
Geometric Similarity Metrics for Case-Based Reasoning

Karen Zita Haigh Jonathan Richard Shewchuk
khaigh@cs.cmu.edu jrs@cs.cmu.edu

(412) 268-7670 (412) 268-3778
School of Computer Science
Carnegie Mellon University
Pittsburgh PA 15213-3891

Abstract

Case-based reasoning is a problem solving method that uses
stored solutions to problems to aid in solving similar new
problems. One of the difficulties of case-based reasoning
is identifying cases that are relevant to a problem. If the
problem is defined on a geometric domain -- for instance,
planning a route using a city map -- it becomes possible to
take advantage of the geometry to simplify the task of finding
appropriate cases. We propose a methodology for determin-
ing a set of cases which collectively forms a good basis for
a new plan, and may include partial cases, unlike most ex-
isting similarity metrics. This methodology is applicable in
continuous-valued domains, where one cannot rely on the
traditional method of simple role-substitution and matching.
The problem of identifying relevant cases is transformed into a
geometric problem with an exact solution. We construct two
similar algorithms for solving the geometric problem. The
first algorithm returns a correct solution, but is prohibitively
slow. The second algorithm, based on the use of a Delaunay
triangulation as a heuristic to model the case library, is fast,
and returns an approximate solution that is within a constant
factor of optimum. Both algorithms return a good set of cases
for geometric planning. We have implemented the second
algorithm within a real-world robotics path planning domain.

Introduction
Our wish list for the ideal path planner for real-world navi-
gation includes several key properties: speed; the capacity to
reuse knowledge learned while forming and executing plans;
and the ability to react to changing conditions.

Case-based reasoning (CBR) [12; 10] is a planning method
that seems appropriate for path planning, because it enables
a planner to reuse cases -- solutions to previous, similar
problems-- to solve new problems. A CBR planning system
has to identify cases that may be appropriate for reuse and
then modify them to solve the new problem. Identifying
relevant cases is done by the use of a similarity metric, which
estimates the similarity of cases to the problem at hand. An
ideal metric might:
¯ take into account the relative desirability of different cases;
¯ suggest how multiple cases may be ordered in a single

new solution; and
¯ identify which part(s) of a case are likely to be relevant.
Finding a similarity metric that is both effective and fast is a

difficult task for the researcher. It is sufficiently difficult that
many existing CBR systems identify neither multiple cases
nor partial cases at all. This is unfortunate, because in many
domains, and path planning in particular, the transfer rate
of past experience is considerably reduced if only complete
plans can be reused.

The route-planning system most similar to ours, ROUTER
(developed by Goel et. al [7]), cannot reuse partial cases: it
can find partially matched cases, but then the only modifi-
cation performed is to add new steps at the beginning or the
end of the case; it does not remove any unnecessary steps.

The domain of path planning offers both simplifications
and added difficulties to the CBR researcher. On the one
hand, geometric information can be used to simplify the task
of identifying good cases. On the other hand, path planning
occurs in a continuous-valued state space, and the traditional
methods of role-substitution and matching on literals are not
easily applied.

As a heuristic to exploit geometric information and con-
front the pitfalls of continuous domains, we transform the
path planning problem into a mathematically precise geo-
metric problem whose solution is expected to produce a good
set of cases for planning. This method is not restricted to in-
herently geometric domains, but is applicable in any domain
which can be reduced to a continuous two-dimensional rep-
resentation. For instance, Broos and Branting [1] determine
the desirability of alternative states in a state space by geo-
metrically composing multiple training examples. However,
their method only composes entire examples, and does not
permit partial information reuse.

The geometric problem is to find the route of lowest cost
between two points in an idealized map that reflects the
relative desirability of different cases. We have developed
two algorithms to solve this problem. The first finds a route
of minimum cost, but may take a prohibitive amount of time
to execute. The more practical second algorithm finds an
approximation to the optimum route, and quickly generates
a good set of cases for the planner. Both algorithms have the
advantage that their internal representation of the problem
can be quickly updated and reused as learning occurs and
conditions change.

After a set of cases have been found, a planner constructs a
new path with help from the cases identified by the geometric

182

From: AAAI Technical Report WS-94-01. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved.

algorithm. These cases are returned with an ordering, and
it may be possible for the planner to begin execution of the
early part of the path before the remainder of the path is
planned. Once the plan is complete, it can be subdivided
into new cases which are added to the library. The geometric
representation is also updated accordingly.

We have implemented the faster geometric algorithm
within the context of the PRODIGY planning and learning sys-
tem [3]. Unfortunately, the usual similarity metric used by
PRODIGY is not appropriate for the continuous path planning
domain. Although domain independent, the metric relies on
role-substitution and matching, assuming that specific con-
stants can be parameterized and rematched to other instances
at retrieval time. However, in domains with continuous val-
ues (in which literals describe distance, time, or cost), it
hard to find a representation that satisfies this assumption.

The geometric similarity metric we propose herein over-
comes these difficulties, and PRODIGY is well-suited to deal
with the resulting information, which may include multiple
and partial cases, as well as a suggested ordering for them.
It is the planner’s job to knit this information together into
a plan, taking into account details such as one-way streets
and illegal turns that cannot be resolved by the geometric
algorithm.

Preliminary results show that our similarity metric
markedly improves plan quality and reduces total planning
time [9]. We illustrate the use of the algorithm within the
domain of robotics path planning using a complete map of
Pittsburgh containing over 18,000 intersections and 5,000
streets comprised of 25,000 segments [2].

Problem Representation
When PRODIGY generates a plan, the solution trace is either
stored as a case, or broken into several pieces and stored as
a series of cases. The representation of each case includes a
detailed description of the situations encountered at execu-
tion time, including explanations of any errors that occurred
and all replanning that was done to correct the problems.

For our path planning domain, each case is also approx-
imated by a line segment in a two-dimensional graph, and
line segments are allowed to intersect only at their endpoints.
This graph acts as the index into the case library. When
PRODIGY generates a plan that intersects existing segments,
the plan and the cases it intersects are broken into smaller
cases at the intersection points to maintain these constraints.
The resulting graph, which we call the case graph1, is illus-
trated in Figure 1.

Figure la is a map. Figure lb shows the abstract manner
in which paths are stored in the CBR indexing file. Note
that Case 20 oversimplifies the path, but the bend in the
road would not change the final routing, so this abstraction
is acceptable. If any of these segments are needed for reuse,
the similarity metric will estimate the best place within each
segment to start using the case. (Note that ROUTER is unable
to do this).

IThe case graph is identical to what computational geometers
call a planar straight line graph.

51 ,
I

51

!~ ; ~ :~ ’:. % : .,

49 .~ ! ~ 49

"., :" ’.. ~.....’ !

47 . dr’.... ~ t., : 47,’ . " t’ . t I .,l....,/. ¯: ’., - ;~...f ’...

’ i ~."’-"-,~’~.<.’,,." -.~..
~.."i ",. "~", " ,." :

451 ~--’~1’~-’"; ,’ , "’,. , "l’.."; ,: ,
451362 63 64 65 66 67 68 69 70 71 72 64 615 66 6’7 68 69 70 7’1

x coordinate, xlO000 x coordinate, zlO000

Figure 1: (a) Map. Solid line segments are previously visited
streets; dotted segments are unvisited streets. (b) Case graph rep-
resentation of map. Straight line approximations are used to create
the representation by cases. Several case segments may together
describe one route, and several streets may be contained in one
case segment.

We call the segments of the case graph case segments.
If the case graph contains intersecting segments, then these
segments must be split at their intersection points, and a
vertex must be added at each intersection. This process can
be done incrementally when each case is added to the library.

The Geometric Problem
Suppose we undertake to plan a route on our map from
some initial location i to some goal location y. Although
we want to reuse cases, we prefer unexplored territory to
long, meandering routes. It is important to find a reasonable
compromise between staying on old routes and finding new
ones. Hence, we assign each case an efficiency value fl,
which is a rough measure of how much a known case should
be preferred to unexplored areas. In the map domain, the
efficiency of a particular case might depend on such factors
as road conditions or traffic. The efficiency satisfies fl _> 0,
and may vary from case to case; low values offl correspond
to more desirable streets. Values of fl > 1 correspond to
undesirable streets.

We assume that the cost of traversing an unknown region
of the plane is equal to the distance travelled, while the cost
of traversing a known case is equal to fl times the distance
travelled. Define a route to be a continuous simple path in the
plane. A route may include several case segments (or parts
thereof), and may also traverse unexplored regions. Assign
each route a cost which is the sum of the costs of its parts.

The problem of finding a good set of cases is reduced to
a geometric algorithm in which one finds an optimum route
(that is, a route with the lowest cost) from the initial vertex
i to the goal vertex g in the case graph. The case segments
found in the shortest route are returned to the planner, which
creates a detailed plan using the cases for guidance.

Note that it is not appropriate to use this geometric method
at the finer-grained level (the entire map) for several rea-
sons. For a detailed discussion of this point, see Haigh and
Veloso [9]. In particular:
¯ The number of streets is much larger than the number of

cases, and would create substantially more work;
¯ Anomalies such as one-way streets, illegal turning direc-

183

tions, and overpasses are not easy to represent geometri-
cally;

¯ Use of large cases improves efficiency by taking advantage
of prior experience; and

¯ We Wish to interleave planning with execution.

Planning with PRODIGY/ANALOGY
Once identified, the cases are returned to the case reuse al-
gorithm described by Veloso [14] within the framework of
PRODIGY. PRODIGY/ANALOGY is one of the few systems that
allow flexible reuse of partial cases, as well as the merging
of multiple cases.

In its normal state of execution, PRODIGY uses a nonlinear
planner to find solutions by examining and modifying its
domain knowledge, encoded in the form of operators and
state description predicates. When the CBR module of the
system is included in the problem solving cycle, PRODIGY
uses a case library to guide the search phase, and attempts to
reuse prior successful decisions and avoid failed ones.

PRODIGY/ANALOGY’S first action before making any deci-
sions about a new problem is to request a set of cases from
the case library. At each decision point in the new problem,
it examines the decision taken in the case(s), and if the jus-
tifications for that action hold in the present context, makes
the same decision. When old justifications do not hold, it
uses domain knowledge to insert or ignore decisions.

For example, if a case indicated that the next move was
to cross a bridge, PRODIGY/ANALOGY would check that it
believes the bridge is still functional before committing to
the same move. If the bridge was unusable, it would find
an alternate route over the river. As a second example, if a
case had subgoaled on finding a key to a locked door, but
the key were already available in the new situation, then
PRODIGY/ANALOGY would ignore all the steps in the case
that were directly related to finding the key.

At the end of any problem solving episode, successful
solutions are added to the case library. Associated with each
case is a solution trace, which provides a detailed description
of the plan and justifications for all decisions made.

If the case library is empty or there are no cases appli-
cable in the new situation, the system will use its current
domain knowledge to construct a viable solution, and in-
crementally expand the case library. Similarly, in the rare
situation that PRODIGY/ANALOGY fails to generate a solution
based on some set of cases, it can backtrack over those de-
cisions and use domain knowledge to find a viable solution
for the new problem if one exists.

An Exact Algorithm to Find an Optimum Route
To solve the geometric problem, we transform it into a graph
problem. Define G to be the complete graph (i.e., every
pair of vertices is connected by an edge) whose vertices
are the vertices of the case graph (i.e., the endpoints of the
cases), plus the initial and goal points (i and g). Each edge
(u, v) of G is assigned a cost which represents the cost
a good simple route between u and v. Given this graph, a
slow but exact algorithm is to apply Dijkstra’s shortest path
algorithm [5] to find the lowest-cost path from i to g in G.

The difficult part of the algorithm is to compute each edge
cost. Where two vertices are connected by a case segment,
the edge cost is simply/3 times the Euclidean distance be-
tween the vertices. The calculation is not always so simple.
To see why, consider Figure 2. Imagine that ~-~ is a highway,

: cost(xy) = eost(xa) + eost(ay)..
.. ¯¯ Path of Minimum Cost

Ye - j<O e :- :- Case Segment
a z

Figure 2: Finding the route of minimum cost.

and it is faster to take the highway for part of the route than
to go directly from x to y. The best place to merge with
the highway is at point a. (Note that there may not be an
on-ramp at a in the real world; it is PRODIGY’S responsibility
to find some legal merge point close to a.)

In this figure, y"-E is a case segment. The optimum route
between x and y is (~--6, a---~, for some point a that depends
on the value of ft. The cost of the optimum route is equal to
length(~’ff) +/9 × length(~--~). Let 0 represent the angle Zxaz;
the position of a is computed from the fact that 0 = cos-~ ft.
In the limiting case where fl = 0, ~ is perpendicular to y-z.

We assign a cost to each edge (x, y) of G by considering
a number of possible routes between x and y, and taking
the route with minimum cost. The first route we consider
is a straight line between x and y. Then, for each case seg-
ment, we consider the optimum route that uses the segment.
Several examples are demonstrated in Figure 3 for shortest
routes between x and y. The first three examples are all
resolved by the formula 0 = cos- i ft. Examples 2 and 3 are
notable because they show that a segment does not need to
be connected to x or y to provide a low-cost route. Example
4 shows that a segment between x and y does not always
improve the optimum route.

..y x.. ..y ..y ly
¯ " ¯ ,.

/Xx."

Figure 3: Four examples of shortest routes. Other cases are
possible. Points where dotted lines join the solid lines (cases)
depend on the cost factor/3 of the case.

For each edge (u, v) in G, we record which simple route
from u to v had the minimum cost so that the entire route
(and set of cases) can be reconstructed later. Even though
consider only a few of the infinite number of possible routes
for each edge, it can be shown that finding the lowest cost
path from i to g in G is equivalent to finding the optimum
route from i to g in the case graph.

Unfortunately, the cost of this algorithm is prohibitive
because we need to connect every pair of vertices, even if
they are distant from each other. (Though i and g may be
far apart, the optimal route between them might be a straight
line.) The graph G has O(n2) edges, where n is the number
of vertices. It takes O(m) time to determine the cost of each
edge, where m is the number of cases. Hence, the overall
complexity is O(m3). However, we can develop from this
much faster algorithm that finds a good approximation to an
optimal route.

184

A Fast Algorithm for Finding a Good Route
To derive a fast approximate algorithm, we take advantage
of locality, the principle that one is most likely to travel from
vertices to other nearby vertices. This saves computational
effort because we can ignore interactions between distant
vertices and segments. The graph G becomes a planar graph
called a Delaunay triangulation. Delaunay triangulations
have several desirable properties:
¯ They provide a structure that makes it possible to quickly

determine the edge weights of G;
¯ Local modifications of the triangulation can be easily

made; and
¯ They form a good approximation of which vertices are

closest to each other. Take for example Figure 4. This

! 9

d
Figure 4: A set of points and their triangulation.

figure shows a small set of points and the Delaunay trian-
gulation of those points. Imagine that each of the points
a through h are endpoints of case segments, and that i is
the initial point. In each direction around i, the triangula-
tion indicates what case is closest to i. Any cases outside
the hexagon centered at i (such as those involving 9 and
h) are further away, and are far less likely to be directly
connected to i in the final solution path. It is these more
distant cases that we ignore in our heuristic.
Our algorithm consists of several steps. First, we form

a Delaunay triangulation of the vertices of the case graph.
Then we calculate the edge costs and use Dijkstra’s shortest
path algorithm to find a set of cases.

Step 1: Conforming Delaunay Triangulations
The Delaunay triangulation of a set of points is a triangulation
in which there are no points inside any triangle’s circumcir-
cle. (The circumcircle of a triangle is the circle that passes
through all its vertices.)

Triangulating the case graph makes it possible to deter-
mine the most likely cases that a vertex will be connected
to, and allows us to reduce the number of cases examined
for each pair of vertices. Note that this act is a heuristic: in
very unusual situations, some cases are ignored that should
not have been.

To represent the case graph, we use a conforming De-
launay triangulation. The vertices of the case graph (as in
Figure 1 a)) are triangulated, then additional points are added
to ensure that all of the cases appear as edges in the triangu-
lation (see Figure 5) and that other conditions are satisfied
that, due to space limitations, we cannot enumerate here.

Points can be added incrementally to a Delaunay triangu-
lation [15; 8], making it possible for the case library to grow
without having to retriangulate the entire graph.

Inserting a vertex is a two-step process: first delete any
triangles whose circumcircles contain the new vertex (Fig-

(a) (b) (c)

Figure 5: (a) Case graph. (b) Delaunay triangulation of the
graph. (c) Conforming Delaunay triangulation of the case graph.

ure 6a). Then, add edges to connect the new vertex to its
surrounding vertices (Figure 6b). Under ordinary circum-
stances, when a new point is added, only the nearby edges
need change, and so a point can be added in constant time.

(a) (b)

Figure 6: (a) Inserting a new point into a Delaunay triangulation.
The shaded triangles are deleted because the new point is inside
their circumcircles. (b) The new point is connectedto its neighbors.

The conforming Delaunay triangulation of the set of cases
from Figure lb is shown in Figure 7.

Step 2: Edge Costs
The cost calculation for an edge (z, z) is similar to that
the optimal algorithm, but instead of examining every case
segment, we examine only the edges of the triangles in the
vicinity of (z, z). It can be shown that the only segments that
need to be examined are those which intersect the interior of
the diametral circle of (z, z).

Usually, we need only examine the two triangles adjacent
to (z, z). (The exceptions are for a few cases like Examples
2 and 3 of Figure 3. A good heuristic is to ignore these
examples and examine only two triangles.) For two triangles,

50 .~------ ~ ~ ~-..

;~ 49 \i ,, I ./1~ I /" ..~--N..I,

48 ~

,./" i i~ / k,"" /
47 ’ -- -- -- -- ... ~jll//~. //"

5_-----4#i/i /
46

I I i i i i I i 711
453 64 65 66 67 68 69 70

x coordinate, xlO000

Figure 7: A Conforming Delaunay Triangulation and the path
found by Dijkstra’s algorithm for some set of ~s associated with
each edge, and the labelled initial and goal points. Solid lines are
cases; dashed lines are triangulation edges.

185

cost(xz) = MIN(cost(xa)+cost(az),
cost(xb)+cost(bz),
cost(xc)+cost(cz)

.--.--.e Potential Path of Minimum Cost
as a function of beta valuos of case seglnenL~

e---Q Triangulation Edge
: : Case Seglnont

Figure 8: Cost Calculation for Two Triangles

Figure 8 illustrates some of the possibilities. To determine
the cost of edge (z, z), only a small number of alternative
routes need be considered, taking only constant time per
edge.

Step 3: Dijkstra’s Algorithm
Once the triangulation and cost assignment steps are com-
plete, we use Dijkstra’s shortest paths algorithm to find the
optimum route, as before. It can be shown that in the worst
case the cost of this route is within less than a factor of 3.5
of optimal; we conjecture that this constant can be improved
to ~. In practice, our algorithm does much better; we have
never found a route worse than 1.3 times longer than the
optimum route. The path shown in Figure 7 shows a path
chosen by Dijkstra’s algorithm, given the shown initial and
goal points and some fl value assigned to each edge.

The case segments on the route returned by Dijkstra’s al-
gorithm are sent to the planner, which transforms the coarse-
grained plan into a fine-grained plan usable by a robot.

Complexity Analysis
All the steps in the method described above have costs that
are based on the number of cases in the case graph (m) rather
than on the size of the map. Since the cases are abstractions
of the map, we expect m to be much smaller than the size of
the map, which contains 25,000 street segments.

Conforming Delaunay Triangulation. Delaunay triangu-
lations can be formed in O(nlgn) time, where n is the
number of points in the triangulation [8]. Points occur at
the endpoints of cases and at the initial and goal points.
The number of additional points added to split segments
is linear in practice2. Hence, n 60(m) and this step
takes O(m lg m) time. Since the triangulation is planar,
the number of edges E in the triangulation is O(m).

Edge Costs. As mentioned before, the edge costs can be
determined in constant time per edge. Hence, the total
time to compute these is O(m).

Dijkstra. Dijkstra’s algorithm typically runs in O(n2) time,
but it is possible to achieve a running time of O(n lg n + E)
by implementing a priority queue with Fibonacci heaps [4;
6]. This step therefore runs in O(m lg m) time.

The total run time is O(m lg m), which is optimal3. Fur-
thermore, once planning is complete, we can quickly update

2Pathological cases can be found where an asymptotically larger
number of points must be added, but these are of theoretical interest
and do not occur in realistic maps.

3We show this by pointing out that finding a route through a
one-dimensional sequence of cases is equivalent to sorting. A two-
dimensional problem can only be worse.

the triangulation to reflect any newly learned cases. The cost
of this will depend on how much of the triangulation the route
covers. Virtually all the Delaunay triangulations that arise
in practice have the property that a point can be inserted in
expected constant time, if the location of the point in the tri-
angulation is known4. Therefore, we can expect to update the
triangulation in time proportional to the number of vertices
on the route, and we only need to update the costs of those
edges that are near the route. This incremental behaviour is
one of the benefits of using Delaunay triangulations.

For a problem with multiple goals, there is only one mi-
nor change to the above algorithm. Once we have built the
triangulation and assigned edge costs, we run Dijkstra’s al-
gorithm several times, using one of the goal points as the
source each time. The complete set of cases is then given to
PRODIGY, which solves the problem. This change does not
affect the asymptotic running time of the similarity metric
since the number of goals is constant and small compared
to the search space. PRODIGY/ANALOGY will find the best
final ordering of the goals, implicitly solving the Travelling
Salesperson Problem.

Results
For the purposes of this paper, we created a set of case
files by randomly selecting streets and segments from the
original map of 25,000 segments. Table 1 shows some of the
timings we obtained for the similarity metric running on a
SPARCstation ELC workstation. Note that when used within
a CBR system, the triangulation is updated incrementally,
and hence the Delaunay triangulation time is much smaller
than shown in the table.

11 cases 31 cases 492 cases
Delaunay 20 msec 85 msec 340 msec
Edge Costs 10 msec 10 msec 80 msec
Dijkstra 10 msec 15 msec 70 msec

Total 40 msec 110 msec 490 msec

Table 1: 71mings of parts of our algorithm. Dijkstra’s algorithm
is used for a single source and a single goal.

Table 2 shows a sample of the distance values obtained by
our algorithm when run with one particular initial point and
several different goals.

In the graph used to generate these numbers, all case seg-
ments were assigned a ~ value of 1; hence the shortest route
between two points is always a straight line. The table shows
that the Delaunay distance, although slightly longer than the
Euclidean distance, is well within the predicted range. As
mentioned above, the worst ratio we have seen was 1.3.

We do not show a table in which the/~ values differ from
1 because we have not yet implemented the exact algorithm
for comparison. We predict that as fl decreases, the ratio
between the route found by our algorithm and the true lowest
cost route will be even better. It suffices to say that the

4However, if the location of a point in a triangulation is not
known, finding it typically takes O(lg m) time, like searching
through a sorted list. This is why we cannot form a Delaunay
triangulation in O(m) time.

186

(goal) Euclidean Delaunay Ratio
(586244.0, 507260.0) 13801.5 13801.5 1.0000
(619759.0, 512250.0) 46789.4 47685.5 1.0191
(622042.0, 514523.0) 49178.1 49178.1 1.0000
(707573.0, 408678.0) 169121.3 183481.2 1.0849
(594682.0, 417310.0) 96255.5 97538.3 1.0133
(595227.0, 421376.0) 92428.3 93936.8 1.0163

Table 2: Results from the case-graph containing 11 cases, using
(572984. O, 511088.0) as initial point. Ratio = Delaunay distance
Euclidean distance.
algorithm consistently finds low cost paths containing cases,
rather than choosing a straight line from the initial point to
the goal.

Discussion
Unaided planning of a solution to the problems we have
discussed could require exponential search time [9]. If a
similarity metric can magically return a perfect cover-set of
cases (one that covers every step of the entire low-level plan)
in the correct order, the planning problem becomes linear in
solution-length. Although we do not expect (or even want)
the case library to contain a perfect cover-set of cases for all
problems, having a good similarity metric can be profitable.

The practical method described in this paper provides the
planner with a good set of cases quickly. Unlike ROUTER’s
neighbourhood heirarchy), our algorithm requires neither the
cases nor their endpoints to be extremely close to the new
problem, and thus allows much greater flexibility to the sys-
tem as a whole. The method is applicable in any CBR
planning domain with continuous values: some examples
might include economics, physics, and chemistry.

Incremental behaviour, such as that of our case library,
is a feature desirable in any learning system. Although the
work involved in finding a good set of cases will grow with
the size of the library, it is still only O(mlgm), where
is the size of the case library and is much smaller than the
number of street segments that the planner is working with.
Because the set of cases returned by the similarity metric
will cover more and more of the entire solution as the library
grows, the additional work in finding the similar cases will
be more than made up for by the time saved in planning.
The tradeoff between retrieval and search costs has been
discussed at length elsewhere [11; 13].

The method described above is designed with a feedback
loop in mind: the costs (fl) on the segments are dynamic
and not fixed. After each execution of a path, the costs can
be modified and updated. The more a particular street is
used, the more closely the cost will reflect the real cost. If
the expense grows, then the likelihood that it will be found
by the similarity metric drops. If the expense drops, then
the likelihood that it will be found increases. In this way,
the similarity metric will improve its behaviour with use and
return a better and better set of cases.

We have integrated the similarity metric into
PRODIGY/ANALOGY. We are currently investigating the im-
provement in plan quality and the reduction in total planning

time, using the entire map as the basis. The entire planning
system is being used with the simulator for one of Carnegie
Mellon’s robots. We look forward to seeing the system work
with a robot, and to showing that indeed, a robot can learn.

References
[1] Patrick Broos and Karl Branting. Compositional instance-

based acquisition of preference predicates. In Case-Based
Reasoning: Papers from the 1993 Workshop, pages 70-75,
Washington, D.C., July 1993. AAAI Press. Available as Tech-
nical Report WS-93-01.

[2] Bemd Bruegge, Jim Blythe, Jeff Jackson, and Jeff Shufelt.
Object-oriented system modeling with OMT. In Proceedings
of the OOPSLA ’92 Conference, pages 359-376. ACM Press,
October 1992.

[3] Jaime G. Carbonell, Craig A. Knoblock, and Steven Minton.
PRODIGY: An integrated architecture for planning and learn-
ing. In K. VanLehn, editor, Architectures for Intelligence.
Erlbaum, Hillsdale, NJ, 1990. Available as Carnegie Mellon
Technical Report CMU-CS-89-189.

[4] Thomas H. Cormen, Charles E. Leiserson, and Ronald L.
Rivest. Introduction to Algorithms. MIT Press, Cambridge,
Massachusetts, 1990.

[5] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1:269-271, 1959.

[6] Michael L. Fredman and Robert E. Tarjan. Fibonacci heaps
and their uses in improved network optimization algorithms.
Journal of the A CM, 34(1):209-221, 1985.

[7] Ashok Goel and Todd J. Callantine. A control architec-
ture for run-time method selection and integration. In AAAI
Workshop on Cooperation Among Heterogeneous Intelligent
Agents, July 1991.

[8] Leonidas Guibas and Jorge Stolfi. Primitives for the ma-
nipulation of general subdivisions and the computation of
Voronoi diagrams. A CM Transactions on Graphics, 4(2):74--
123, April 1985.

[9] Karen Haigh and Manuela Veloso. Combining search and ana-
logical reasoning in path planning from road maps. In Case-
Based Reasoning: Papers from the 1993 Workshop, pages
79-85, Washington, D.C., July 1993. AAAI Press. Available
as Technical Report WS-93-01.

[10] Kristian J. Hammond. Case-based planning: A framework
for planning from experience. Cognitive Science, 14:385-
443, 1990.

[11] M. T. Harandi and S. Bhansali. Program derivation using
analogy. In Proceedings oflJCAl-89, pages 389-394, 1989.

[12] Janet L. Kolodner. Case-Based Reasoning. Morgan-
Kaufmann Publishers, Inc., San Mateo, CA, 1993.

[13] Manuela M. Veloso. Variable-precision case retrieval in ana-
logical problem solving. In Proceedings of the 1991 DARPA
Workshop on Case-Based Reasoning. Morgan Kaufmann,
May 1991.

[14] Manuela M. Veloso. Learning by Analogical Reasoning in
General Problem Solving. PhD thesis, School of Computer
Science, Camegie Mellon University, Pittsburgh, PA, 1992.
Available as technical report CMU-CS-92-174.

[15] D.F. Watson. Computing the n-dimensional Delaunay tesse-
lation with applications to Voronoi polytopes. The Computer
Journal, 24(2): 167-172, 1981.

187

