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Abstract

A fundamental feature of effective distributed systems
is that the entities comprising the system have some
set of guidelines--some plan to follow--that leads
them into making good decisions about what to com-
municate and when. Traditionally, these protocols for
communication have been given to the entities at the
time that they are designed. For example, knowledge-
based entities (agents) have been designed with pro-
tocols that allow them to make deals, allocate tasks,
negotiate over solutions, and so on. Such distributed
systems, however, will be brittle if the agents ever need
to go beyond the pre-existing protocol. To constitute
a robust system, the agents would benefit from the
ability to discover new ways of communicating, and
to generalize these into new protocols.
This paper extends the recursive modeling method
to address issues of embedded communications--
communications occurring in a larger context of other
physical and/or communicative activities, and de-
scribes how behaviors like question-answering and
order-following could emerge as rational consequences
of agents’ decisionmaking. These types of embedded
communicative acts can form the building blocks of
more complex protocols, given that agents can not
only derive these embedded communicative acts but
can generalize and reuse them appropriately.

Introduction
Agents typically exist in ongoing multiagent environ-
ments, and so, interactions among agents are embed-
ded within a larger multiagent context. In particular,
verbal and nonverbal communication among agents is
embedded in an evolving multiagent context. Planning
a communicative action in this context is a complex
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task, since considering all of the features of the con-
text, and all of the possible messages that could be
transmitted (through information channels or through
changes to the physical environment), can be pro-
hibitively time-consuming.

To reduce the combinatorics of communication plan-
ning, intelligent agents often rely on retrieving and fol-
lowing scripted interactions that delineate appropriate
communicative acts and responses for typical multia-
gent contexts. Designers of artificial agents generally
build in such "protocols" for interaction so as to con-
strain the interactions among agents to achieve pre-
dictable and efficient performance. For example, when
building multiagent systems, designers have devised
protocols for:

¯ consistent information distribution/replication (as
in the distributed database literature);

¯ establishing commitments over resource allocation
(as in resource locking protocols in distributed sys-
tems);

¯ remotely executing commands and accessing services
(as in remote procedure calls);

¯ querying processing in database and knowledge base
systems (as in the KQML and SKTP methods [15]);

¯ contracting and negotiation among agents (as in the
Contract Net [17], the Unified Negotiation Proto-
col [18], and partial global planning [5]).

When developing systems for accomplishing well-
understood tasks in well-defined environments, it is
reasonable and proper for a system designer to define
and institute appropriate protocols. However, when
the nature of agents’ tasks might change, or their en-
vironment might undergo substantial changes, being
locked into a particular interaction protocol might lead
to ineffective action and interaction on the parts of
the agents. Accomplishing tasks in such environments
might require agents to invent new protocols based on
experience and on expectations about how messages
will affect each other.

Our work is particularly interested in the second
means for inventing new protocols, and is interested in
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answering the following question: what first-principles
knowledge about the pragmatics of communication can
agents use to plan rational communication actions in
the absence of protocols, such that new protocols can
emerge? Our objectives in this paper are thus to
articulate how such first-principles knowledge might
be represented and used, and to explain how indi-
vidual decisions about messages to send can prompt
further physical and communicative actions, leading
to common types of embedded interactions such as
question answering, order following, and threatening.
We thus extend the concept of isolated message util-
ity into embedded message utility, and augment our
previous work by introducing communication and de-
liberation costs into the framework to motivate why
self-interested agents would nevertheless engage in ex-
tended interactions such as answering questions and
following orders. This work thus lays the foundation
for designing agents who can create their own interac-
tive protocols based on their knowledge of embedded
interactions and the costs of reasoning from first prin-
ciples.

We begin by describing prior work in representing
agents as rational utility-maximizers who model each
other as utility maximizers. By developing nested
models of each other, they can represent the pragmatic
meaning of (verbal or nonverbal) communicative ac-
tions as how these actions change the recursive nesting,
leading to changes in expected utility. Having estab-
lished the pragmatics of individual messages, we then
turn, in Section , to communicative actions embedded
in ongoing physical activities, where the utility of a
message is dependent on the physical actions preced-
ing and succeeding the message. It is in this context
that messages embodying threats can make sense. In
Section , we investigate the utility of messages that
are part of ongoing communicative activities--that is,
that are part of a dialogue--and motivate how dia-
logues involving question answering and order taking
can in fact emerge from decisions made by autonomous
agents. We conclude with a discussion of how patterns
of dialogues could lead to the identification of proto-
cols, and outline our ongoing work in this and other
directions.

Recursive Modeling and the Utility of

Communication
In [10], a method called the Recursive Modeling
Method (RMM) was used to represent and evaluate
all of the knowledge relevant to the problem of choos-
ing the best action, in the presence of other agents.
RMM uses a recursive hierarchy of simple models of the
agents’ decision-making situations (payoff matrices) 
represent the information an agent has about its phys-
ical environment, about how the other agents view this
environment, about how the other agents could view
the original agent, how they could view the original
agent viewing them, and so on.

An Example Model
To put our description of RMM in concrete terms,
we will consider a particular decision-making situa-
tion encountered by an autonomous outdoor robotic
vehicle, called R1, (see Figure 1), attempting to co-
ordinate its actions with another robotic vehicle, R2.
Outdoor robotic vehicles have multiple uses, predom-
inantly acting in environments that are too hostile or
hazardous for human-controlled vehicles. Among these
uses are information gathering--or reconnaissance--
activities to assess, for example, the extent of a chem-
ical spill (in the case of an industrial accident), the
positions of opposing forces (on a battlefield), or the
location of a submerged ship (in the case of an under-
water vehicle).

For a ground-based vehicle, gathering large amounts
of information depends on moving to vantage points
that command a wide view, such as hilltops. Thus, we
will assume that a robotic vehicle, whose mission is to
gather as much information as it can while minimiz-
ing its cost (fuel and/or time consumed), will prefer
to move to nearby locations with high elevation. From
the perspective of robot R1, whose point of view we
will take in analyzing this situation, two possible van-
tage points P1 and P2 are worth considering. P2 has a
higher elevation and would allow twice as much infor-
mation to be gathered as P1, and so the robot is willing
to incur greater cost to go to P2. Based on domain-
specific knowledge, in this example R1 expects that
gathering information at P2 will be worth incurring a
cost of 4 (or, put another way, the information gath-
ered from P2 has an expected value of 4), while the
observation from P1 will be worth 2.

Rt thus has three possible courses of action: it can
move to P1 and gather information there (a~); it can
move to P2 and gather information there (a~); or 
can do neither and just sit still (a~).1 The expected
cost (time or energy) to R1 of pursuing each of these
courses of action is proportional to the distance trav-
eled, yielding a cost of 1 for a~, 2 for a~, and 0 for a31.
We further assume in this example that each of the
robots can make only one observation, and that each of
them benefits from all information gathered (no mat-
ter by which robot), but incurs cost only based on its
own actions.

Given the above, robot R1 can build a payoff ma-
trix that summarizes the information relevant to its
decision-making situation. The relevant alternative be-
haviors of R2 that matter will be labeled a~ through
a~, and correspond to R2’s taking the observation from

1Of course, each of these high-level courses of action
must be further elaborated by the robot. While all pos-
sible detailed plans for these high-level courses of action
could be enumerated and represented in a payoff matrix,
the abstraction over actions and plans permits evaluation
of choices at a level of detail where the quality of the de-
cision is maximized while the costs of making the decision
are minimized [12].
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P2, observation

worth 4

Cost = 1

[]

Cost = 1

Trees

R1 R2

Figure 1: Example Scenario of Interacting Agents

point P1, P2, and staying put (or doing something
else), respectively. Thus, the entry in the matrix cor-
responding to Rl’S pursuing its option a~ and R2’s
pursuing a~ is the payoff for R1 computed as the total
value of the information gathered by both robots from
both P1 and P2, minus Rl’s own cost: (2 + 4) - 1 = 
The payoff to R1 corresponding to Rl’s pursuing a~
and R~’s pursuing al2 is (2 + 0) - 1 = 1, since the in-
formation gathered is worth 2, and redundant observa-
tions add no value. All of the payoffs can be assembled
in the following payoff matrix:

R2

a~ 1 5 1
R1 a~ 4 2 2

2 4 0
Since Rx’s payoff depends on what R2 decides to do,

R1 has to model R2’s decision-making. If R1 thinks
that R2 will attempt to maximize its own expected
utility, then R1 can adopt the intentional stance toward
R~ [4], and treat R2 as rational. Thus, R2’s payoff
matrix, if it knows about both observation points, is
arrived at analogously to Rl’s matrix above, and has
the following form:

R1

a~ a1 aa1

a~ 0 4 0
R2 a22 5 3 3

aa~ 2 4 0
That is not all, though, because R1 realizes that

robot R2 possibly does not know about the observa-
tion point P2 due to the trees located between R2 and
P2.2 Ri, therefore, has to deal with another source of

2R2 not knowing about P2 assumes that R2 does not

uncertainty: there are two alternative models of R2’s
decision-making situation. If R2 is unaware of P2, then
it will not consider combinations of actions involving
a21 or a~, and its payoff matrix is 2 x 2, as follows:

R1
a~ aa1

R2 a~ 0 0
a] 2 0

A sensible way for R1 to deal with its uncertainty aa
to which of the models of R2 is correct is to represent its
subjective belief as to their likelihood of being correct
as a probability distribution. In this case, we assume
that R1, having knowledge about the sensors available
to R2 and assessing the density of the foliage between
R2 and P2, assigns a probability for R2 seeing through
the trees as 0.1.

Let us note that R2’s best choice of action, in each
of the intentional models that R1 has, also depends
on what it, in turn, thinks that R1 will do. Thus,
R1 should, in each of these models, represent how/~2
might model /~1. If it were to model R1 aa rational
as well, the nesting of models would continue. For
now, however, let us assume that R1 has no knowledge
about how it might be modeled by R~. As we discuss
more fully in [8], the proper representation of Rl’s lack
of knowledge about how it might be modeled by R2
is to use a uniform probability distribution over Rl’S
set of actions on this level. Thus, if Rl’s model of
R2 indicates that R2 thinks /~1 could undertake any
one of alternative actions a~, a~, and a~, the uniform

1 i 1distribution is [~, ~, ~]. This distribution, according to
the principle oi~entropy maximization [14], precisely

have a complete and accurate map of the terrain, or if it
does then it cannot locate its own position on that map.
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represents the lack of information on the part of the
robot R1 in this case, since its informational content is
zero.

In the above example, robot Rl’s knowledge as to
the decision-making situation that it faces can be rep-
resented graphically as depicted in Figure 2, which we
will call the recursive model structure. The top level of
this structure is how R1 sees its own decision-making
situation, represented as Rl’s payoff matrix. On the
second level are the alternative models R1 could form
of R2, with the alternative branches labeled with the
probabilities R1 assigns to each of the models being
correct. The third level is occupied by uniform proba-
bility distributions representing Rl’S lack of knowledge
of how it is being modeled by R2.

Solving the Example

As has been summarized elsewhere [9], the recursive
model generated by RMM can be solved so as to de-
termine a rational action for the agent represented at
the root of the tree, based on expected rational ac-
tions taken on the part of agents modeled deeper in
the tree. Thus, the solution method proceeds from
the leaves upward. In the example interaction show in
Figure 2, consider the left branch. RI knows nothing
about R2’s model of R1, and thus can only model R2 as
believing R1 is equally likely to take either of the 2 ac-
tions R2 knows about (recall, this branch corresponds
to the case where R2 does not know about P2). /~1
will believe that R2, under these circumstances, would
take action a32 (staying still), with an expected payoff
of 1, which is better than the expected payoff of 0. On
the other hand, if R2 were aware of P2 (right branch),
R1 will believe it will prefer action a22 (going to P2)
as having the highest expected payoff (~). Since 
believes there is only a probability of .1 that/~2 knows
about P2, it attributes an expected strategy of (0 .1
.9) to R~. Using this at the root of the recursive tree,
R1 will prefer action al: it will move to P2 (with an
expected payoff of 2).

Utility of Communication
Since any nontrivial message is bound to transform the
knowledge encoded in the hierarchy of nested models--
the transformation corresponding to the pragmatic
meaning of the message, it is natural to define the util-
ity of a message for a sending agent as the difference in
its expected utility resulting from the state of knowl-
edge before and after the message is sent:

U(M) = UpM(Y) - Up(X) (1)
where UpM(Y) is the expected utility of the agent’s
best action Y after sending message M, and Up(X)
is the expected utility of the agent’s best action X
before. PM encapsulates the knowledge of other agents’
behavior after message M has been sent.

For example, consider what would happen in our
original scenario in Figure 1 if R1 were to send a mes-
sage M1 stating "There is an observation point P2,

twice as high as P1, behind the trees". If we assume
that communication channels never lose messages (but
see [10]) and messages are always believed (see [7], then
/~1 can be sure that/~2 will know about the point P2
as a result of the message having been sent. Thus,
the recursive model structure will change due to the
pragmatic meaning of M1, as depicted in Figure 3.

Before the message was sent, Rl’S best option was
a1, that is, to observe from point P2 and expect a
payoff of 2. The new structure that reflects how Rl’s
knowledge would look after sending M1 can be solved
easily, but now R1 would be sure that R~. would observe
from point P2, taking action a22: pM~;R, = [0, 1,0]. The
best alternative for R1 now is to make an observation
from P1, but the expected payoff has increased to 5!
Thus, by sending the message M1 to R2, R1 was able
to increase the expected utility it gets from the interac-
tion from 2 to 5. As defined in Equation 1, the utility
of sending the message M1 is U ( M1) = 5 - 2 = 

Communicative Actions Embedded

among Physical Interactions

The previous section reviewed how communicative ac-
tions can increase utility because of how they are ex-
pected to change the physical actions of other agents.
Thus, the utility of a communicative action is only real-
ized assuming the subsequent physical actions are car-
ried out. More generally, physical and communicative
interactions are interleaved to much greater extents,
allowing physical actions to be conditional upon other
physical actions, and verbal commitments to physical
actions.

Consider, for example, the case of a threat [11]. An
important issue involved in the treatment of threats is
that they change the character of our prototypical in-
teractions in a way not considered before. The threat-
ening agent must wait for the action of the threatened
agent, and take its own action accordingly. Thus, un-
like in the previous case above (and the other cases
considered in [9, 10]), the actions of the players cannot
be considered as simultaneous.

Threats will be assumed to have the form "If you do
A, then I will do B," where A is an option of an op-
ponent and B is an option available to the threatening
agent. One of the subtleties of threats, as discussed
for example in [16], is that they often seem to involve
a degree of irrationality on the part of the threaten-
ing side. Thus, typically, action B that an agent is
threatening to perform is not the optimal response to
his opponent’s action A (if it were, the "threatened
action B" would simply be the rational response that
the opponent would expect, even without having been
threatened).

For example, consider a minor variation of the sce-
nario of Figure 1, where the only difference is that P2
now has a worth of 4 only to R1 (it is worth 0 to R2).
In this case, and assuming R2 is made aware of P2, R1
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Figure 2: Recursive Model Structure depicting Rl’s Knowledge in Example 1.
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Figure 3: Expected Change of Rl’s Knowledge due to Message M1.

[ 1/3, 1/3, 113 ]

still wants I/2 to go to P2 while it goes to P1 for a net
payoff of 5. However, if R2 stays put, it expects to do
better (2) than if it incurs the cost of going to P2. But
if R2 stays put, then R1 expects 1 if it goes to P1, or
2 if it goes to P2, neither of which is very good.

R1 thus needs to use communication to provide in-
centive to R2 to go to P2. If payoffs are transferable, it
could make a deal, hinging a physical action of trans-
feting some utility to the physical action of R2 going
to P2. R1 could transfer 1 unit of utility to R2 so that
R~ would come out even, and R1 would still be bet-
ter off. Of course, R2 could hold out for more. This
kind of negotiation has been looked at most recently
by Kraus [13].

If utility is not transferable, or if R1 is more greedy
(and willing to take some risk), then R1 could instead
threaten R2 with not going to P1 unless R2 goes to P2.
This could be an effective strategy, but only if R2 takes
the threat seriously. Issues of how threats can be made
more believable have been covered elsewhere [11]. For
the purposes of this paper, the important considera-
tion is that the utility of a threatening message is no
longer based solely on the immediate transformation
of the RMM hierarchy, but instead generally involves
physical actions to make threats believable and carry
them out, embedding communication within ongoing
physical activity.

Communicative Actions Embedded
within Dialogues

The issues of computing the utilities of questions and
imperatives are more difficult than those of message
types considered above, since they also touch on the
agents’ autonomy. The basic question here is: why
should a fully autonomous being pay any attention to
other agents’ orders (in the case of imperatives) or re-
quests for information (in the case of questions). As 
have shown above, the computation of the utilities of
messages and actions is performed exclusively from the
point of view of a given agent, and the fact that another
agent would value a certain physical or communicative
action does not enter into these calculations. To under-
stand question-answering and order-taking behavior on
the part of an agent, therefore, we have to understand
why it would be in the agent’s self-interest to do so.

Questions as Mitigating the Cost of
Communication

To develop this understanding in the context of ques-
tions, we must first recognize that, so far, we have
treated communicative actions as being without cost.
Once these actions have costs, then an agent must bal-
ance the benefits of communicating with the costs. For
example, let us consider the scenario depicted in the
first example interaction, but let us modify it slightly
such that now the stand of trees between R2 and P2
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consists of only a single tree. Assuming that R1 now
expects R2 to be extremely likely to see P2 (say, with
probability .99), it computes R2’s intentional probabil-
ities as:

.01 x [0, 0, 1] ÷ .99 x [0, 1, 0] = [0, .99, .01].

In turn, this gives R1 expected utilities of 4.96 for a~,
2 for a~, and 3.96 for a~.

As detailed in [8], if R1 were to send R2 a message to
ensure that R2 knew about P2, then R1 could increase
its expected utility to 5 (assuming correct message
transmission). Thus, in this case, the message would
increase the expected utility by 5.0 - 4.96 -- 0.04. As-
suming that it costs nothing to send a message, sending
this message would be rational. But let us assume that
sending a message costs something, say 0.1. Now the
utility of the message minus the cost of the commu-
nicative action is 0.04- 0.1 -- -0.06, so sending the
message would be irrational.

However, now imagine that R1 receives from R2 a
question message, MT, asking "Are there any obser-
vation points in the region on the other side of the
trees from me?" The immediate pragmatics of this
new knowledge is to cause R1 to transform its recur-
sive model structure, leading it to now believe that R2
only knows about P1 and will have intentional proba-
bilities [0, 0, 1], meaning that R2 will sit still. In turn,
now R1 expects utilities of 1 for a~, 2 for a~, and 0 for
a31. Its best action now is a~, with an expected pay-
off of 2; the message it received caused it to revise its
expected utility downward, from 4.96 to 2!

But now R1 should reconsider sending the message
about P2 to R2, in effect answering the question. As
before, successfully sending the message leads R1 to
expect a payoff of 5, which is much better than its
current expectation of 2. The utility of the message
minus the cost of sending it is 3 - 0.1 -- 2.9, and R1,
being rational, will answer R~’s question.

Now that we have established how answering a ques-
tion can be rational even for an autonomous agent, let
us turn to asking the question in the first place. Look-
ing at the situation from R2’s perspective, all it sees
in its environment are R1, P1, and trees. Based on
prior knowledge (for example, that observation points
commonly come in pairs), R2 might hypothesize that
with probability 0.4 there is another observation point
hidden behind the trees. If it assumes that this obser-
vation point will be worth 2 like P1,3 and that it will
cost 1 to get there, the expected utility for R~. to go to-
ward the hoped-for observation point is the probability
the point is there times the worth of the point, minus
the cost of going there: (0.4 x 2)- 1 = -0.2. This nega-
tive expected utility means that it would be irrational
for R2 to act on the hunch that another observation
point might be behind the tree.

But rather than taking physical action, R2 can con-
sider communicative action. When R2 considers send-

3Note that, in reality, this is an underestimate.

ing R1 question MT, "Are there any other observation
points on the other side of the trees from me?" it com-
putes the expected utility as follows. It believes that
there is a 0.4 probability that it will receive an affir-
mative answer (using the prior knowledge above), and
in that case it goes to the point to gain a payoff of 1
(since the expected worth is 2 and the expected cost
of going to the point is 1). With 0.6 probability, it will
receive a negative answer, and will stay still, gaining
no additional payoff from its actions. Since it is cur-
rently expecting to gain nothing from its actions, the
expected utility of asking the question is the expected
improvement to its payoff (0.4 x 1) minus the cost 
sending the message (0.1). Asking the question thus
has a utility of 0.3, and it is rational for R2 to ask.

Note that this calculation looked beyond the imme-
diate pragmatics of the message (how it would trans-
form the heater’s model of the situation) to consider
how the hearer’s possible subsequent (communicative)
action might transform the original speaker’s model
of the situation. Thus, while both the question and
the answer separately have immediate pragmatic ef-
fects like those of simple assertions about the situa-
tion (about what an agent knows or about observation
points in the world), it is the longer sequence of them
that induces the ultimately desired effect (increasing
the questioner’s awareness). This leads to considering
the pragmatics, and utility, of messages in terms of
the possible sequences of communicative and physical
actions surrounding them. Section is a step toward
capturing this notion.

Of course, the analysis done above has R2 assume
that R1 will correctly interpret and truthfully respond
to the message. Before sending the question, R2 can
first model R1 to model the possible ways that the mes-
sage might transform Rl’s recursive model structure,
and then decide from those whether it can expect R1
to truthfully answer. In a manner similar to the above
analysis about answering questions, R2 will conclude
that, if there is another worthwhile observation point
behind the tree, it will be rational for R1 to respond
truthfully. If there is no observation point behind the
tree, saying this will not benefit R1, and in fact will
cost it 0.1 (the cost of sending a message). Thus, 
there is no observation point, R1 will never respond.
With this analysis, R2 will conclude that it is rational
to ask the question, to believe R1 if it responds, and to
stay still (which is what it would have done anyway)
otherwise.4

4Of course, if R1 were to Value sending R2 on a wild
goose chase, and R2 did not know about this propensity,
then R1 could successfully lie to R2. For further investi-
gation into honesty and trust among rational agents, the
reader is referred to [7, 19, 20].
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Imperatives as Mitigating the Costs of
Computation

To understand imperatives requires a similar analysis,
except that now we also have to take into account the
costs (time, effort) of decision-making. In a nutshell,
it is rational for an agent to obey an order from an-
other if the default utility of obeying is greater than
the (possibly larger) utility of independent decision-
making minus the cost of that decision-making. At an
intuitive level, when I hear someone shout "Duck!" it
might be better for me to rapidly follow this instruction
than respond more slowly (too late) after assessing the
situation and deciding for myself on the proper action.

In its simplest form, an imperative transforms an
agent’s recursive nesting of models from which it de-
rives its strategy into simply a strategy to follow. That
is, the agent discards the deeper machinery and sim-
ply obeys the command. Because the decision to do
so involves a tradeoff of costs and benefits of using
the machinery, an imperative causes reasoning at the
meta-level. Since RMM has not yet addressed meta-
level reasoning issues to any great extent, the decision
as to when to follow the command cannot at this time
be reduced to operational terms. Clearly, the deciding
factors will involve comparing the expected payoff of
following the command (what does the command im-
ply about the likely decisions of others, and what kind
of payoffs are likely to be received based on these impli-
cations) against the expected payoff of deeper reason-
ing (what better decisions might be made, how much
better might they be, and how much will it cost to
find them). Our ongoing research is delving into meta-
level issues, so as to eventually capture such reasoning
about imperatives.

Of course, an agent can, upon receiving a command,
consider what actions others will take if they assume
the command will be obeyed, and then the agent can
decide what it actually should do (which might or
might not be the same as the commanded actions).
Of course, if it thinks that other agents might believe
that it might go through this reasoning, then it should
model those other agents as being uncertain about
whether it will follow the command or not, and the
modeling gets much more complicated. This kind of
modeling resembles agents reasoning about whether to
believe what they hear [7].

There is another aspect of issuing orders, and obey-
ing them, among autonomous agents that is closely
related to mitigating the cost of independent decision-
making. This is the notion that the agent issuing the
command has more knowledge about the environment
in the first place. The modeling of other agents’ knowl-
edge using a recursive knowledge-theoretic formulation
has been investigated in [6]. There, the agents’ own
knowledge about the world is represented as a Kripke
structure, with possible worlds and the agent’s inabil-
ity to tell them apart corresponding to the agents’ un-
certainty. Further, we have postulated that this rep-

resentation be made recursive, so that the agent can
model the state of knowledge of another agent in a way
similar to RMM. If the agent models another using a
structure with fewer possible worlds, this indicates that
the agent believes that the other is less uncertain about
the current state of affairs, and so might believe that
the other agent is more likely correct in its orders than
this agent is in its own choices. This particular aspect
of rational behavior with respect to imperatives lets
us observe that an interesting paradigm "knowledge is
power" tends to naturally emerge from our formalism.

Arguments Based on Iteration
Finally, questions and imperatives might also arise not
only due to specific interactions, but based on the
game-theoretic paradigm of cooperation examined by
Aumann in [1, 2], where it is shown how repetitive
interactions allow cooperation to emerge as a ratio-
nal choice of selfish interacting agents. We think it
is safe to extend these conclusions to cases of ques-
tions and imperatives in communication, since obey-
ing imperatives and answering questions can be seen
as a form of cooperative behavior. Thus, even when it
might be true that obeying imperatives and answering
questions may be irrational in a one-time interaction,
they may be beneficial overall if one adheres to the
"you scratch my back now, I will scratch yours later"
maxim, which is a generalized version of a "tit-for-tat"
paradigm showed successful for the repeated Prisoner’s
Dilemma [3].

Towards the Emergence of Protocols
As the RMM approach is extended to anticipate even
more prolonged dialogues among agents, agents will be
able to search through possible courses of communica-
tive exchanges to identify the most promising candi-
dates. However, as the number of possible messages
grows (increasing the branching factor) and the num-
ber of exchanges considered is enlarged (increasing the
depth), the combinatorics of the search will make the
process prohibitively expensive, at least if employed on
most occasions. If, once again, the costs of computa-
tion are factored into the utility computations, it might
be better sometimes to engage in a suboptimal dialogue
than to identify an optimal one. And, moreover, once
a good dialogue has been found, the computational ef-
forts should be reused as much as possible by either
retrieving and revising an appropriate dialogue from
memory when similar situations arise in the future, or
by generalizing a dialogue into a more generic pattern
of communication.

This gives rise, naturally, to the establishment
of protocols. The combinatorics of the search can
be greatly reduced by restricting the types of mes-
sages considered at each stage (reducing the branch-
ing factor) and by clustering collections of communica-
tions together into "standard" interactions (question-
answer, or announce-bid-award, for example). As clus-
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ters grow and are reapplied to different (but similar)
situations, they become stored plans of communica-
tion, which means that they begin to resemble proto-
cols. Thus, while substantial research is needed to ade-
quately operationalize this process of going from com-
puting utilities of individual actions based on trans-
forming a nested modeling structure all the way up
to representing generalized protocols for guiding di-
alogues, the research path looks both important (to
build systems that can survive and establish new pro-
tocols when known protocols fail) and promising (since
we have, in this paper, described how to derive primi-
tives for such protocols, such as query-response, within
this framework).
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