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Abstract

It seems apparent that there is a variety of empirical structures in multiagent environments
which may be represented by graph as for instance: the communication structure, the structure
reflecting the degree of cooperation, the structure reflecting influences between agents, the
structure reflecting commitments between agents, the authority structure, etc. In this context,
graph theory and associated branches of mathematics, and particularly matrix algebra, provide
techniques of computation and formulas for calculating certain quantitative and qualitative
features of empirical structures.

This paper presents a formal model which can serve as mathematical model of the structural
properties of any empirical multiagent system consisting of relationships among pair of agents.
Precisely, our work consists of a formal model based on binary relations and graphs. This model
has a high computational value since it is essentially based on matrix algebra. In addition, this
model takes into account fuzzy relations as for example: none, some, much and a lot. Finally,
the proposed model provides a framework for the reasoning about others, the negotiation and
communication between agents . We conclude by discussing our initial experiments about a
crossroads in which interactions between cars are represented by a cognitive structure.
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1 Introduction

A central issue in multiagent environment is how to get autonomous agents, each of whom has its
goals, actions and plans, to model each other in order to reason about others’ activities. Reasoning
about others allows agents to coordinate their activities for their mutual benefit [5]. This paper
summarizes a cognitive map (or causal graph) [1, 7, 12], that agents can use to model each other
in order to make decision in multiagent environments. A cognitive map (CM) is a direct graph
in which nodes represent problem constructs and edges or arrows represent dependence or influ-
ence between constructs. According to this definition, it seems that in multiagent environments,
cognitive mapping (i.e. the process of constructing CM from a given environment):

¯ enables a local agent to get a sufficient view of its constantly changing distributed environ-
ment;

¯ seems to be a natural way to make and to analyze decisions, taking into account causal
relations between agents’ goals, actions and utilities.

In fact, cognitive mapping techniques have been used for decision analysis in the fields of inter-
national relations [1, 3], administrative sciences [8], management sciences [10], and the distributed
group decision support [12]. In this latter context, Zhang and his colleagues provided the notions
of NPN (Negative-Positive-Neutral) logic, NPN relations, coupled-type neurons, and coupled-type
neural networks. Based on these notions, D-POOL, a cognitive map architecture for the coordina-
tion of distributed cooperative agents is constructed. Precisely, D-POOL consists of a collection of
distributed nodes, each node is a CM system coupled with a local expert/database system (called
agent). To solve a problem, a local node first pools cognitive maps from relevant agents into a NPN
relation that retains both negative and positive assertions. Then new cognitive maps are derived
and focuses of attentions are generated. With the focuses, a solution is proposed by the local
node and passed to the remote systems. Based on their view points, the remote systems respond
to the proposal and D-POOL strives for a cooperative or compromised solution through coher-
ent communication and perspective sharing. In summary, D-POOL focuses on CM composition,
derivation and not on relationships among agents. In addition, it uses NPN fuzzy relations based
on quantitative description, and generally it is not easy to find crisp quantities in real applications.

Our objective in this work is to present a formal model which can serve as mathematical model of
the structural properties of any empirical multiagent system consisting of relationships among pair
of agents. Precisely, our work consists of a formal theory based on binary relations and graphs. This
theory has a high computational value since it is essentially based on matrix algebra. In addition,
the fuzzy relations are symbolic in order to make reference to the empirical world. Finally, the
proposed model uses the symbolic reasoning, and provides a framework for the reasoning about
others, the negotiation and communication between agents.

The remainder of this paper is organized as follows. The next section presents graphs and
structures in multiagent environment. We then describe in section 3, our theory for structures
based on the calculus of relations. In section 4, we infer the properties of a cognitive structure
(or cognitive map) in multiagent environments. Finally, we conclude by discussing our initial
experiments about a crossroads in which interactions between cars are represented by a cognitive
structure.
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2 Graphs and Structures in Multiagent Environments

Our goal in this paper is to present some mathematical theory about the notion of "structure" of
a multiagent environment. This theory is concerned with patterns of relationships among pairs of

abstract elements. In this context, the graph theory combined with matrix algebra is certainly the
convenient mathematical tool for study this type of structure.

Consider, for example, the "communication structure" of a group of agents. We may conceive

of each member of the group as an "element" and the fact that a particular member of the group
can communicate directly to another as a "relationship". Then, upon coordinating these empirical

entities and relationships to the abstract terms of graph theory, we obtain a graph which represents
the communication structure of the group. The properties of this graph, with which graph theory

is concerned, are at the same time properties of the communication structure.
As another example, consider a structure which reflects the degree of cooperation between many

agents. In this case, the elements of the structure are agents’ utilities, and the relationships are

the fuzzy relations about the cooperation among agents. Notice that the degree of cooperation
characterizes the amount of cooperation between agents that can range from fully cooperative (i.e.,
total cooperation) to antagonistic.

Thus, it seems apparent that there is a variety of empirical structures in multiagent environments
which may be represented by graphs as for instance: the structure of a distributed plan, the

distribution of roles, the authority structure of an organization, the net of commitments among
agents, etc. Or, graph theory and associated branches of mathematics, and particularly matrix

algebra, provide techniques of computation and formulas for calculating certain quantitative and
qualitative features of empirical structures.

In the distributed group decision support, a graph should capture the structure of the agent’s
causal assertions and generate the consequences that follow from this structure. This graph is

generally called cognitive map. This map has only two basic types of elements: concepts and
causal beliefs. The concepts are treated as variables, and causal beliefs are treated as relationships

between variables. A concept variable is something like "a great amount of fuel" or "a small amount

of fuel". A cognitive map allows great flexibility in the variables, such as the existence or non-
existence of something. But whatever type of concept is represented, it is always regarded as a

variable that can take more than one value. Cognitive maps frequently contain concept variables to

represent utility. Utility means the unspecified best interests of an actor, such as an agent, group
or organization.

The second type of basic element in a cognitive map is a causal assertion. Causal assertions are

regarded as relating variables to each other, as in the assertion that "the amount of fuel of agent3
promotes its ability to cooperate for task4". Here the causal variable is "the amount of fuel of

agent3" and the effect variable is "the ability of agent3 to cooperate for task4". The relationship
between these two variables is indicated by the word "promotes". A relationship can be "positive"

(R+), "negative" (R-), "neutral" (n°), "neutral or negative" o), "neutral or positive"(n0+),

"nonneutral" (R_+), "positive, neutral or negative", that is "universal" (RU).

In this case, causal links between two concepts v~ and vj can have one of the following seven
values.
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Causal Relations Descriptions

vi promotes vj, vi helps vj, vl is benefit to vj, etc,

vi retards vj, vl hurts vj, vl prevents vj, vi is harmful to vj, etc,

vi has no effect on vj, vi does not matter for vj, etc,

vi does not retard vj, vi will not hurt vj, vl does not prevent vj, etc,

vi does not promote vj, vi will not help vj, vi is of no benefit to vj, etc,

vl has any effect on vj, vi affects in some non-zero way vj, etc,
R+, R- and R0 can exist between variables vl and vj

For the sake of understanding the cognitive map in multiagent environments, here are some
definitions that should be remembered.

Definitions:

1. A cognitive map is a directed graph which represents an agent’s assertions about its be-
liefs with respect to its environment and more particularly to beliefs about other agents. The
components of this graph are the points and the arrows between those points.

2. A point represents a concept variable, which may be a plan option or a goal option of any
agent, the utility of any agent (or its organization), or any other concept that may take on different
values in the context of multiagent reasoning.

3. An arrow represents causal relations between concepts. Precisely, an arrow represents a causal
assertion of how one concept variable affects another. As stated previously, we have introduced
seven causal links between two concept variables vi and vj: R+, R-, R°, Rg-, R°_, R_+ and Ru.

4. A path from variables Vl to vn is a collection of distinct points, vl, v2, ..., vn, together with
the arrows vlv2, v2v3 ..., Vn--lVn. Notice that a path is trivial if it consists of a single point.

5. A cycle is a nontrivial path together with a line from the terminal to the initial point of
the path. A positive cycle, that is one with an even number of negative (R-) arrows, is deviation-
amplifying because any change in one of its points will eventually be reflected back at that point
as an additional indirect effect in the same direction as the original change. Conversely, a negative
cycle (one with an odd number of negative arrows) is deviation-counteracting.

6. The total effect of vi on variable vj is the sum of the indirect effect of all the paths and cycles
from vl to vj.

7. A balanced graph is a graph that has no universal nor non-neutral relation for a total effect
of any pair of points.

8. A acyclic graph is a graph which has no cycle.
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9. The valency matrix A of a CM is a square matrix of size n, where n is the number of concepts
in the corresponding cognitive map. Each element aij can take on the values R+, R-, R_+, etc, to
characterize the relationships between elements i and j of A. The diagonal elements are considered
to be R°.

10. The degree of a variable v~ is the ordered pair [od(vl), id(v/)]. The outdegree of concept v/,
od(vi), precises the number of concepts affected directly by concept vi. The indegree of concept vi,
id(vl), precises the number of concepts which affect concept vi directly. The sum of the indegree
and indegree for concept vi gives the total degree (td) of concept vi: td(vi) = id(vl) + od(vj).

11. The teachability matrix R of a CM is a matrix whose entries are denoted rij, where rlj = 1
if vj is reachable from vi, and rij = 0 otherwise.

Now it is important to say how a cognitive map permits to represent relations between agents.
Consider for example a multiagent environment where, for three tasks (T1, T2, T3), four agents (A1,
A2, A3, A4) present the capacities summarized in matrix C. In this matrix c/j = 1 if Aj has the
capacity to achieve the task Ti, and cij = 0 otherwise.

A1 A2 A3 A4

 1(110 0)C=T2 1 0 0 1
T3 0 1 1 0

Thus, task T1 for instance can be executed by A1 or by A2, and agents have to know how A1
or A2 influence them before to allocate T1. These influences can be reflected in two cognitive maps
like those of Figure 1 where a) reflects relations between agents in the case where A1 will be the
actor, and b) the case where A2 will be the actor.

The valency matrix (A(1)) and the reachability matrix (R(1)), for the case where A1 
the actor, are:

A1 A2 A3 A4 A1 A2 A3 A4

A(1)= A2 ° R° R° R°

A3 R° R° R° R° R(1)= 
0 1 0 0

A3 0 0 1 0
A4 R° R° R° R° A4 0 0 0 1

In this context, the outdegree and the indegree of agents are summarized in the following matrix.

od id
o I

A2 0 I(I-)
A3 0 1(1+) 
A4 0 1(1+) 

Thus, if A1 will be the actor of task T1, it will affect positively two agents (A2 and A3) and
negatively the agent A3.
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A ~(actor)

A
R÷ 2

a3

a) b)

Figure 1: An Example of Influences between Agents

On the other hand, the valency matrix (A(2)) and the reachability matrix (R(2), corresponding
to the cognitive map of b) (Figure 1), are:

A1 A2 Aa A4 A1 A2 A3 A4

A(2)= R+ R° R° R°

Aa R° R° R° R°
R(2)= 1 1 0 1

A3 0 0 1 0
A4 R° R° R+ R° A4 0 0 1 1

For this case, the outdegree and indegree of the agents are the following:

od id

A2
A3 1(1+) 
A4 \1(1+) 1(1+)/

Thus, if A2 will be the actor of task T1, it will affect positively the agent (A1), which in turn
affects positively A4, which in turn will affect positively A3.

In summary, cognitive maps with their valency matrices like those of Figure 1 can allow agents
to negotiate the allocation of T1.

3 Towards a new Theory for Structures based on the Calculus of
Relations

The mathematical treatment of relations is said to have its origin in Aristote, but its modern
study starts with the contributions of G. Boole, A. de Morgan, and C. P. Peirce. Their work was
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continued in systematic way notably by E. Schrsder who around 1890 published his three volumes
of Algebra der Logik. Half a century later A. Tarski and J. C. C. McKinsey, among others, laid the
foundations for the modern calculus of relations.

In ordinary language relation is used to indicate an aspect that connects two or more things.
The relation "is a father" is defined on a set of persons; the relation "less than" can be defined
on the set N of natural numbers. Generally, a relation either does, or does not, hold between two
elements; 5 is less than 7, but it is not true that 5 is less than 3. By this alternative, a relation
partions the set of pairs of elements of the given set V into those for which the relations hold, and
those for which it does not. The relation "is succeeded by" on N corresponds to the subset

S := {(0, 1), (1, 2), (2, 3), ...) 

Relations on finite sets can also be represented by tables or by matrix, as shown by the fol-
lowing tables and Boolean matrix about the relation "congruent modulo 2" on the set 1, 2,..., 7 C N.

1 2
x

x

x

x

x

3 4
X

x

x

x

x

5 6

x

x

x

x

7
x

x

x

1 2 3 4 5 6 7

II 0 0 1 0 0 1~

0 1 0 0 1 0 0
0 0 1 0 0 1 0
1 0 0 1 0 0 1
0 1 0 0 1 0 0
0 0 1 0 0 1 0
1 0 0 1 0 0 1

i {1,4,7}
2 {2,5}
3 {3,6}
4 {I,4,7}
5 {2,5}
6 {3,6}
7 {1,4,7}

Relations and graph are closely related. Any homogeneous relation 1 can be interpreted as
graph and vice versa. One usually represents a relation R on a set V graphically as follows: the
elements of V are plotted as points and two points x,y E V are joined by an arrow having x as its
tail and y as its head precisely when (x, y) E R. A relation depicted in such a way is called a graph
and if this graph captures the cognitive structure of an agent it is called a cognitive map. We are
working towards a formal model based on binary relations to derive decisions with a cognitive map.
This model is now described.

Relations are sets, and consequently we can consider their intersection, union, complement,
and inclusion. With respect to these four operations the set of all relations on the set V, namely
2v×v, is a complete Boolean lattice [9]. We are using the symbols (V, A), (U, N), and (IA, [7) for 
two Boolean operations on truth values, subsets and relations, respectively. Thus, binary relations
allows us to represent firstly R+, R- and R° by the following matrices:

+ 0 - + 0 -

+(10 0) +(0 R+= 0 0 1 0 R-= 0 0 1 0
- 0 0 1 - 1 0 0

1 Relations between elements of the same set are called homogeneous

+ 0 -

+/°
1
°/R°= 0 0 1 0

- 0 1 0
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Notice that in these matrices, + can mean "increase", "has more chance to happen", etc.
Similarly, - can mean "decrease", "has less chance to achieve", etc. Finally, 0 can indicate "no
change" or "constant"..

Secondly, we use the operation LI on matrices R+, R- and R0 to determine R+, R0 and R+.

Generally, let R, S C V × V be relations; their union is given by:

RII S clef {(x,y) ] (x,y) E RV (z,y) 

This definition allows us to state: R+ = R+t_lR0, R° = R°tlR-, R_+ = R+t_lR_ and
Ru = R° U R+ U R-. The matrices relative to these statements are:

+ 0 - + 0 -

+(110)01R+o=O o o 1 o
- 0 1 1 - 1 1 0

+ 0 - + 0 -

R+= 0 0 1 0 R~= 0 0 1 0
- 1 0 1 - 1 1 1

Once the relationships between all the variables are determined, the cognitive map can be
drawn. Relationships that are in sequence form paths, and paths transmit indirect effects. The
operation of combining direct effects of relationships that are in sequence into indirect effects of
path is called composition or multiplication. More generally, let R, S C V x V be relations, their
composition or multiplication is given by:

R o S dej {(~,z) c v × Y I 3v ~ Y : (~,v) ~ R ̂  (V, z) 

Notice that the product R o S is also written as RS and therefore R o R is written as R2. We
will simply write RS for the product and R2, R3... for the powers of R. Notice also that finite
relation can conveniently be represented by a matrix. In this case the product consists to form
the conjunction element by element, of the z-row of R with the z-column of S, and then form the
disjunction of all these results with respect to y:

(R~ A S~z) V (R~v A S~z) V (Rxz A S~z) = 3i: R~ A &z = (R 

In addition, important properties of o are: 1) o distributes over U (for example R-R~ =
(R-)(R- °) = (R-R-) U (R °) = R+ I I R° = R~) and, 2) o is symmetri c (for exa mple,
RO R- = R-Ro_).
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The rules of composition or multiplication that could be used for combining direct effects are
given by the following matrix:

o"

R° R+ R- R° R0+ R_+ R~
R0 R0 R0 R0 R0 R0 R0 R0 ,
R+ R° R+ R- R° R0+ R_+ Ru

R- R° R- R+ R0+ R° R_+ Ru
R0- R0 Ro R0+ R+ Ro Ru Ru

R0+ R0 R0+ Ro Ro R0+ R~ R~
R_+ R0 R+ R_+ R~ R~ R_+ Ru

Ru R0 Ru Ru R~ Ru Ru Ru

When two or more paths start from some variable x and M1 end at another variable y, their
effects can be added into a total effect of a on y. The operation on relations in this case is LI
(corresponding to the sum operation introduced in definition 6 of section 2). The rules governing
addition of effects of paths are given by the following truth matrix:

H :

R0

R+

R-
R0-

R~
R+

R~

Until now, we have considered a model based on NPN crisp logic. This model is necessary to
solve and analyze the distributed decision-making problem. However, it might be not sufficient
since causality and influence between agents are generally fuzzy and admits many degrees, and
vague degrees such as: none, very little, some, sometimes, much, a lot, usually, more or less, etc.

In this paper, we restrict the fuzzy scale to none, some, much and a lot, in order to give
an indication on how our model, based on binary relations, takes into account fuzzy relations.
Precisely, none, some, much and alot are given by the following matrices:

/0000) /0000)0000 0000none=
0 0 0 0

some= 0 0 1 0

000 1 000 1

0000I
much= 0 1 0 0

0 0 1 0 alot =

0001

1 0 0 O)

0 1 0 0
0 0 1 0
0001
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With these definitions, we also introduce the operator C_ (inclusion) between two relations R, 

R _C S ~ Vx, y: [(x, y) ~ R -~ (x, y) ~ 

Obviously, if R C S then S _D R. In addition, the previous definition allows us to state:

none C_ some C_ much C alot

Now let P = {none, some, much, alot} and R, S E P be relations. Furthermore, let ® the
operation that is used for combining direct fuzzy effects, and the operation @ that is used for
combining total fuzzy effect. In fact, ® and @ may be any respective T-norm (T) (i.e. triangular
norm) and W-conorm (S) extended from interval [0,1] to P (see [2] for definitions and properties
of T and S). Yager [11] proves the following maximality/minimality property of rain and max for
fuzzy logic:

T C_ min C max C_ S

Thus, T-norms other than rain are never more causally lenient than min, and S-conorms other
than max are never more causally stringent than max. This justifies selecting rain and max, as
default when little is known about relations. In our model, the min(R, S) operation can be obtained
by the o operation between R and S. Similarly, the max can obtained by the H operation. This
justifies selecting o and U for ® and @. In summary, we have:

VR, S E P, R® S = min(R,S) = Ro 

VR, S E P, R@S=max(R,S) = RUS

Thus for instance, much o some = some, some o none = none and much H some = much, some H
none = some etc.

In summary, if causality is not fuzzy, we use NPN crisp logic to determine indirect total effect
and total effect. In this case causality between concepts has the following form:

R+
concepti ~ conceptj (1)

If however the causality is fuzzy, relation between concepts is given by

R+ :s
conceptl > conceptj (2)

Or by

R+ :$)~
conceptl ) conceptj (3)

Or by

concepti R~ :~’~’n c°ncepti (4)

Notice that (1) means that concepti promotes, helps, etc, conceptj and that this influence is
not fuzzy. This total effect can result from the addition of several products of indirect effects. A



product is obtained by the o operation on crisp terms R+, R_, R0, etc, and the addition is obtained
by the i_l operation (on crisp terms).

A representation like (2) means that eoncepti promotes, helps, etc, conceptj and that the
influence between these two concepts is fuzzy and is characterized by s (i.e. some). A such
representation can result from the addition of several products of indirect effects. In this case
however, we distinguish two terms: one is crisp and is obtained by the addition of some products
on crisp terms, and the second is fuzzy and is obtained by the addition of some products on fuzzy
terms.

Similarly, a representation like (3) means that concepti has any effect on conceptj and that the
negative and positive effects are respectively characterized by s (i.e. some) and by rn (i.e. much).
This total effect is obtained by the combination of H and o on crisp terms to determine R+ and on
fuzzy terms to determine s, m.

Finally, (4) means that R-, 0 and R+ can exist b etween conceptl and eonceptj and t he f orce
of these influences are respectively s, m, n (i.e. some, much and none). This total effect between
concepti and conceptj is obtained by the combination of kl and o on crisp terms to determine Ru

and on fuzzy terms to determine s, m, n.

4 Inferring the Properties of a Cognitive Map in Multiagent En-
vironments

Now it is important to say how a cognitive map can contribute to reasoning about others in a
multiagent environment. In fact, concepts in cognitive map such as "decision variables", "goals",
"actions", "utility", etc. may be the concepts of the decision-maker, the concepts of another agent
on which the decision maker has to reason in order to make its decision, or the concepts of a group
or an organization on which the decision maker has to decide.

It is also important to say how to solve the decision-making problem in a multiagent environ-
ment. Generally, given a cognitive map with one or more decision variables and a utility variable,
which decision should be chosen and which should be rejected? To achieve this, the concerned
agent should calculate the total effect of each decision on the utility variable. Those decisions that
have a positive total effect on utility should be chosen, and decisions that have a negative total
effect should be rejected. If many decisions have a positive total effect, those that have the sub-set
fuzzy terms should be chosen. Decisions with a nonnegative total effect should not be rejected,
decisions with a nonpositive total effect should not be accepted. All this depend on fuzzy terms
and on adopted strategies on how to choose.

To solve the decision-making problem, an agent generMly needs to analyze its cognitive map or
the cognitive map of its organization if this map is available. In fact, the cognitive map relevant to
reasoning in multi-agent environment being analyzed is converted to the form of a valency matrix
V. This matrix is a square matrix of size n, where n is the number of concepts in the corresponding
cognitive map (see definition 9 of section 2). Each element vii, consisting of crisp term:fuzzy terms,
characterizes the relationships between elements i and j. The valency matrix has a number of
useful properties [6]. With the valency matrix, we can calculate indirect paths of length 2, 3, 4,
etc. Matrices relative to these indirect paths are: V2 (i.e. V o V), 3, V4, etc. F inally, t he total
effect matrix T for an acyclic cognitive map can be calculated by:
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n-1

T= avi
i--i

This total effects matrix, can be used for generating advice based on the total effect of each
plan, action or strategy on the utility variable. More generally, the elements of T may be used to
guide a dynamic decision process until one goal is reached. Based on the calculation of T, we have
the possibility to solve:

,

,

,

problems of a given cognitive map like this one: "could concepti be strengthened if conceptj
is strengthened?", "could conceptl be weakened if conceptj is strengthened?", etc.;

the problem of changes which can be formulated by: if certain crisp and/or fuzzy relations
change, what will happen to the considered cognitive map?

the explanation problem which consists to find consistent explanations with the observed
changes.

In multiagent environment, the emerging potential for cooperation can be also study by analyz-
ing agents’ cognitive maps. This suggests that cognitive map analysis can be used to explore the
following: 1) How do the agent’s characteristics (e.g. its rationality, its sincerity, its benevolent,
etc.) affect its cognitive map? 2) How the conflicts of interest between agents are affected by the
alteration of perceptions of specific causal links? 3) How do efficiently focus on the patterns of
similarities and differences between agents with respect to both their causal beliefs and their po-
sitions? How do separately analyze the cognitive maps in terms of complexity, density, imbalance
and inconsistencies relative to salient goals?

The Objective behind this anMysis is to locate groupings of goals that could be result in a
coalition of agents on the issue of establishment of a cooperation.

5 Example

In order to keep the discussion on a concrete level, consider the use of the cognitive map in Figure
3 concerning a crossroads scenario (Figure 2). The implementation and experiments about this
scenario are discussed in [4]. Here, we only explain how our relation graph formulation takes into
account interactions between cars considered as intelligent agents. To do this, we assume that
in our scenario of figure 2, there is no policeman and that traffic lights are out. Consequently,
agents are in unfamiliar situation in which each participant has to reason about others in order
to coordinate its behaviors with others. Figure 3 is a part of this scenario. Precisely, this is part
of an actual agent’s C5 cognitive map which is assumed to be the decision maker which reasons
about other agents: C7, C2 and C3. This cognitive map is constructed according to the following
arriving order: C2, C7, C5, C3. With this cognitive map, C5 determines the relation between C2 and
itself (the dashed arrow). Since this influence is positive, agent C5 evaluates two plans: Planl and
Plan2. The first plan suggests that C5 passes at the same time as C2 (instead of passing after C7)
by asking C7 its permission. The second plan suggests that it should wait its turn. To make its
decision, C5 considers Planl and Plan2 as policy concepts and calculates its total effect matrix T.



This matrix allows it to know effects of Planl and Plan2 on its utility and on others’ utilities. In
our example, Plan1 has the effect +:m on CS’s utility and has no effects on others’ utilities; and
Plan2 has the effect +:s on C5’s utility and has no effects on others’ utilities. Consequently, C5
decides to pass at the same time as C2 (instead of passing after C7) by asking C7 his permission.

b North

flow2(out)

C1 flow2(~) C2
iiii~iiii~~ .~ ~zii.

L2

 o:3 in O°wi°ut I
N-S street

P
C5 C6

flow4(in) E-W street

C3

flow4(out]

flow]

~owl(out)

Figure 2: A Multiagent Scenario in Urban Traffic: The Crossroads. C denotes a car, L
traffic-lights, and P the place of a policemen

6 Conclusion

We have presented a relation graph formulation about the notion of "structure" in a multiagent
environment. In this context, a formal model based on binary relations and graphs, and taking
into account fuzzy relations was proposed. This model allows agents 1) to make a decision in 
multiagent situation, 2) to negotiate tasks and resources allocations, 3) to reason about others 
order to cooperate or to coordinate its activities, etc. Preliminary overview of our experiments
about crossroads were presented.
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Utility(C5,t) Utility(C3,t)

Planl(C5,t)

l I +: a
" " - +.’m +: a

Goall(CS,t) Goall(C3,t)

." "+:s "" "+ :m - :m
Plan2(C5,t) " "" -..

Goall(C7,t) < - :m Goall(C2,0

Utility(C7,t) Utility(C2,t)

Figure 3: Example of a Cognitive Map in a Crossroads Scenario

This research marks an important step in the use of a mathematical theory, such as graph and
relations, to real-world DAI environments, because it seems that those environments need a more
rigorous treatment of the features of their empirical structures.
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