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Abstract

This paper presents the formalization of a novel ap-
proach to structural similarity assessment and adapta-
tion in case-based reasoning (CBR) for synthesis. The
approach has been informally presented, exemplified,
and implemented for the domain of industrial build-
ing design (B6rner 1993). By relating the approach
to existing theories we provide the foundation of its
systematic evaluation and appropriate usage. Cases,
the primary repository of knowledge, are represented
structurally using an algebraic approach. Similarity
relations provide structure preserving case modifica-
tions modulo the underlying algebra and an equa-
tional theory over the algebra (so available). This
representation of a modeled universe of discourse en-
ables theory-based inference of adapted solutions. The
approach enables us to {ncorporate formally general-
ization, abstraction, geometrical transformation, and
their combinations into CBR.

Introduction

In CBR the universe of discourse is represented by a fi-
nite set of already solved cases stored in the case-base
and a similarity or distance relation over them (Richter
1992). An actual problem is solved by searching for 
most similar problem inside the case-base and solv-
ing the actual one accordingly. Usually, cases consist
of two disjoint parts describing the problem and the
solution by attribute value pairs (Riesbeck & Schank
1989 and Kolodner 1993). Similarities are measured
via some metrics by taking into account the number of
shared attribute values (weighted or not).

Aiming at the solution of synthesis tasks functional
dependencies between objects rather than their simple
attributes are important. Discovery of homomorphic
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mappings between object sets and their inherent re-
lations becomes necessary. Homomorphism detection,
however, may become computationally intractable.

In our approach we represent the modeled universe
of discourse by structural case descriptions and struc-
tural similarity relations over them. Structural simi-
larity is defined as a mapping into a highly structured,
partially ordered space. It represents background
knowledge about structure preserving case modifica-
tions and is able to guide adaptation.

Evaluations of CBR approaches and systems are
mostly performed by "real world" exemplifications.
The problems with this are the unavailability of unique
databases for synthesis tasks and doubts whether this
is the best way to compare approaches. Formalizations
of approaches and their explicit relation to underlying
theories may be much more helpful. That’s exactly
what we want to do.

The paper is organized as follows. Section 2 intro-
duces the basic ideas behind structural similarity as-
sessment and adaptation in synthesis. Sectioff 3 gives
the formalization of the approach. The correspond-
ing algorithm is presented in section 4. We finish with
some concluding remarks in section 5. For the sake
of clarity but without loss of generality Example starts
easily accessible exemplifications given in slanted let-
ters.

Methodology and Framework

Aiming at the solution of synthesis tasks, cases are no
longer given by sets of attribute values and correspond-
ing concepts. Problems and solutions are often com-
plex structures of objects and inherent relations. Sim-
ilarity assessment proceeds over complex structures.
Example: Domain of geometric figures
Driven by the original application domain, industrial
building design (Hovestadt 1993), and for purposes 
simplicity and generality we will use a two-dimensional
domain of simple geometric figures as exemplified in
Fig. 1. In this micro-domain different states corre-
spond to arrangements of objects (figures for short)
like circles, ellipses, and squares etc. All objects are ar-
ranged on a natural grid. Following the arrows in Fig. 1
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each state (figure) provides an improvement (rearrang-
ing objects, introducing new objects, etc.) of the on-
going one, e.g., figure-a=Gircle; figure-b=two copies of
"figure-a" arranged in X direction; figure-c=one copy
of "figure-b" arranged in Y direction; figure-d=cover
"figure-c’; figure-e=two copies of "figure-d" arranged
in X direction.

Figure 1: Design of geometric figures

Algebraic approaches to knowledge representation
allow us to represent solutions as consisting of the
problem and applied operators. The underlying al-
gebra and an equational theory (so available) over the
algebra provide background knowledge to determine
structural similarity of problem states. Given a com-
plete and consistent model of the universe of discourse
the transfer of operational solutions results in correctly
adapted solutions.

Note, that similarity assessed by the system may
differ considerably from that assessed by human users,
even assuming that both have the same set of cases
at hand. Due to the similarity relations derived from
prior cases their strategies to use and reason from these
cases may be quite different.

Structural Similarity Assessment,
Adaptation, and Learning

Now we want to present the approach to structural sim-
ilarity assessment, adaptation, and learning formally.
First, we give the underlying knowledge representa-
tion as a basis for reasoning. Inspired by the work
(Indurkhya 1991 and O’Hara 1992), we will use an al-
gebraic approach. Next we define what we understand
by structural similarity and show how to learn proper
modification rules for similarity assessment from a set
of prior cases. Based on this we are able to define
solution transfer and adaptation.

Knowledge Representation
As a basis for knowledge representation we assume any
finite, heterogeneous, and finitary signature ~. The
signature provides a set S of sorts, a set O of opera-
tor symbols, and an arily function a over O. Operator
symbols of arity 0 are called constants. Additionally,
we need a sorted, countably infinite set X of variable
symbols with ~ A X ---- @. We will use indices as appro-
priate. The ground term algebra over ~ is denoted by
T(~, 0). A ground term t E T(~, is a constant or the
application of an operator symbol to the appropriate
number of ground terms. The free term algebra over
and X is denoted by T(~, X).
Example: Term algebra of geometric figures
Throughout the paper the signature and variables used
to describe figures are as follows:

sorts /N, Direction, Object;
constants X,Y : Direction;

0, 1, 2, ..., 10 : ~W;
Circle, Ellipse, Square : Object;

operators copy: Direction x Z~V x Object ~ Object;
divide: Object --* Object;
cover: Object --* Object.

First order variables z and w will be used to substitute
constants of sort ~V and Object. The second order vari-
able f will be used to substitute operators like copy,
divide, and cover. The interpretation of the signature
will become obvious by its use. We insist that identical
figures are represented by unique representations.

States of the world correspond to different figures
and are represented by ground terms t E T(~, 0).
Example: Representation of states
Let t8 be a ground term representing a state s. Using
the introduced term algebra the five states (figures) 
Fig. 1 may be represented by:
t~ = Circle; tb = copy(X, 2, Circle);
tc = copy(V, 1, copy(X, 2, Circle));
td = cover(copy(Y, 2, copy(X, 2, Circle)));
to = copy(X, 2, cover(copy(y, 1, copy(X, 2, CircZe))))
as illustrated in Fig. 2.

/Circle-~ copy ~ copy ~ cover ~ copy //1% ~’I~. ! /1%/ I x = c,~,e II ~ ’ copyII copy I x = oover

/
/1% ~1% It ...../ II x =~,rc,ell .’, copy I co.y

L ca.,,,. 2 / /I ,"’, I x,,,
.... / "1 X 2Circle[ Y 1 copy

L case 3 I ) I 1%
[_case 4 x 2 Circle

Figure 2: Term-based knowledge representation of the
states (figures) given in Fig. 

As a basis for reasoning subsequent states are pair-
wise related to each other by means of cases. The first
state will be named t v, the problem, the following de-
scribes t8, its solution, with tP,t~ E T(E, 0). The fact
becomes obvious, that problem and solution may be
seen as some kind of role states have.

To represent the case solution in terms of the case
problem we need to refer to subterms. Terms are iden-
tified with finite labeled trees as usual (see Fig. 2).
Intermediate nodes correspond to operators and leaves
to constant symbols. Every sub-term within a given
term t can be uniquely referred to by its place. Places
q within terms are denoted by words of natural num-
bers excluding zero JN+, and are defined recursively
as follows. The term at place (i) within f(tl,...,tm)
is ti. The term at place (il,..., i~) within f(tl,...,t,0
is the term at place (i~, ...,i,~) in ti~. The top-most
(root) place in a term is the empty word called e. The
symbol at place q is denoted t(q), the subterm of t at
place q is denoted t [q. The result of replacing t [q with
a term u at place q is denoted t[q *--- u].

A structural case description c is defined by c =
(t s, q) where the problem state tp corresponds to a sub-
term of the solution state t~ at place q, i.e., t~ [q= tp.
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As usual in Csa the set of all cases is named CB.
Example: Representation of cases
With tb ]3= t~, t~ J3= tb, td 11= t~ and t~ 13= td the
states introduced in Fig. 1 may be related by four cases:
C1 : (tb, 3), 2 =(tc, 3), C3= (td, 1), and 4 ---- (re, 3).

Structural Similarity Assessment

Structural similarity of problem states of cases is de-
fined by structure preserving, homomorphic mappings.
As proposed by (Jantke 1993) the mappings are formal-
ized close to antiunification. We distinguish two kinds
of structural similarity, namely syntactic and semantic
similarity.

Syntactic Similarity To define syntactic similar-
ity we are interested in mappings of ground terms in
T(E, 0) into some term in the free term algebra T(E, X)
containing variables. Therefore we need the definition
of substitution and their inverse.

A substitution 0 is a mapping from a set of vari-
ables X into T(E, X). Such a mapping is finitely rep-
resentable and denoted as a set of correspondences be-
tween constants (terms) and distinct variables. The
application of 0 to a term t is denoted t0. If 01 and 02
are substitutions then t0102 = (t01)02. Given a term t
and a substitution 0 we assume there exists an unique
inverse substitution 0-1 such that t00-1 = t. Whereas
the substitution maps variables into terms, the inverse
substitution 0-1 maps terms into variables. Thus if:
0 = {xl [tl,...,xn ]tn} we denote the correspond-
ing inverse substitution by: 0-1 = {tl(qlj, ..., ql,ml) 
xl, ...,t~(q~j, ..., q~,m~) [x,~} in which q~,,~j are the
places at which the variables xi are found within t.
Inverse substitutions are applied by replacing all ti at
places {qi,1, ..., qi,-~i) within t by xi.

Syntactic similarity ~r is defined as the union of
proper modifications which relate a set of problems
t~ E Tv, i = 1,...,n to each other. That is c~ :=
U~=10~

-1 satisfying t~O["1 = MSCSv, i = 1, ..., n. The
umque term MSCSv is called the most specific common
structure 1. For any other specific common structure t
oft v there exists a substitution 0-1 s.t. MSCSVO-1 = t.
Note that substitutions of function symbols are either
first order or incomplete.
Example: Syntactic similarity
We illustrate syntactic similarity by generalization and
abstraction.

Generalization is a mapping from constant symbols
into variables formalized by inverse substitutions. It
is best known for descriptive generalization and one of

1This definition of syntactic similarity is close to the
concept of syntactic antiunification. Given two terms tl, t2
one is searching for some term t, called anti-unifier, and
corresponding substitutions 81,02 satisfying both t0a = tl
and t82 = t2. The term t is called least general anti-unifier
(Muggleton 1992) or most specific generalization (Plotkin
1970) iff there is no other anti-unifier tt with t! = tO.

the techniques most often used in inductive inference
(Mitchell et al. 1996).

Abstraction is the process of mapping a given repre-
sentation of an universe of discourse onto another log-
ically equivalent, abstract representation (Giunchiglia
& Walsh 1992). We restrict abstractions here to map-
pings from function symbols into variables again for-
malized by inverse substitutions. We will consider only
function symbol abstractions which allow collapse of
the function name, or change of the arity.
Fig. 3 and Fig. 4 provide examples of generaliza-
tion and abstraction using the signature and variables
given. Both examples provide the pictorial and term-
based representations of two figures, the applied in-
verse substitutions, and the MSCS corresponding to the
generalization respectively abstraction of the figures.

Generalization .I co-.,,x- w~ ~. inverse
substitgtions

Oll~e ] ~O2"l={2lz. Squarelw]

~Cwcle) ~ ~ ¢-’opy(X,2.S~quare)~

Figure 3: generalization

In Fig. 3 copy(X, 3, Circle) corresponds to "take one
Circle, copy it three times and arrange all in X direc-
tion", copy(X, 2, Square) represents "take one Square,
copy it two times and arrange all in X direction". Ap-
plying the inverse substitutions 0~1 and 0~1 corre-
spondingly results in MSCS: copy(X, z, w).

Abstraction

~

subst/nt~2~

03"1= / ..... If/
"/""~041[""

divtde I f}

~___~over(copy(X,2Circle)) ~ 0 0 0 divide(copy(X,2,0rcle)) 

Figure 4: abstraction

Analogous is the example for abstraction given in
Fig. 4. Here cover(copy(X, 2, Circle)) corresponds 
"take one Circle, copy it two times, arrange all in X-
direction, cover a11 objects", divide(copy(X, 2, Circle))
corresponds to "take one Circle, copy it two times, ar-
range all in X-direction, and enlarge the distances be-
tween all objects". Applying the inverse substitutions
0-1 -i . - ¯
3 and 04 results m MSCS=f(copy(X, 2, Czrcle)).

Semantic Similarity To define semantic similarity
we are interested in mappings from T(E, 0) into some
sub-algebra T(E, 0)]=~ or T(E, X)[-s induced by 
equational theory over T(E, 0) or T(E, X). That is, we
map ground terms into some equation e E E.

An equation e or equational axiom is an unordered
pair of terms, written tl = t2 where terms are of the
same sort s E S. We let E(E,X), denote the set 
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all equations over E and X of sort s E S, and we let
E(E, X) = UsesE(E, X)s. An equation is said to be a
ground equation iff Q, t2 E T(E, 0)8. We term -E the
relation of provable equivalence on T(E, X) induced 
E and denote the resulting subalgebra T(E, X) [-~.
Thus tl -E t2 ¢=~ E F- tl = t2.

Semantic similarity of a finite set of problem states
t v E Tp, i = 1,...,n modulo an equational the-
ory E is defined as the union of inverse substitutions
cr := t.J~=10~-1 satisfying p -1 --Et i 0i = MSCSp, i = 1, ..., n.
For any other specific common structure t of Tp there
exists an inverse substitution 0-1 s.t. MSCSP0-~ _--E t.
Note that there is no unique MSCSp when one is us-
ing equational theory. In fact, this suggests that the
formalization is addressing the real problem.

Geomegrical Transformation e - equational knowledge

Q,~ copy(X, aw) = E copy(Y.z,w)
~

tl inverse
Generalizaffon 01"1 OS substitutions

~y(X,3,Circle) C~ ~ cop~

Figure 5: generalization-geometrical transfor-
mation

Example: Semantic similarity
In our domain semantic similarity may be illustrated
by incorporating geometrical transformations repre-
sented by an equational theory over a set of cases.

The specific equational scheme for a ground term tv
and its 90-degree-rotated version tv2 is obviously simple:
Eschemc = {t~= t~,t~ = tl,P t2 

p = t~}.
As an example for pure geometrical transformation we
may instantiate this scheme by ground terms:
q = copy(X, 2, Circle), t~ = copy(V, 2, Circle).

Geometrical Transformation E - equational knowledge

~.~ f(copy(X,2,Circle)) ~ E f(copy(Y,2,Circle))

Abstraction
031 1

~ r~-1 i ......

©

Figure 6: abstraction-geometrical transforma-
tion

Usually we are interested in the combination of inverse
substitutions (for generalization and abstraction) and
equationM theories. The equationM theory has to be
enlarged to cover corresponding variables. Using the
inverse substitutions O~1 to 041 (see Fig. 3 and Fig. 4)
and instantiations
q = copy(X, = copy(V, 
we are able to cover generalization (see Fig. 5) 

t~ = f(copy( X, 2, Circle)), t~ = f(copy(Z, 2, Circle))
abstraction (see Fig. 6).

Geometrical Transformation E- equatlmuff Imowledge

f(copylX, aw)) ~ E y(copy(r, aw)) 

2/ .............\ ,, ......Generalizalion O O~1 .~ubxtltution,~

~- f(copy(X,3,Circle)) flcopy(Y,2,Square))

~l
~

irlverseAbstraction
0 31

_
substttutlo,~

~over(copy(X,3,Circle)) [] divldefcopy~Y,2,Square))
[]

Figure 7: abstraction-generalization-geometri-
cal transformation

With tel = f(copy(X, z, w)), t~ = f(copy(Y, 
we are able to incorporate generalization, abstraction,
and geometrical transformations (see Fig. 7).

Learning
Learning proceeds incrementally by collecting cases
in CB and inducing similarity relations about these
cases using the underlying algebra. The latter pro-
ceeds by determining proper inverse substitutions of
problem states belonging to one case-set. There are
different possibilities to define case-sets in CB. Moti-
vated by case-based classification one may divide the
entire CB into case-sets CBj := {%, cj~, ..., Cd,}, with

ts--partequal solution parts _j := t~ [qj ~-- w], j = 1,..., m.
0."-1 withFor each set CBj we determine c~i := Un=l J~

t p0-1 --E MSCS~ for allt v. E CBj E = 0 is pos-jl Ji = Ji "
sible. Thus case-based knowledge is represented by
CB = {CB1, ..., CBm} and corresponding similarity re-
lations {O"1, ..., O’rn}.
Example: Learning about structural similarity
We assume the figures in Fig. 3 and Fig. 4 share equal
solution parts. In the example for generalization aa -
011 U 0~1 = {3 [ z, Circle I w, 21 z, Square I w} holds.
Analogously for the example of abstraction, we derive
CA = {cover I f, divide l f}. The similarity of all four
terms is ~r = ~ra U ~r A.

Solution Transfer and Adaptation
Given structural similarity solution transfer and adap-
tation proceeds by transferring the prior solution part
to the actual problem. That is taotual8 := td~ [qj

p --E MSCSp’tV~t~al] iff c~j : (tatt~aZ) With qa~t~aZ := qj
8we receive c~¢t~i = (ta¢tual, q~etu~l). Adaptation is

done implicitly by representing the solution opera-
tionally and transferring it to the actual problem.
Example: Solution transfer and adaptation
We come back to our example of generalization. As-
sume there are exactly two cases in CB with cl =
(cover(copy(X, 3, Cir’cle)), 1) and c~ = (cover(copy-
(X, 2, Square)), 1). We learned about MSCSp and
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O’G = 011 U 021. Given an actual problem tVaa al --
copy(X, 2, Circlc) we are able to deriv Msds 
applying inverse substitutions provided by crG, i.e.,
copy(X, 2, Circle){3 [ z, Circle [ w, 2[ z, Square [w} =
copy(X,z,w). ¯ ._ 8 vWith tactual .- t a [qa ~ t~ctual] we
receive coc,.at = (cover(copy(X, 2, Circle)), 

Algorithm
Next we want to introduce the algorithm for struc-
tural similarity assessment, adaptation, and learning.
Given are a set of cases in CB, a set of variables X, and
an equational theory E over E and X. Input is the

v Output is the completeactual problem state tactual.
actual case or the remark not solvable.

Reasoning proceeds as follows: as in standard CBR
we need first to know about similarity relations o" over
case-sets¯ That’s why we start by dividing the CB into
case-sets with equal solution-parts. Next we determine
structural similarity relations over these case-sets¯

begin
CB := {CB¢ [Vt;, e CBj (t; -p°r~ = t;,),j -= 1, ...,m}
solved:--false; j:---0;
repeat

j:=j+l;
--1 p , p --1 --~ paj := {Oj, [Vtj~ ¯ CB~(tj, Oj~ = MSCSj),i ---- 1 .... ,n}

if (aj ¯ _E p
¯(tactual ) = MSCSj) then

begin

qactua! :~ qj;
output (co~o~ = (t~..t, qo~o~));
solved:=true;
CBj :---- CBj U ¢actual
end

until (solved) or (j ---- 
if not solved then output (not solvable)
end.

To check each case stored in the case-base during struc-
tural similarity assessment is both computationally un-
feasible and psychologically implausible in any realistic
situation. That’s why we apply proper inverse sub-
stitutions provided by the structural similarity ~rj of
case-sets CBj to the actual problem and compare the
resulting term with the MSCS~ of CBj. Given equiva-
lence, the prior solution is transferred by replacing the
substructure of prior problems by the actual one. The
actual problem will be solved corresponding to the first
similar case-set and stored in CB.

Conclusions
The contribution of this paper is a formalization of a
novel approach to structural similarity assessment and
adaptation which was developed and implemented for
the domain of industrial building design. The approach
may be used practically to represent and perform rea-
soning in other application domains where structures
to a large degree determine or facilitate classification,
part identification, similarity and adaptability, and
where examples and underlying theories are available¯

We hope to encourage formalizations in CaR. They
provide not only the basis to evaluate and compare
approaches in a more formal setting but show how to
improve them by work not always associated with CaR.
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