. This will include an evalua-
tion of the various components of CaPER, as well as its
overall performance. Comparison with other CBP sys-
tems and with generative planners would also be useful.
This paper discusses some areas for future evaluation of
CaPER’s components (based on their current design)
in terms of performance, domain engineering effort,
and applicability. Many of the planned evaluations
could be done for other CBP/CBR systems, while oth-
ers are specific to the particular methods used. Many
of these methods were chosen with particular behav-
ioral goals in mind (i.e, performance, etc.). How some
of these goals have influenced the design thus far will
also be discussed.

Overview of CaPER

The overall architecture of CaPER is similar to that
of other CBP systems (e.g., CHEF (Hammond 1990))
and is shown in figure 1. The retrieval process (Plan
Retriever component) is described briefly in this sec-
tion (see (Kettler et al. 1994) for more details).
The proposed adaptation process involving the Plan
Merger, Plan Checker, and Plan Modifier components
is described briefly in section “Adaptation”. (Here
“adaptation” includes both the initial creation of the
target plan from source plans and its subsequent repair
to fix any failures found). The Plan Tester component
gets detailed diagnostic feedback on the proposed tar-
get plan from a human.

Target l
Problem Retrieval Probe
w/ prob. features
Plan Retriever > PARKA
(Does multipte - K'Rep . Sy S.
rotrisvals to get sets of Candidate
source plans. Selects SP?um Memory
best plans). for ans (Cases, e
Concepts, |
Individuals) N
Selected -
Source Connection !
Plans Machine I
Initlal Cases !
(from Nonlin) II
Plan Merger)
. i {
bi Interactions
{Combines Ptans) o AvoidInFindinga |
Hspl%csa‘\?o\l Plan)
orto Resolve
New Plen by Finding an !
Additional Plan !
New Plan 1
w/ interactions i l
Plan Checker Pian Modifier)
{Detects (Handles refitting for i
Interactions, etc.) Modified Interactions, etc.) |
New Plan —)
New Plan Plan w/ New,
Failure Casal
Info)
i
(Plan Tester) Plan Storer 4
Successtul Plan
w/ Feedback {Stores new case)

Figure 1: CaPER’s Architecture (Top-Level Processes
and Components)

CaPER’s memory is implemented using Parka
(Evett et al. 1994), a massively-parallel knowledge

158

representation system. Episodic knowledge (particu-
lar plans, actions, and objects) is stored together with
conceptual knowledge (taxonomies, partonomies, etc.)
in one large semantic network stored on the Connec-
tion Machine. A sample piece of memory is shown in
figure 2.

Parka supports very fast inferencing procedures: for
example, recognition queries of the form “find all z
such that p1(z, c1) Apa(z, ca) A+ -Apm (2, ¢p)” ~ where
pi is a slot relating frame z with value ¢;) — run in
O(m + d), where d is the depth of the network.! The
PARADYME system (Kolodner and Thau 1988) is
similar to Parka in that it was used to implement the
memory of a CBR system (Kolodner 1989), although
the parallel representations and methods used differed
(see (Evett et al. 1994) for a comparison). The im-
plications of Parka’s fast inferencing methods are dis-
cussed in the next section.

Figure 2: Sample Piece of CaPER’s Memory for Trans-
portation Logistics Domain. (“inst-of” links are “In-
stance Of” (€). “isa” links are C relations.)

The initial CaPER prototype retriever was tested
on a car construction “toy” domain. CaPER is cur-
rently being tested on a simplified transport logistics
(package delivery) domain based on one used in (Veloso
1992). Some of CaPER’s retrieval mechanisms have
been used for planning by derivational analogy in a
protein sequencing experiment domain (Kettler and
Darden 1993). It will probably be necessary to develop
another richer and more realistic domain for testing

1Since d remains fairly constant as the net grows, the
time for such queries is essentially independent of the size
of the net (d is typically << 20). See (Evett et al. 1994)
for details.

pn

inst-of

inst-of

Figure 3: Sample Retrieval Probe Transportation Lo-
gistics Query “find all (sub)plans with a goal of deliv-
ering a package whose origin is the same as that of an
available large truck. Prefer plans done on days with
weather similar to the present weather (rainy).” This
probe graph would match parts of the sample semantic
net in figure 2.

some of the proposed features of CaPER.

In CaPER, to retrieve a case®? a retrieval descrip-
tion is formed that contains various features (surface
or derived) from the target situation. These features
may include plan goals, structural (spatial or tempo-
ral) relations among objects, etc. The retrieval descrip-
tion is converted to one or more probe graphs such as
the one shown in figure 3. These are matched against
the semantic network by the Parka Structure Matcher
(Andersen et al. 1994), which returns sets of variable
bindings.

Exploiting Retrieval Flexibility

The availability of Parka’s fast parallel methods has
driven the design of CaPER. Because such methods
are fast, memory does not have to be pre-indexed. Pre-
indexing is the designation of indices (particular case
features) prior to case retrieval time through which
cases are subsequently retrieved.

CaPER, does not use indices, where indices are con-
strued in the traditional way as pointers for retrieval.
Recently indices have been construed more broadly
(e.g., (Kolodner 1993)) to include labels or annotations
that, particularly in some parallel implementations,
are used for discriminating among retrieved cases. The
term “index” is used in this paper in its traditional,
narrower sense.

For efficiency reasons, serial CBR systems often use
pre-indexing in conjunction with a specific memory or-
ganization such as a discrimination net to restrict the
case retrieval search to a small subset of the casebase.

2In this paper we generally use “case” synonymously
with “plan” because a case contains at least one plan that
solves its planning problem.

159

Hence pre-indexing can constrain case retrieval: the
system, or more often a human, has the difficult task
of anticipating which features of a case will prove use-
ful for retrieving it in the future. Pre-indexing schemes
are often domain/task-specific.

In CaPER, a case can potentially be retrieved via
any of its target features: i.e., any feature of the re-
trieval description (including complex derived features)
can be included in the Structure Matcher probe graph.

Retrieving Relevant Cases

The relevance problem — selecting retrieval criteria
such that a reasonable number (i.e., not too many nor
too few) of relevant cases is recalled — must still be
addressed in CaPER. Like other CBR systems, Ca-
PER needs to know or learn features of the target sit-
uation which should be used to retrieve (i.e., match)
relevant cases. Unlike other CBR systems, the set of
features from which these are chosen is not restricted
a priori to a set of features used to pre-index the case-
base. Thus CaPER can use potentially any features
(surface, derived, etc.) from the target situation. This
greater flexibility comes potentially at the expense of
more work at retrieval time to determine which fea-
tures should be included in the retrieval probe. This
possible tradeoff needs to be assessed empirically.

To determine which features should be used to match
cases and also which features should be used to rank
the cases retrieved, knowledge about what kinds of fea-
tures are indicative of case relevance for what kinds
of target problems could be acquired and stored in
“metamemory”. This dynamic knowledge can come
from a human knowledge engineer or preferably can
be learned by the system. A proposed enhancement to
CaPER includes treating retrieval description formu-
lation as a planning task in and of itself. This will en-
able CaPER to reason explicitly about what features
to compute and include in the retrieval probe. This
planning subtask could make use of generative or case-
based methods.

Frequent Retrieval

Because in CaPER retrieval is fairly cheap and flexible
(due to the lack of memory pre-indexing), the design
philosophy has been to make the most of memory. Ca-
PER’s Plan Retriever (PR) component retrieves plans
from memory that match features in the retrieval de-
scription. It ranks the plans retrieved and returns them
for further processing. The PR can be called multiple
times. For example, CaPER may have three target
goals. On its initial call, the PR may return a sin-
gle source plan (S;) — or a subplan of a source plan —
that addresses two of these goals. The PR can then
be called to find an source plan that addresses the re-
maining goal that was not matched. This source plan
S5 can be combined with S; by the Plan Merger to get
a single plan which can then be adapted for the target
problem by the Plan Modifier.

Adaptation

Retrieving multiple plans/subplans that address the
target problem can result in a combined plan that
achieves many of the target goals and hence requires
less adaptation work. On the other hand, merging
plans from multiple source cases may result in harmful
interactions in the resulting plan. These interactions
may be expensive to detect by plan analysis and/or by
plan testing and costly to correct.

In CaPER, the Plan Checker attempts to detect in-
teractions. Interactions found by the Plan Checker
or during plan testing are handled by the Plan Mod-
ifier. The Plan Checker can make use of plan valida-
tion structure information (Kambhampatiand Hendler
1992), which captures the dependencies among actions
in the plan. This information is used to detect dif-
ferences between the old source plans and the new
target plan such as different goals, different features
in the initial situations, interactions, etc. These dif-
ferences determine applicable modifications including
plan pruning, refitting, and remapping.

Given a predicted interaction between actions in two
different plans, it is also possible to reinvoke the PR
to retrieve a patch plan (i.e., a “white knight”) that
corrects the interaction or to retrieve a replacement
plan(s) that avoids the interaction. Information about
the problem to avoid in the target plan could be added
to the retrieval description when the PR is reinvoked.
Other CBP systems such as CHEF add information
about problems to avoid to the retrieval probe (al-
though CHEF does so prior to any retrieval and thus
can only avoid failures detected during previous plan-
ning episodes). To find a plan that avoids an interac-
tion or a patch that fixes some interaction while avoid-
ing others, CaPER could match features from the tar-
get problem/plan against the plan validation structure
information stored in memory.

In may even prove beneficial to interleave retrieval
with adaptation. In the above example, after S; is re-
trieved it would be modified for the target situation.
Any problems encountered during modification or spe-
cial plan dependencies noted could then potentially
be used in the retrieval description used to obtain a
“better-fitting” Sy.

Comparisons

CaPER’s plan retrieval and plan adaptation compo-
nents (and those of other CBP systems) can be eval-
uated in the areas of performance (planning cost and
plan quality), domain engineering, and general appli-
cability of methods used.

Retrieval versus Adaptation

There is often a tradeoff between the effort spent find-
ing relevant source cases and that spent adapting the
these cases (plans)found to the target problem. In a
CBP system, the most “relevant” case is one whose

160

plan requires the least adaptation effort (time). Adap-
tation often requires strong causal knowledge about the
objects and actions in the domain. Adaptation itself
may fail in the absence of such knowledge as the sys-
tem may not be able to detect or remedy interactions
and other plan failures. Thus in cases where adapta-
tion is expensive or impossible, it is desirable to find
the best source cases possible. The system should not,
however, take forever to find cases, particularly when
planning must be fast and/or the world (and hence the
target situation) is changing.
Some performance issues include:

1. What is the cost (time and space) of retrieval?

2. Are the cases retrieved relevant? What is the cost

(e.g., extra time spent on adaptation, etc.) of re-
trieving an irrelevant or misleading plan?

3. Does the cost (time) of using multiple source plans

(i.e., merging them and detecting and handling any
resulting interactions among them) outweigh the
cost of using a single plan? Are these methods
correct relative to the completeness of the domain
knowledge?

4. What is the cost (time and space) of adaptation?
5. Are the adaptation methods complete and correct?

6. Is the cost (time and space) warranted for using plan

validation structure information (when available) for
detecting areas for adaptation and suggesting po-
tential repairs or could some cheaper, alternative
method be used?

Evaluating Retrieval in CaPER CaPER’s Plan
Retriever converts a retrieval description to one or
more probe graphs to be processed by the Parka Struc-
ture Matcher. We have evaluated the time to pro-
cess these probes on both the car construction and
transport logistics domains being used to test CaPER.
The purpose of these experiments was to assess the
absolute parallel retrieval times and the scalability of
the parallel methods used, for a variety of representa-
tive retrieval probes (generated by hand) and casebase
sizes. The probes were matched to an unindezed mem-
ory using Parka on the massively parallel Connection
Machine® and again using a serial version of Parka?.
These results, detailed in (Kettler et al. 1993;
Kettler et al. 1994), show parallel retrieval times of
about a second, even for a 100 case memory which
contained 1213 (sub)plans (8616 frames). Not only are
the absolute parallel retrieval times low but they scale
well to large casebases: the retrieval times appear to
grow better than logarithmically in the number of cases
(frames).> The actual complexity of the underlying

%a CM-2 with 32K virtual (16K real) processors

*a Macintosh. A direct comparison of serial to parallel
times would not make sense, given the disparity in total
processing power

5An optimized serial implementation on an indexed

subgraph matching (constraint satisfaction) algorithm
on actual casebases is much less than the worst case
complexity (exponential in the number of binary con-
straints) due to several factors discussed in (Andersen
et al. 1994).

The cases retrieved were judged “relevant” by a hu-
man. Of course once the plan adaptation component
is complete, we will need to assess relevance by the
amount of plan adaptation effort required. We are
now building a 1000 case (approx. 100K frames) for
the transport logistics domain and believe even large
casebases can be supported with comparable retrieval
performance.®

In addition to their time efficiency, CaPER’s re-
trieval procedures require no space to store special-
purpose indexing structures built on top of the case-
base. CaPER can retrieve subplans with little storage
overhead. Using Parka’s mechanisms, contextual fea-
tures can be inherited by a subplan from its parent plan
and thus does not need to be explicitly stored with the
subplan (as is done in CELIA’s snippets (Redmond
1990), for example).

The quality of retrieval in CaPER remains to be
thoroughly evaluated. The simple similarity metrics
used thus far” appear to be useful in getting good
cases in the car domain (as judged by CaPER’s de-
velopers). In the more complicated domains, it is less
clear as to the relevance of the retrieved cases. This is
primarily due to the potential complexity of features
(i.e., complex derived relationships among locations,
vehicles, and packages in initial situations appear rel-
evant) and the mapping/matching complexities (i.e.,
each target package may potentially mapped to one of
several source packages).

While human similarity judgements have been used
to initially develop and tune retrieval, match, and sim-
ilarity criteria in CaPER, the true relevance of a plan
retrieved is inversely proportional to the amount of
adaptation effort it takes, which will need to be mea-
sured (see below) once the required procedures have
been completely implemented. The standard informa-
tion retrieval metrics of recall (percentage of relevant
cases that were retrieved) and precision (percentage of
retrieved cases that were relevant) could then be ap-
plied.

The cost of using an inappropriate source plan needs
to be assessed in terms of total retrieval plus adapta-
tion effort required versus having solved the problem
from scratch. An inappropriate plan can result from

memory would have O(logn) performance if a balanced
discrimination tree were used. Of course such a system
would have the disadvantages of pre-indexing previously
mentioned.

6As in all data-parallel applications, this assumes that
the amount of parallel hardware can scale with the problem
size, if necessary.

"a weighted combination of features taking into account
the level of abstractness of matches

161

faulty retrieval, match, or similarity criteria. In Ca-
PER we hope to minimize faulty retrieval by being
able to issue very precise queries (some generated by
the “planning to retrieve” process), by merging multi-
ple plans retrieved, and by being able to retrieve ad-
ditional plans, possibly using information about plan
dependencies and failures. The cost of these measures
needs to be assessed.

An inappropriate target plan can be created due to
errors in mapping target situation objects/relations to
those in the source plan(s). Matching heuristics may
be incorrect. The Parka Structure Matcher could be
used to map objects by virtue of the relations (spatial,
causal, etc.) in which they participate (such as is done
in SME (Falkenhainer et al. 1990)). Alternative map-
pings returned by the Structure Matcher could also be
stored or generated on demand (trading time for stor-
age). An inappropriate plan may also be chosen due
to bad similarity criteria. It is therefore desirable to
dynamically modify similarity metrics (via weight ad-
justment, etc.) based on the relevancy of the cases
they select for.

Finally the cost of using multiple source plans needs
to be compared to the cost of using a single source
plan. This can be done empirically be switching Ca-
PER’s mode of operation. The cost of using multiple
source plans includes the cost of issuing multiple re-
trieval probes to get the plans (this is fairly cheap as
noted above), merging them, and detecting interac-
tions during adaptation (see below). The merging of
plans is guided by the relationships among the goals
addressed by the individual source plans. A least-
commitment strategy with respect to subplan or ac-
tion ordering could be used. The adaptation effort for
multiple plans is in part a function of the modularity
of domain plans.

Evaluating Adaptation in CaPER The effort
(time cost) of adaptation includes the time to detect
problems with the target plan, to find applicable fixes,
to select one or more fixes, and to apply the fix (i.e.,
modify the plan). In CaPER, the first two of these
activities are done by the Plan Checker, the last two
by the Plan Modifier.

Since CaPER’s proposed adaptation methods in-
clude using strong domain knowledge (i.e., plan vali-
dation structures, etc.), it should be possible to detect
interactions and suggest possible fixes for them. Some
of these fixes could be done by heuristic methods or by
retrieving patch or replacement plans. Another possi-
bility is to use a generative planner for plan refitting
(like PRIAR. does). The methods that use plan val-
idation structure have proven efficient in PRIAR and
should be in CaPER as well. The extra frames required
to store this information in memory is small and has
negligible adverse impact on the retrieval times. It
is also desirable to have CaPER function in domains
where plan validation structure information is incom-
plete.

Other plan adaptations include substitution (rein-
stantiation) of the source plans in the target situation.
This may involve additional matching (heuristic or via
the Parka Structure Matcher).

Storing alternative potential fixes also trades stor-
age for time and may not be warranted. The assump-
tion is that it is desirable to try the “best” fix first
(i.e., the highest expected chance of success per cost,
with repairs that transform the plan typically costing
more than those that make substitutions in it). Cer-
tain adaptations like pruning extra goals via PRIAR-
like methods from the plan can be done with certainty
of success, assuming the plan validation structure in-
formation is accurate.

CaPER will initially apply repairs cumulatively.
Hence a newly applied repair may generate additional
problems to be fixed. This trades potentially longer
plans for planning time, rather than diagnose poten-
tial interactions among repairs and potentially rolling
back one of them to produce a new version of the target
plan.

Domain-Engineering Issues
Some domain-engineering issues include:

1. How do initial cases get into the casebase? What is
the quality of these initial cases?

2. What kinds of domain-specific knowledge need to be
supplied for retrieval, match, and similarity criteria?
How good is this knowledge? How can it be modi-
fied?

3. What kinds of domain-specific adaptation methods
are required? Do they require strong causal domain
knowledge? How can these methods be modified?

In CaPER, plans (along with problem decomposition
and plan validation structure information) for the ini-
tial cases are generated using UMCP Nonlin (Ghosh
et al. 1992), a Common Lisp version of Tate’s Non-
lin planner, on randomly-generated planning problems.
This allows us to easily build large casebases. Because
problems are randomly generated, there will be a di-
verse set of previously solved problems for the planner
to draw upon. Planning problems and their solutions
are automatically converted to cases (i.e., Parka frame
definitions).

Because Nonlin produces correct (but not necessarily
optimal) plans, so we can rely on the quality of the ini-
tial cases. Of course this assumes some causal domain
knowledge is available to be encoded as Nonlin hierar-
chical task networks and operators. In the absence of
such knowledge, cases would have to be acquired via
other means and care would have to be taken to en-
sure that undetected bad plans do not get put into the
casebase. Plan validation structure information could
be manually annotated to plans.

Because cases are not pre-indexed, no manual in-
dexing of cases is required. Effort is still required to
determine the relevant features of a target situation at

162

case retrieval time. It is hoped that the planning to
retrieve methods will allow the system reason about
the relevancy of features for particular domains/tasks.
In addition, match criteria and similarity metrics must
be determined for particular domains/tasks. Animple-
mentation goal is to represent such knowledge declara-
tively (so that it is explicit and can be reasoned about)
and in a modular way (e.g., via CLOS), so that it can
be easily modified by a human knowledge engineer or
by the system itself.

CaPER’s substitution methods will require taxo-
nomic knowledge about domain objects and their rela-
tionships. This non-episodic knowledge for each do-
main must initially be hand-encoded as Parka con-
cept frames encoded and added to Parka’s base on-
tology (which contains generic abstract concepts such
as “plan”, “action”, etc.). PRIAR’s methods for de-
tecting plan inconsistencies and find applicable fixes
require strong domain knowledge in the form of de-
fault action preconditions, filter conditions, and effects.
This knowledge is also hand-encoded as Parka frames.

Finally, there are some end-user ease of use issues.
An end-user (as opposed to a knowledge engineer)
can interact with CaPER during problem specifica-
tion, target plan testing, and possibly to provide in-
put when the system gets “stuck” (e.g., can’t find an
applicable adaptation method, etc.). Because the user
can provide the target problem specification, it may
be useful to check for and/or handle an incorrectly or
incompletely specified problem. Because certain fail-
ures may only be detectable during plan testing (by a
human), the user needs to be presented with the target
plan (possibly with the source cases by way of expla-
nation), so that he/she can provide detailed feedback
from plan execution.® An interface for knowledge en-
gineers and end-users will have to be developed and
evaluated as to its usability.

Applicability Issues

CaPER’s CBP techniques are intended to be general-
purpose with domain knowledge being integrated in
a modular fashion. The memory organization of an
unindexed semantic network (frames) and the low-level
Parka query procedures are general-purpose too. It
remains to be seen how robust CaPER’s methods are in
the various kinds of domains on which it is being tested,
how these methods work in the presence/absence of
strong domain knowledge, how dependent they are on
the heuristics used, etc.

Comparative Evaluation

It is desirable to compare CaPER to other domain-
independent A.l. planning systems. Metrics for evalua-
tion include overall performance (total planning time),
performance over time as new cases are added versus

8 Automated diagnosis of plan execution failures is not
an initial focus of this research.

the additional storage cost, scalability of performance
as the casebase and planning problems grow in size,
and plan quality (plan correctness, optimality in terms
of length and resources consumed, etc.). Domain-
engineering effort and applicability should also be eval-
uated.

CaPER could be compared to other CBP systems
in which cases for some domain could be stored and in
which the domain-specific knowledge (similarity met-
rics, etc.) could be expressed. One such interesting
comparison would be to compare CaPER against a se-
rial system that uses pre-indexing. In particular the
hypothesis that the flexible parallel retrieval in Ca-
PER will result in less adaptation effort needs to be
tested. The scalability of smart serial methods needs
to be compared against the CaPER’s parallel methods,
which require expensive hardware. CaPER could also
be compared to a generative planning system, such as
Nonlin. This is possible for domains in which Nonlin
is used to seed the casebase. The cost versus benefits
of plan reuse could be assessed.

Conclusion

The preliminary empirical evaluation of CaPER’s plan
retrieval methods that make use of massive parallelism
have been encouraging and have motivated the design
of the rest of the system with its emphasis on fast, fre-
quent, and flexible plan retrieval. Proposed plan adap-
tation methods using simple substitution and PRIAR-
like methods that use plan validation structure infor-
mation need to be evaluated once they are completely
implemented. Of particular interested is the cost and
benefit of merging multiple source (sub)plans and the
cost and benefit of treating retrieval description for-
mation as a planning task. The dimensions for evalu-
ation include performance, domain-engineering effort,
and general applicability of methods used. Many of
these areas for evaluation can be applied to other CBP
and CBR systems so that their techniques can be bet-
ter understood and applied.

References

Andersen, William A.; Hendler, James A.; Evett,
Matthew P.; and Kettler, Brian P. 1994, Massively paral-
lel matching of knowledge structures. In Kitano, Hiroaki
and Hendler, James, editors 1994, Massively Parallel Ar-
tificial Intelligence. AAAI Press/The MIT Press, Menlo
Park, California. in press.

Erol, Kutluhan; Nau, Dana S.; and Subrahmanian, V.S.
1992. On the complexity of domain-independent planning.
In Proceedings of the Tenth National Conference on Ar-
tificial Intelligence, Menlo Park, California. AAAI Press.
381-3886.

Evett, Matthew P.; Hendler, James A.; and Spector, Lee
1994. Parallel knowledge representation on the Connec-
tion Machine. Journal of Parallel and Distributed Com-
puting in press.

163

Falkenhainer, Brian; Forbus, Kenneth D.; and Gentner,
Dedre 1990. The structure-mapping engine: Algorithm
and examples. Artificial Intelligence 41:1-63.

Ghosh, Subrata; Hendler, James; Kambhampati, Sub-
barao; and Kettler, Brian 1992. Common Lisp Nonlin
Version 1.2 User Manual. University of Maryland at Col-
lege Park, Department of Computer Science, 1.2 edition.

Hammond, Kristian J. 1990. Case-based planning: A
framework for planning from experience. Cognitive Sci-
ence 14:384-443.

Kambhampati, Subbarao and Hendler, James A. 1992.
A validation-structure-based theory of plan modification
and reuse. Artificial Intelligence 55:193-258.

Kettler, Brian P. and Darden, Lindley 1993. Protein se-
quencing experiment planning using analogy. In Proceed-
ings of the First International Conference on Intelligent
Systems for Molecular Biology, Menlo Park, California.
AAAIT Press. 215-224.

Kettler, Brian P.; Hendler, James A.; Andersen,
William A.; and Evett, Matthew P. 1993. Massively par-
allel support for case-based planning. In Proceedings of
the Ninth IEEE Conference on Artificial Intelligence Ap-
plications, Washington. IEEE Computer Society Press.

Kettler, Brian P.; Hendler, James A.; Andersen,
William A.; and Evett, Matthew P. 1994. Massively par-
allel support for case-based planning. IEEE Ezpert 8-14.

Kolodner, Janet L. and Thau, Robert 1988. Design
and implementation of a case memory. Technical Report
RL88-1, Thinking Machines Corporation.

Kolodner, Janet L. 1989. Judging which is the best case
for a case-based reasomer. In Proceedings of the Case-
Based Reasoning Workshop, San Mateo, California. Mor-
gan Kaufmann Publishers.

Kolodner, Janet L. 1993. Case-Based Reasoning. Morgan
Kaufmann Publishers, San Mateo, California.

Redmond, Michael 1990. Distributed cases for case-based
reasoning: Facilitating uses of multiple cases. In Proceed-
ings of the Eigth National Conference on Artificial Intel-
ligence. 304-309.

Veloso, Manuela M. 1992. Learning By Analogical Rea-
soning in General Problem Solving. Ph.D. Dissertation,
Carnegie Mellon University, School of Computer Science.

