
A Non-manipulable Meeting Scheduling System

F~it han Ephrati
Computer Science Department

University of Pittsburgh
tantush@cs.pitt.edu

Gilad Zlotkin
Center of Coordination Science

Sloan School of Management, MIT
gilad@mit.edu

Jeffrey S. Rosenschein
Computer Science Department

The Hebrew University
jeff@cs.huji.ac.fl

Abstract

In this paper we present three scheduling mechanisms that are manipulation-proof for closed
systems. The amount of information that each user must encode in the mechanism increases
with the complexity of the mechanism. On the other hand, the more complex the mechanism
is, the more it maintains the privacy of the users.

The first mechanism is a centralized, calendar-oriented one. It is the least computation-
ally complex of the three, but does not maintain user privacy. The second is a distributed
meeting-oriented mechanism that maintains user privacy, but at the cost of greater computa-
tional complexity. The third mechanism, while being the most complex, maintains user privacy
(for the most part) and allows users to have the greatest influence on the resulting schedule.

1 Introduction

The basic research problem in meeting scheduling is that of timing, that is, when to set a meeting.
This question becomes more complicated when there are several meetings to be scheduled that
involve the same resources (mainly participants), and as the number of participants (constraints)
grows [15, 19]. One key question is how to allocate all the feasible time slots for a meeting [21, 22].
Another key question is how to choose, among these possible time slots, the most appropriate one
for a particular meeting [28]. This paper is concerned with both of the above questions.

We distinguish between two paradigms of meeting scheduling scenarios: Open Scheduling Sys-
tems and Closed Scheduling Systems. In Open Systems, one or more independent autonomous
individuals try to schedule a meeting. These individuals are completely in control of their own
time resources, and have no obligation to meet one another (unless that serves their own selfish
interests). Thus, the individuals themselves determine the feasibility of a meeting.

On the other hand, in Closed Systems, such as a business or an organization, the meeting
mechanism is imposed on the members of the system. The participants of any potential meeting
belong to the same body. They thus have some obligation to take part in a meeting, if feasible. The
constraints regarding the meeting are determined by the system and not by the participants. Each
member of the organization (e.g., employee) is assumed to meet with others as much as needed.
some sense, the organization has a degree of ownership over the user’s time. A closed scheduling
system also maintains a consistent and complete global calendar of the organization’s members.

In both kind of systems, we would want the schedule of meetings to be optimal in some sense.
The optimality of a meeting’s timing should be determined, as much as possible, by the potential

- 72-

From: AAAI Technical Report WS-94-02. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved.

individual participants based on their individual preferences. If these preferences could be known
perfectly by the system, scheduling becomes an optimization problem. However, since this is usually
not the case, part of the scheduling problem is to extract from the users their true preferences
regarding potential meeting times.

There are several reasons that Closed Systems are more easily dealt with than Open Systems.
First, we will be using an economics-based point system to allow users to specify their preferences;
in a Closed System, we can easily control the number of points that users get, and reasonably
assume that points have roughly the same meaning for different users. At times, we will need to
be able to "collect" these points by levying a kind of tax; this is more easily implemented in a
Closed System. Also, by keeping track of how many points users have, we can make sure there is
no side-trading in points among users, which would undermine our mechanism. A Closed System
can monitor which meeting times are available and which are not; we make use of this capability,
which is harder to ensure for an Open System. And finally, in an Open System, a user might choose
to avoid a meeting entirely, while in a Closed System (as mentioned above), we assume that agents
have a responsibility to attend meetings--we simply want to schedule them in some optimal way.

In this paper we introduce a meeting scheduling algorithm for Closed Systems. Our system has
several desirable attributes, of which the most important is non-manipulability. We consider three
alternative approaches to the scheduling process.

To use a Closed System scheduling mechanism, a user must subscribe to the system, and the
mechanism cannot be used to schedule meetings with other users that are not subscribed. Meeting
scheduling beyond the boundaries of a single closed system may require interaction between two or
more closed scheduling systems, and is beyond the scope of this paper.

2 Group Decision Mechanisms

In its general outlines, the problem of meeting scheduling is a typical problem of group decision.
The issue of group decision has been a major research agenda in several research fields, including
game theory, economics, social welfare theory and voting theory. The main question that this
research addresses is, given the individual (private) preferences over alternative mutual decisions,
what should the mutual decision be. As is the case with the systems that we propose, researchers in
these fields have been looking into mechanisms that will allow the individuals to converge (agree)
one global decision. And just as we aspire for the system’s schedule to be "optimal" in some sense,
they have been defining the desirable attributes of the decision process and looking for procedures
that have these attributes.

Different kinds of desirable attributes of decision functions that characterize optimality have
been suggested in game theory, economics, and voting theory. Typically, the attributes are con-
cerned with the influence of an individual user on the outcome, and the impact of the outcome
on the individual. Some common criteria include Pareto Optimality~ Fairness~ and Individual
l~ationality. 1 In this section we briefly summarize the most common criteria.

1The issues of solution criteria are discussed in [1], in the context of combining various default theories.

-73-

2.1 Attributes of Social Decision Processes

In general, the optimality of the decision process may be viewed with respect to two main as-
pects/categories: attributes of the resulting decision, and attributes of the group decision mecha-
nism itself. Below, we mention some of the more common criteria that have been addressed in the
literature [20, 29, 14, 11]:

Attributes of the resulting decision:

Global optimality -- The chosen alternative should be optimal in some global sense. The
most common requirement is that the decision wiU be Pareto Optimal, meaning that it is
impossible to change the decision in a way that will make some users better off without making
some other users worse off. This same attribute is sometimes called Unanimity, to denote
that if alternative X is preferred over some other alternative Y by all users (unanimously)
then Y should not be chosen. Within the "pareto frontier" (all the Pareto Optimal decisions),
there are many additional criteria of optimality based on Social Weffare theory. We discuss
this issue further in Section 2.2.

¯ Condorcet Winner -- The chosen alternative should beat any other alternative in a pairwise
contest.

Nash’s Independence of Irrelevant Alternatives -- If out of a set of alternatives, X is chosen,
then if any other alternative Y is removed from the set, X will still be chosen. In other words,
the choice should remain unchanged when the group is presented with a subset of the original
group that includes the original choice.

Monotonicity -- If X is to be chosen by the process and one or more users change their pref-
erences in favor of X (without changing the order of preferences over the other alternatives),
then X should remain the choice.

Attributes of the process itself:

Individual Rationality -- A user may only gain (utility) by taking part in the process (com-
pared to not participating).

Simplicity -- The process should be simple in two respects: the computational complexity
of determining the choice, and the individual computational complexity of determining each
user’s own behavior (strategy) in light of the rules of the process.

Stability -- The behavior of the participants that would lead to the desired outcome should
(under some assumptions) be their optimal one (i.e., a [rational] user would not be tempted
deviate from the desired behavior that we want the process to induce). Usually this behavior
(strategy) should be in some equilibrium (in Section 5.1 we describe the main notions
equilibrium from Game Theory).

Privacy Preserving ("Information Decentralization") -- The behavior of each individual
should depend on as little information as possible regarding the others (preferences and be-
havior), and the choice function should depend on as much of a global view as possible (in

=74-

contrast to taking into account interactions among individual preferences). For example, it
is considered preferable if one’s behavior can be determined according to others’ aggregated
behavior instead of having to take into account the individual behavior of each other member.

Decentralization -- The degree of distribution affects the likelihood of a bottleneck, the
fragility of the process, and the need for a central decision maker.

Expressiveness -- Most decision mechanisms consider only the Ordinal preferences of the
users. The magnitude by which some alternative is preferred to another cannot be expressed.
However, there are mechanisms that allow more powerful rating of preferences, such as rating
the alternatives by points, or the assignment of actual (cardinal) utilities to preferences. The
more expressive the rating is, the more informed can be the choice that is made.

Symmetry- Given the possible permutations of the users’ roles in the process, the outcome
should remain the same regardless of these permutations. The strongest kind of symmetry
is Anonymity, which says that the process answers all possible symmetries (the identity of
user has absolutely no influence on the outcome).

2.2 Optimality and Social Welfare

The most important attribute of the resulting decision is optimality. In our scenario, optimality
is measured by the global convenience of the users. However, there are many ways to measure
global convenience, and it is not obvious how the system designers will decide on one or another.
Considerations other than pure convenience values (such as priority and fairness) might need to
taken into account. For example, it might be desirable in some scenarios to look for a schedule that
maximizes the median of the stated conveniences or some weighted sum of these statements, or,
following an egalitarian approach [24] we might want to maximize the minimal stated convenience
(maxmin4 Cl) or minimize the differences in convenience (minmax4d ei - c j I).

One simple common approach (due to Nash [17, 18]) is to choose the outcome that maximizes
the product of the individual conveniences (max 1-Ii ci). This approach guarantees a relatively fair
distribution of the mutually earned convenience, but narrows the space of feasible consensus states.
A negotiation protocol for autonomous users that follows this approach may be found in [32].

In this research, however, we take the viewpoint of the system designer. We therefore follow
the pure utilitarian approach, and prefer consensus group decisions that maximize the sum of the
individual users’ utilities. In contrast to the approach that maximizes the product, we would rather
have, for example, a schedule that gives two users a convenience of 0 and 11 respectively, over a
schedule that gives each of them a convenience of 5. A further discussion of this approach may be
found in [10].

3 Monetary-Based Meeting Scheduling Systems

The underlying idea of our scheduling system is economic in flavor. We create a market of "conve-
nience points," that will allow users to efficiently reach agreement on meeting times. The system
simulates a closed primitive economic market. Convenience points are used to express user prefer-
ences over alternative schedules. The system keeps track of the "convenience balance" that each

.75-

user has. If desired, points may be consumed by the system or distributed to the users; however,
users may not trade points among themselves directly.

There are two kinds of interactions that a user can have with the scheduling system:

1. Initiate a meeting .M~ = {ul,..., urn} -- At time t user i requests the setting of a meeting,
by specifying the parties to be involved (ul,..., u,~).

It is up to the system administrator to decide which of the users are authorized to initiate a
meeting. We here assume that any user is authorized. If it is desired, the initiator may also
specify the time windows, tw(.~), in which the meeting may take place.

2. Express convenience -- A user expresses his preferences over possible meeting schedules.
These preferences are expressed by assigning convenience points to different schedules.2

Below, we describe three approaches by which the system may identify schedules that approx-
imate the maximal global convenience. We first describe the naive algorithm that corresponds to
each approach. In Section 5 we describe how these algorithms can be made more powerful so as to
deal with more sophisticated (or manipulative) users.

The three algorithms differ in complexity, the amount of influence that the user has on the final
schedule, and the kind of information that the user has to reveal about his individual preferences.
In general, the less complex the process is, the less influence the user has on the details of the
schedule, and the more privacy the user attains, the more complex the algorithm becomes.

3.1 Calendar Oriented Scheduling

In a calendar oriented closed scheduling system, each user expresses his preferences over all the
available time slots in his calendar. These preferences are only over time slots, regardless of the
actual meetings to be assigned to the time slots, and are declared only once for the entire time
period considered by the system. The global calendar is simply an aggregation of all individual
users’ calendars (with their expressed preferences). The calendar includes all feasible time slots
(i.e., all time slots that as far as the system is concerned could be scheduled for meetings).

The "time horizon" of the system is determined by the latest meeting that can be set. To
represent his preferences, each user spreads convenience points over all time slots between the
present/current time and the time horizon. When a meeting, J~, is initiated, the system inspects
all the present profiles of the participants and identifies which is the most convenient time slot for
that meeting. This is exactly the slot in which the sum of stated convenience points is maximal.
That time slot is labeled with the meeting and becomes infeasible for any other meeting that
involves any us E .L4.

More formally, we have the following assumptions and definitions:

¯ The calendar is divided into [tl,..., tn] basic time slots (e.g., 60 minutes each).

2Since preferences grade alternatives with respect to one another, expressing preferences could most naturally be
done by using a graphical interface (e.g., [26]). Note that if a user does not wish to accurately calculate the number
of convenience points for each alternative, he may use his points to express his general preferences over alternatives
(i.e., if alternative B is preferred to A, just rank B higher than A regardless of "how much" B is preferred). This
kind of less expressive preference assignment is used by most existing meeting schedulers (e.g., [12]).

¯ At any time, the system has some future time slot such that beyond that time slot no meeting
can be set. This is Tt, the "horizon" of the system at time t (e.g., it can be updated at the
end of every week to include the following two weeks). The value of T may be determined
by the system’s administrator (independently of the users’ requests). Or, in the case where
meeting initiative includes the desired time slots, the horizon may be set dynamically to be
the furthest initiated time slot.

¯ Each new user, i, introduced to the system is presented with qo convenience points (as deter-
mined by the system administrator).

For each time-slot t, between the current time, t*, and the time horizon of the system Tt*,

each user i is given an additional quota of convenience points, q~ (as determined by the system
administrator).

Each user may spread convenience points over the calendar, e~ denotes the number of conve-
nience points that i assigns to time slot t.

¯ w~* denotes the wealth of user i at time t* (that is, the sum of all his given convenience points,
minus his points that were consumed by the system).

At all times the number of convenience points that each user may assign to any slot may not
t*exceed its wealth at that time ((mawr=t. C~) i). That is, the wealth of a user determines

the upper bound of convenience points that he can assign to any particular time slot. The
total of the convenience declarations for more than one slot may exceed the wealth bound.

In the naive system, all users are given the initial quota at the initialization of the system. No
points are consumed by the system and no other points are given. Then, whenever a new horizon
is set, each user is required to declare his convenience, e~, for each time slot. The only restriction
is that the number of points, per slot, will not exceed his wealth at the time.

Essentially, the scheduling algorithm is a greedy algorithm--the Calendar Oriented Scheduling
system executes a simple loop:

1. Whenever a meeting, ~, is initiated, the system finds the set, T of time slots that are
available/feasible for that meeting,s

2. The system allocates t, which is the maximizer of maxt~T ~i~ c~. When this slot is identi-
fied, the meeting is set and the slot becomes blocked for any further meeting with any ui E ~.
(Note that the users are not required to redeclare their preferences.)

The complexity of matching a meeting with a time slot is simply linear in the time horizon
(actually, in the feasible fraction of that horizon). However, this scheduling algorithm does not
guarantee the ultimate optimal schedule. It might be the case that to derive the actual convenience
maximizing schedule, some meeting should be rescheduled due to the arrival of new meetings.
Example: Assume that are only two available time slots (ti, t~) and three users (ui, u2, us)
the following declared preferences respectively: (ll, 0), (0, 0), and (33, 0) (i.e., ui prefers ti

3In the general case, these slots would simply be the conjunction of the individual available/feasible slots. However
the system may incorporate other constraints into the decision, such as available meeting rooms, and further narrow
the feasible time space (see Section 8). If the initiator of a meeting is allowed to specify a time window for the
meeting (i.e., ~(.~)), then the feasible space will be further pruned.

by 11, u2 is indifferent, and us also strongly prefers tl). Now assume that ul initiates the meeting
{ul, u2}. The sytem will choose time slot tl with a score of 11 (if the meeting had been set to t2 it
would have scored 0). Later on, us initiates the meeting {ul, u2, us}, which if set to tl would score
44; since this is not feasible, the meeting is set to t2 with a score of 0.

This example demonstrates the weakness of the greedy approach. As is the case with the
following algorithms, the schedule may become more efficient in exchange for more complexity. For
example, the matching of meetings to time slots may be done only after several meetings, say m,
have been initiated. Then the system should solve the following maximization problem (for each

t In the example above, m = 2 would yield the more efficient schedule.
meetings) maxtd ~-~ie~41 ci.

The main advantage of the Calendar Oriented approach is that it is relatively simple to cal-
culate the schedule. But this simplicity is due to its main drawback: all meetings are handled
symmetrically. Thus, the user cannot rate his preferences with respect to a specific appointment.
The fact that the user can say only when, and not what, confers a lot of power to the system.

This attribute may not always be desirable--under many circumstances, the nature of a meeting
may influence users’ preferences (e.g., if Jeff is weighing a meeting with Einstein vs. a meeting with
Zlotkin, time might be the last thing about which he’d be concerned).

3.2 Meetings Oriented Scheduling

To enable users to embed in their preference profile their evaluation of the nature of the meeting as
well, we use a variant of the previous approach. According to this "Meetings Oriented" approach,
preferences are expressed per alternative specific schedule (rather than over the global time space).
Users assign convenience points to combinations of meetings and time slots. Convenience points
are given per meeting rather than per time-frame.

More formally, we have the additional following assumptions and definitions:

¯ At the initialization of the system, each user i is given qo convenience points.

¯ As each meeting iV/enters the system (as a feasible request), each user ui E ./~ is given an
additional quota of convenience points, q.~4.

The naive algorithm that follows this approach is similar to the previous one. Each user is given
a constant number of convenience points. The scheduler operates as a FIF0 queue; each meeting
is handled in the order of its initialization. When a meeting arrives, all the parties involved declare
their available time slots for that meeting (if desired by the system’s administrator, otherwise all
feasible slots are considered available). Then T, the intersection of all available slots, is computed.
Finally, each ui E Ad assigns convenience points c! to each time slot t E T. Thus in this approach
the available time slots are set dynamically, at the initiation of a meeting; in the calendar oriented
scheduling system, the available slots were set prior to the initiation of any meeting.

As before, the slot that maximizes ~-]~i c~ is identified and labeled with the meeting; that time
slot is now unavailable for any further meetings that would involve any of the participants.

Thus, the preferences over time may be changed dynamically by the users, with respect to the
content of the meeting involved. However the complexity of the process increases significantly; since
for each appointment the entire time horizon is reevaluated, the complexity becomes the order of
the number of time-slots multiplied by the number of appointments. However, this mechanism is
more informative for the users and therefore able to increase the optimality of the schedule. (As in

the previous case, if users are allowed to state the potential time windows for initiated meetings,
the feasible time space will be pruned.)
Example: Three users, ul,u2 and us, subscribe to the system. The time slots are the morning,
mid-day, and evening, ul has 5 points of wealth and prefers the evening, u2, with a wealth of 4,
does not like to meet in the morning, and is indifferent between mid-day and evening, u2, however,
suffers from nightmares if he happens to see ul in the evening, us, with wealth of 7, prefers mornings
over mid-days and mid-days over evenings. In calendar oriented scheduling, the users need to state
their calendar regardless of the meeting involved. Thus, the calendar would look like Figure 1.

Now, assume that all three users need to schedule a meeting for tomorrow. The system will
schedule the meeting to be in the evening.

Morning Mid-Day Evening
Ul 0 0 5
U2 0 4 4
~3 ? 4 0

sum[7 8 9

Figure 1: Calendar Oriented Scheduling

In meeting oriented scheduling, on the contrary, the users will be asked to state their preferences
about the specific meeting. Thus u~’s preferences will be changed. The resulting rating can be seen
in Figure 2.

Morning Mid-Day Evening
Ul 0 0 5
I/2 0 4 0

U3 ? 4 0

sum [7 8 5

Figure 2: Meeting Oriented Scheduling

In this case, the meeting will be scheduled to be at mid-day. As in the previous case, the
meetings are being dealt with one at a time (in the order in which they are initiated); thus, this
algorithm may result in a sub-optimal schedule. The next technique we examine, Schedule Oriented
Scheduling, aims at finding the actual optimal schedule.

3.3 Schedule Oriented Scheduling

In Schedule Oriented Scheduling all possible schedules are taken into consideration. Instead of
expressing their convenience with the time set for specific meetings, users express their preferences
over entire schedules. Each schedule identifies one possible ordering of future meetings.

Similar to the previous approaches, we have the following additional assumptions and definitions:

- 79 -

¯ As before, the system’s calendar is divided into time slots. Each k slots constitute one time
frame (e.g., 8 hours is a full working day). There are If1,..., f[~]] frames.

¯ At the initialization of the system, each user i is given qO convenience points.

¯ As each meeting A4 enters the system (as a feasible request), each user u~ of the system
given an additional quota of convenience points, q~.

¯ S -- UjSj is the set of feasible schedules. Each schedule is one feasible match of all the
meetings that have been initiated up to the present time, p, with time slots in the horizon of
the system.4

c~(Sj) is the number of convenience points that { assigns to schedule Sj. As in the two other
procedures, this number cannot exceed i’s wealth.

In this case, the naive algorithm would, iteratively, find all possible schedules (from the present
time to the horizon--the further the horizon is, the more accurate the result is), and have the
users express their preferences over the possible schedules. Then, the first time frame of the desired
schedule is to be "frozen" and followed. (Meetings that were not matched within these frames will
be considered again in the next iteration.) When the time frame ends, the process is repeated (with
all new and old unmatched meetings)

This process best approximates the optimal schedule (if only the next time slot is frozen, and
the horizon is infinite, the schedule is optimal). However the complexity is very high; it is in the
order of the factorial of the number of meetings multiplied by the number of time-slots (p ! x I T I).
The administrator of the system may choose to reduce this complexity by setting a closer horizon,
further constraining the feasibility of meetings, or enlarging the time frames that should be frozen.
Another way to reduce complexity (at the expense of optimality) is to use any mixture of this
approach with the previous one (e.g., determine a [fixed] schedule for each k meeting initiatives
that enter the system).

4 Beneficial Manipulation in Meeting Scheduling

The above mechanisms have many desirable attributes: the choice approximates the optimal util-
itarian choice, it is Pareto Optimal, and it chooses the Condorcet Winner. The process itself is
symmetric, relatively simple, satisfies monotonicity, is based on cardinal preferences, and main-
tains some privacy. However, the three mechanisms all suffer from a severe drawback: they are all
sensitive to manipulation.

The individually motivated user has an incentive to leave open only the time slots that are
most convenient to him. He may be motivated to block all other time slots that are slightly less
convenient to him.

The underlying issue has to do with concessions. A user, by keeping only his most convenient
time slots open, is basically counting on the other users to be flexible, and meet when it suits
him. Of course, when many users follow this line of reasoning, they are all motivated to limit their
own flexibility, leading to difficult (if not impossible) scheduling. This scheduling problem is thus

4As before, the feasibility of a match may be further constrained by the time windows specified by individuals.

/

a classic instance of a multi-agent game of chicken [23]--each user wants to be inflexible himself,
counting on other users to show flexibility.

The prototypical deception in such meeting scheduling mechanisms is to undervalue, or simply
block, time slots such that the meeting will be forced to be at your most convenient time slots.
Example: Consider again the previous example from Figure 2. Meeting oriented scheduling
chooses mid-day, because both u2 and us would rather have the meeting at mid-day and not in
the evening, But by being dishonest, us (who prefers mornings) can do better. He should simply
declare/7, 0, 0/ (instead of his true preferences, ~7, 4, 0/) , and make morning be the group choice.
This phenomena is even more likely if we allow users to state their available time slots for a meeting:
a user may declare that the available slots are only the ones that he most prefers (e.g., ul would
state that the morning is out of the question).

We thus seek a process that will stabilize the system, by making true declaration of convenience
the most beneficial behavior that a user can adopt. This highly desirable attribute has not been
considered in previous meeting schedulers (see for example [27, 28]).

5 Stabilizing the System

In this section we show how the scheduling algorithms that were presented above can be made
resistant to manipulation. We show how to embed within each of the procedures a mechanism, the
Clarke Tax, that will guarantee the honesty of the users.

5.1 Game Theoretic Concepts of Solution

Game theory has addressed many interactions similar to the one considered here. Such interactions
have been analyzed so as to determine what a user’s chosen strategies would be, given the rules
of the interaction. Our aim is complementary; it is to design rules that would induce the users to
adopt some specific strategy that we consider to be desirable.

To be motivated to adopt a particular strategy, a rational selfish user should be convinced
that that strategy is superior in some sense to his other alternative strategies. The most common
solution in game theory derives cooperation as the best response to the other users’ cooperative
behavior:

Definition 1 The strategy combination is a Nash equilibrium if no user has an incentive to deviate
from his strategy given that the other users do not deviate.

This concept of solution was used for example (within the Distributed Artificial Intelligence
literature) in [33, 34]. The drawback of the Nash equilibrium is that in general there are several
equilibrium points for the same game, and the desirability of a strategy is considered only from a
player’s viewpoint at the start of the game (not taking into consideration all possible paths of the
game). Thus, it might be difficult to have the group of users converge to a specific equilibrium and
the equilibrium point may be sensitive to the dynamics of the interaction (see, however, Section 6).

A stronger concept of solution (the strongest concept within the hierarchy of equilibrium points),
is to motivate the user to follow the desirable behavior regardless of what the others do. Such
motivation would be accomplished if that strategy would be proven to be (under the rules of
encounter) the best one given any strategy of the other users.

- 81-

Definition 2 The strategy is a dominant strategy if it is a user’s strictly best response to any
strategies that the other players might pick, in the sense that whatever strategies they pick, his payoff
is highest with his dominant strategy. A dominant strategy equilibrium is a strategy combination
of each player’s dominant strategy.

Thus, in our scenario, the most attractive solution would be to have some particular behavior
with certain desirable properties as each user’s dominant strategy. Having a mechanism that induces
an equilibrium point which is the result of a dominant strategy is very desirable from the viewpoint
of computer interaction. The fact that there is no importance to the other users’ behavior does
away with the need to reason about the other users’ strategies, knowledge, or even computational
capabilities. The behavior of a user depends solely on its own characteristics. Thus, in comparison
to other approaches, the individual complexity of decision-making is reduced significantly. This
concept of solution was used in [4, 2, 3].

In the sections below, we focus on the design of systems that induce a solution in dominant
strategy equilibrium. In Section 6 we discuss how users may maintain more privacy about their
private preferences, if the system designer would be satisfied with the somewhat weaker concept of
Nash strategy equilibrium.

5.2 The Clarke Tax Mechanism

The Clark Tax Mechanism (CTm) is one of many one-shot voting-by-bid mechanisms that were
invented within the fields of voting theory and economics. Unlike other mechanisms, the CTm is
non-manipulable; the basic idea of Clarke’s Mechanism is to make sure that each voter has only
one dominant strategy, telling the truth. This phenomenon is established by slightly changing the
classic sealed-bid mechanism: instead of simply collecting the bid of the winning bidder, each user
is fined with a tax. The tax equals the portion of his bid that made a difference to the outcome.
The example in Figure 3 shows how to calculate this tax. Each row of the table shows several
pieces of information regarding a user. First, his preferences for each schedule are listed. Then, the
total score that each schedule would have gotten, had the user not voted, are listed. An asterisk
marks the winning choice in each situation.

True worth Sum for each Tax

of each schedule schedule without i for i
Sl] 89- I S3 Sl 82 I 83

63 3 42 98 "167 "167 0
U2 0 48 60 ’161 122 149 12
U3 27 6O 21 134 II0 ’188 0
U4 18 21 69 143 ’149 140 9
U5 53 38 17 108 132 ’192 0

Isum 116111701*209 II I I II I

Figure 3: Calculating the Clarke Tax

For example, when all the users voted, schedule ss was chosen. If ug‘ had not voted, sl would

- 82 -

have been chosen. The score in this situation would have been (161,122,149), and sl would have
beaten 8s by 12. Thus, user u2 has affected the outcome by his vote, and he has affected it by a
"magnitude" of 12; he is therefore fined 12. Users ul, us, and u5 are not fined because even without
the vote of each of them (separately), 83 would still have been chosen.

Given this scheme, revealing true preferences is the dominant strategy. A user that overbids
(so that some given schedule will win) risks having to pay a tax larger than his true preferences
warrant. Similarly, the only way to pay less tax is to actually change the outcome--and any user
that underbids (to change the outcome and save himself some tax) will always come out behind;
the saved tax will never compensate him for his lost utility.

The Clarke Tax decision mechanism is appealing for several reasons. First, it is not manipulable
by individuals--any other declaration of preferences is dominated by declaring the truth. Therefore,
it saves each user from the computational complexity of guessing what the others’ preferences and
strategies are, what the negotiation set is, and how it can be manipulated. This simplicity of
strategy is highly desirable in the design of automated agents. Agents tell the truth out of their
own self-interest--there is no need to assume that users will act benevolently by design. Thus, the
process answers both the "simplicity" and "stability" criteria.

A second advantage of the technique is that it satisfies several desirable criteria, including the
"Condorcet Winner" (--a choice that would have beaten every other choice in pair-wise votes
is guaranteed to be chosen by the mechanism [6]), "monotonieity" (--by giving an alternative
a higher value, a user cannot undermine the alternative’s selection), "independence of irrelevant
alternatives" (--removal of any "unchosen" alternative from the set of alternatives will not change
the outcome [30]), "individual rationality" (a user may only gain utility by taking part in the
process), "anonymity" and "neutrality" (--the identity of a voter or the name of an alternative
has no influence on the outcome), "expressiveness" (--preferences are expressed using the actual
cardinal utilities), it is relatively simple, and finally the process can be designed to preserve privacy
since the actual choice function uses only the total sum of preferences. In previous work we have
also shown how the mechanism may be distributed [5] and administered in a way that maintains
even more privacy [4].

A third advantage is that the alternative chosen by the Clarke Tax mechanism answers a social
welfare criterion similar to the summation criterion mentioned above [31]. In fact, the Clarke
mechanism is just one member of the family of Groves mechanisms [9]. It has been proven in
Economics that any decision mechanism that chooses a schedule with the same properties as the
CTm does, and that also has telling the truth as a dominant strategy, belongs to this family [8].
However, the CTm requires the least amount of tax to be paid, from among the members of
this decision mechanism family [13]. It guarantees the best minimal utility level for each of the
participants, and is the only mechanism within this family that has no free-rider problem [16] (i.e.,
a user will not be tempted to avoid the process, hoping to benefit from the decision without the
risk of paying the tax).

All these good attributes make the mechanism a very desirable tool for meeting scheduling.
Fortunately, the mechanism can be employed in the scheduling system that we have presented
above, in a relatively direct manner.

5.3 Employing the CTm in our Systems

To embed the CTm within the scheduling techniques that we suggested above, the three scheduling
procedures and the CTm itself should be slightly changed. The underlying idea is that users will be
taxed according to the CTm, at each time a scheduling decision is being made. Taxation is done by
having the system consume the tax-corresponding number of convenience points. (As mentioned
above, this is one of the main reasons we need the system to be a Closed System.) However, since
points are consumed by the system, points should also be distributed. A critical aspect of the CTm,
is that the "income" of a user must be independent of the decision process. Therefore, points are
distributed equally and periodically. Somewhat more formally, the previous techniques should be
updated as follows:

1. Users should be taxed (according to CTm procedures) whenever a schedule is determined.
(In the first two techniques this should be per meeting and in the third per schedule.)

The wealth, wl, of each user is updated accordingly so as to ensure that in consecutive
schedulings its statement of preferences will not exceed this wealth,s

2. Each user should be given additional convenience points periodically, q~, so as to prevent
bankruptcy. Under the first technique above, this should be done after each k time slots that
enter the horizon; under the second technique, after k new meetings have entered the system;
and under the third technique, after k time frames have been scheduled.

The essential idea is that the more points a user has, the greater is the difference between
alternatives he can declare, the more expressively his preferences can be stated, and thus the more
he influences the schedule. Thus each user is motivated to be taxed as little as possible. However,
to avoid taxes the user has to concede as much as possible. A user that does not concede will run
short of points, and that may happen exactly when these points are really needed.

To make the process completely non-manipulable we cannot allow the users to have influence
on the feasibility of time slots. Therefore, the updated mechanism cannot allow any specific time
window to be attached to an initiated meeting (otherwise a user might try to exclude even slightly
inconvenient time slots).

The original Clarke Tax mechanism should also be slightly changed; we use the following deft-
nitions to specify the schedule oriented CTm:

The function ci : ~q --, C, returns the true convenience (to ui) of each schedule.6 The
function d~(j) returns the declared convenience of schedule sj by user ui at scheduling step

k. ~ denotes the vector Id~(1),d~(2),...,d~(m)/, the user’s declared convenience over all m
alternative schedules.

¯ The profile of preferences declared by each of the n users at step k is denoted by D~, where
Dk.i denotes this set excluding i’s preferences, such that D~ = (DRi, d~.k).

5Notice that due to this restriction the first method may become more complex. The initial assignment of
convenience points of some users may not be valid after they have been taxed; these users must then reassign their
remaining points.

5A schedule refers to a different thing in each scheduling method: in the first, a schedule is just a time slot; in the
second, it is a match of a meeting and a time slot; and in the third, it is a full schedule.

-84-

¯ The choice function f: D~ x 8 --, 8 returns the schedule that is the maximizer of E~=I d~(sk).

k k¯ The tax imposed on i at step k is t~(f(D~)) = Y~d#i d~(f(Dk-i))- Y~j#i d~(f(D-i, d~’k)), if

value is positive. Otherwise, t~ will be zero. Therefore, the benefit b~(f(D~)) of user i with
respect to the chosen alternative is ci(f(D~)) - t~(f(D~)) (the convenience it associates
the decision, minus the tax consumed given that decision).

Example: Consider again the example from Figure 2. Using the CT mechanism the meeting will
still be scheduled at mid-day, but now the system will tax u2 by 3 points and us by 1 point (as can
be seen in Figure 4). ul will not be taxed.

Morning Mid-day Evening Tax

Ul 0 0 5 0
U2 0 4 0 3
U3 7 4 0 1

SumI 7 8 5 I

Figure 4: Meeting Oriented Scheduling with CTm

u2 gained utility of 1, since he rated the value of the mid-day meeting with 4 and paid only a tax
of 3. Similarly, us has gained utility of 3. ul got utility of 0 since he rated a mid-day meeting with
0 value. However, since he was not taxed he can use his 5 point-bound to be more decisive in future
scheduling, while in future steps u2 and us will be able to declare a value (for any alternative) that
is no higher than 1 and 6 respectively. If more points are distributed by the system, those points
will be distributed to all three users; thus the relative influence that ul gained in this round will
remain.

Now consider again the possibility of us trying to manipulate the vote as described in Section 4.
By declaring (7, 0, 0) instead of his true preferences, (7, 4, 0), the outcome will be changed (as
be seen in Figure 5). The meeting is scheduled to be in the morning (while ul and u~. pay no tax).
However us is now taxed by 5 points, and his gained utility becomes 2 instead of 3. Dishonesty
doesn’t pay!

Morning Mid-day Evening Tax

0 0 5 0

U2 0 4 0 0
U3 7 0 0 5

ISum[7 4 5 I

Figure 5: A Futile Manipulation of the Schedule with CTm

Theorem 1 Each of the above scheduling systems, with the embedded CTm procedure, is non-
manipulable and maintains all the other desirable attributes of the original mechanism.

- 85 -

Proof.
To show that the mechanisms are non-manipulable we need to show that at each scheduling

step each user’s dominant strategy is to truly state his convenience for each possible schedule (no
matter what the others do). In other words, we need to show that declaring ~ is the dominant

strategy. Thus we have to show that user ui’s benefit from declaring ~ is greater than any other

declaration d~.k:

Expandingthe benefit b into convenience minus tax, we get:

- t~ (/(zL. c~)) -~(/(z~, ~)) + t, (/(z~,

Expanding the tax t into its components, we get:
k h h k

k k k k-c,(/(D~. ~))+ Ej~, d~C/(D_~,)) =

Eliminating equivalent plus and minus terms and adding and subtracting ci(s0), we get:
k k k k~,(:(D~,,~’tl) + Es~, d~C/(n_.,,~)) -[c,(/(D~,,,~))+ E~,a~(.f(D.,,a’:))]

Let ik be the schedule that maximizes e~(8t’) Jr Ej#i d~(s) (i.e., ik = f(D~i, ~)), and let k/c

schedule that maximizes ~L1 d~(s) (i.e., k~’ -- f(D~/,~)). Then (by the definition of the
function f) we get:

Showing that our procedure preserves the other desired attributes is straightforward. However
it is worth noting that this is so due to some subth considerations. As an example, consider the
case where instead of bounding the users’ statements per time slot, ((max4r=t. G~) < wi), we would
have bounded the sum of the points ((~T=t* G~) i).

In such a case, our procedure would maintain all the desired attributes, but one, Independence
of Irrelevant Alternatives. The reason is that by bounding the entire sum, we make the spread of
convenience points be dependent on the number of time-slots. As an example, consider a scenario
where ul strongly prefers evening over the other two possibilities, us prefers mornings, while uz is
indifferent between evening and mid-day but prefers both to morning. Assume that the wealth of
the users is, respectively, 69, 9.0, 80. Thus the preference profile will become as shown in Figure 6.
Morning will be chosen.

-86-

Morning Mid-day Evening Tax

Ul 0 0 69 0
?/2 0 10 10 0
?/3 8O 0 0 79

Sum] 80 10 79 I

Figure 6: Vote with Three Alternatives

However, if alternative mid-day is taken out, u2 will be able to (truly) change his preference
in the way described in Figure 7. A different schedule will be chosen, even though a non-winning
alternative (mid-day) had been removed.

Morning Evening Tax

?/1 0 69 6O
?/2 0 2O 11
?/3 80 0 0

80 8~

Figure 7: Vote with Two Alternatives

As can be seen in the following section, maintaining the attribute of Independence of Irrelevant
Alternatives in our mechanism is especially important if we want to give the users more privacy at
the expense of the powerful concept of equilibrium in a dominant strategy.

6 More Privacy means Less Stability

In the calendar oriented scheduling mechanism presented above, the system has direct access to each
user’s calendar. This is due to the centralized meeting scheduling process. In such a mechanism,
the users participate in the process by rating the available time slots in their calendars. The users
have no active role in the scheduling of a given meeting.

In the meeting oriented and the schedule oriented scheduling, the system also has direct access
to each user’s calendar, even though the users have an active role in the schedule process itself.
The main reason for that access is to maintain the stability of the system. It does not allow a user
to hide an available time slot and perhaps benefit from it.

In this section, we present yet another meeting oriented scheduling mechanism that gives more
privacy to the users. As a result, the equilibrium point will shift from the dominant strategy
equilibrium to the more common Nash equilibrium.

Instead of having direct access to each user’s calendar, the system will be able to distribute
signed receipts. A receipt, R~., has the following semantics:

To whom it may concern:

- 87 -

I, the scheduling system, declare
that I have to schedule a meeting for

user ul in time slot tj.

The System

A digital signature cryptosystem (like the one described in [9.5]) will be used to ensure that no
one is able to generate the system’s electronic signature. However, every one can read the receipt
and verify that the system did sign it.

Using the digital signature cryptosystem we, can now define the following variant of the meeting

oriented scheduling mechanism:

¯ The initiator of the meeting sends all the participants a message that includes the time window

of the meeting.

¯ Each user declares its available slots within that time window. The union of time-slots
declared 7" is considered for the meeting.

¯ Each user, i, that has a meeting in one of the time slots tj in 7" shows the system’s receipt

/~ for that time slot, and this time slot is eliminated from the set (i.e., 7" = 7" - tj).

¯ If the resulting set 7" is empty, then the meeting is rejected by the system, and the initiator
should retry with a larger time slot. Otherwise, each user rates all time slots in 7" such that

the maximal value is bounded by the number of points the user has. The CTm is used to

choose the time slot for the meeting and to tax the users.

Theorem 2 The combined strategy of declaring the true set of available slots within the time

window of the meeting is in Nash equilibrium.

Proof. We need to show that under the assumption that all other users are using this strategy

(i.e., declaring their true set of available slots), Ul cannot benefit by declaring something dif/erent
from his true available slots.

There are two ways in which u/can misrepresent his true available time slots for the meeting:

1. Pretend to have a meeting, by not declaring one of the available time slots.

2. Pretend to be available, by declaring a time slot in which a meeting was already scheduled

for him.

We will show that these two kinds of deception are not beneficial.

1. If ui hides an available slot s than there are two cases:

(a) s is available to all other users. In this case, under the assumption that all other users

are telling the truth, s will be declared, ul will not be able to eliminate it with a system
receipt (since he does not have one). He will need to rate s just as he would have had

to after declaring the truth.

-88-

.

(b)

(a)
Cb)

s is not available for one or more other users. Is this case, s will not be included in the
fmal set regardless of ui’s declaration. He would not have to rate it anyway.

declares a slot that is not available to him then there are also two cases:

If that slot is not included in the fmal set, then it does not change anything.

Otherwise, due to Nash’s Independence of Irrelevant Alternatives (which is satisfied by
our CTm-based mechanism), this extra alternative has no effect, unless it is the one that
will be chosen. This means that it either has no influence on the outcome, or that ul
will have to attend two meetings at the same time. =

Note that by adopting the Nash Equilibrium point, we can more easily adjust our schedulers
to deal with Open Systems. The only adjustment that is needed is to find an adequate way to
compare the points (or declarations) that are given by different users (from independent systems).
An example of a plausible method of comparison is presented in the following section.

7 Hierarchy of Importance

Up to now we have assumed that all users have equal influence on the scheduling system. It seems
reasonable, however, that the preferences of certain users (e.g., managers) might carry greater
weight in deciding when to set a meeting.

Fortunately, the influence of a user on the social decision may be easily controlled without losing
the power of the mechanism as an effective preference revealer [?] (of course, by assigning weights
to users we lose the possibility of anonymity). This control may be achieved by giving an influence
weight zi(E]R+) to each user ui. Given ui’s normalized preferences ~, each vi(sh) is divided by
zi; only then is the choice function invoked. Then, to keep truth as the dominant strategy, the
calculated tax (according to the weighted votes) is multiplied by zi.

Lemma 1 (due to I. J. Good) Even when influence weights are used along with user preferences,
it is still user i ’s best strategy, at each step k of the procedure, to vote over the alternatives at that
step (8k) according to his true preferences.

8 Dealing with Soft Constraints

One advantage of seeking the maximization of the system’s global utility, as done in the scheduling
procedures presented above, is that many other considerations of the scheduling process may be
incorporated into the decision process in a unified way. For example, there may be other factors
that may influence the system’s global convenience for a given meeting, such as the place it will
take place, the audio-visual equipment that it will use, etc.

In some scheduling systems, these considerations are treated separately, apart from the process
that chooses among alternatives. Constraints such as the location of a meeting are "hard," in that
they are either satisfied or not. In our schedulers, on the other hand, such constraints may be soft,
so as to derive a more efficient global decision.

- 89-

To establish this highly desirable phenomenon, all that the system administrator needs to do is

to assign these resources/constraints convenience points as well (e.g., a big room will be more con-
venient for having a meeting with lots of people, a powerful overhead projector is more convenient

in a partially lit room). Then the process should also maximize over the convenience "declarations"

of these constraints. The only fundamental difference in the treatment of resources/constraints is
that no tax may be levied on them.

9 Conclusions

We have introduced three scheduling mechanisms for setting up meetings in Closed Systems. All
three mechanisms make use of primitive economic markets, where users assign "convenience points"

to indicate their preferences over alternatives. The points for each alternative are then examined
to establish the group decision that maximizes utility.

The first of the three mechanisms was Calendar Oriented Scheduling, where users assign conve-

nience points to available time slots. The second mechanism was the Meetings Oriented approach,
where users assign points to combinations of meetings and time slots (i.e., a specific meeting with

specific individuals at a specific time). The third mechanism was Schedule Oriented Scheduling,

where users express preferences over entire schedules (each schedule identifying one possible order-
ing of all future meetings). The mechanisms have varying degrees of computational complexity,
and find more or less optimal schedules, but they all approximate the optimal utilitarian choice,

and find a solution that is Pareto Optimal and is the Condorcet Winner.
All three mechanisms, however, are manipulable. We thus introduced the Clarke Tax as a

method for removing manipulability from the above three scheduling mechanisms. It was shown
that using this taxation technique, we are able to maintain all the previous positive attributes of the

original mechanisms, while removing manipulability. We also showed how additional user privacy
could be maintained, at the cost of decreased stability of the system, how users of varying influence

could be incorporated into the scheduling system, and how soft constraints could be handled.

Acknowledgments

This work has been supported in part by the Air Force Office of Scientific Research (Contract F49620-92-J-
0422), by the Rome Laboratory (RL) of the Air Force Material Command and the Defense Advanced Research
Projects Agency (Contract F30602-93-C-0038), by an NSF Young Investigator’s Award (IRI-9258392) to
Prof. Martha Pollack, and by the Israeli Ministry of Science and Technology (Grant 032-8284).

References

[1] J. Doyle and M. P. Wellman. Impediments to universal preference-based default theories. Artificial
Intelligence, 49(1-3), 1992.

[2] E. Ephrati and J. S. Rosenschein. The Clarke Tax as a consensus mechanism among automated agents.
In Proceedings of the Ninth National Conference on Artificial Intelligence, pages 173-178, Anaheim,
California, July 1991.

[3] E. Ephrati and J. S. Rosenschein. Multi-agent planning as search for a consensus that maximizes social
welfare. In Pre-Proceedings of the Fourth European Workshop on Modeling Autonomous Agents in a
Multi-Agent World, Rome, Italy, July 1992.

- 90-

[4] E. Ephrati and J. S. Rosenschein. Reaching agreement through partial revelation of preferences. In
Proceedings of the Tenth European Conference on Artificial Intelligence, pages 229-233, Vienna, Austria,
August 1992.

[5] E. Ephrati and J. S. Rosenschein. Distributed consensus mechanisms for self-interested heterogeneous
agents. In Proceedings of the First International Conference on Intelligent and Cooperative Information
Systems, pages 71-79, Rotterdam, The Netherlands, May 1993.

[6] P. C. Fishburn. Condorcet social choice functions. SIAM Journal on Applied Mathematics, 33:469-489,
1977.

[7] I. J. Good. Justice in voting by demand revelation. Public Choice, 29(2):65-70, 1977.

[8] J. Green, E. Kohlberg, and J. J. Laffont. Partial equilibrium approach to the free rider problem. Journal
of Public Economics, 6:375-394, 1976.

[9] Theodor Groves. Incentives in teams. Econometrica, 41:617-631, 1973.

[10] John C. Harsanyi. Utilitarian morality in a world of very half-hearted altruists. In Walter P. Heller,
Ross M. Starr, and David A. Starrett, editors, Social choice and public decision making, chapter 3,
pages 57-73. Cambridge University Press, Cambridge, London, 1986.

[11] L. Hurwics. On informationally decentralized systems. In R. Rander and C.B. McQnire, editors,
Decision an organization. North-Holland, 1972.

[12] H. A. Kautz., B. Selman, M. H. Coenand S. Ketchpel, and C. Ramming. An experiment in the design
of software agent. In Proceedings of the Twelth National Conference on Artificial Intelligence, Seattle,
Washington, July 1994, To Appear.

[13] J. J. Laffont and E. Maskin. The theory of incentives: an overview. In Hildenbrand Werner, editor,
Advances in Economic theory, chapter 3, pages 31-94. Cambridge University Press, Cambridge, 1980.

[14] R. Duncan Luce and Howard Raiffa. Games and Decisions. John Wiley & Sons, New York, 1957.

[15] R.P. Mohanty and M.K. Siddiq. Multiple projects-multiple resources-constralned scheduling: Some
studies. IJPR, 27(2):261-280, 1989.

[16] Herve Moulin. Characterization of the pivotal mechanism. Journal of Public Economics, 31:53-78,
1986.

[17] J. F. Nash. The bargaining problem. Econometrica, 28:155-162, 1950.

[18] J. F. Nash. Two-person cooperative games. Econometriea, 21:128-140, 1953.

[19] S.J. Noronha and V.V.S. Sarma. Knowledge-based approaches for scheduling problems: A survey. IEEE
Transactions on Knowledge and Data Engineering, 3(2):160"171, June 1991.

[20] Bezalel Peleg. Game Theoretic Analysis of Voting in Committees. Cambridge University Press, Cam-
bridge, 1984.

[21] J.H. Peterson. A comparison of exact approaches for solving the multiple constrained resource project
scheduling problem. Management Science, 30(7):854-867, 1984.

[22] Krithi Ramamritham, John A. Stankovic, and Wei Zhao. Distributed scheduling of tasks with deadlines
and resource requirements. IEEE Transactions on Computers, 38(8):1110-1123, August 1989.

[23] Anatol Rapoport and M. Guyer. A taxonomy of 2 × 2 games. Yearbook of the Society for General
Systems Research, XI:203-214, 1966.

[24] J. Rawls. A Theory of Justice. Belknap, Cambridge, MA, 1971.

- 91-

[25] R. L. Rivest, A. Shamir, and Adleman L. A method for obtaining digital signatures and bublic key
cryptosystems. Communications of the A GM, 21(2):120-126, 1978.

[26] P. Sablayrolles and A. Schupeta. Conflict resolving negotiation for COoperative Schedule Management
Agents (COSMA). Technical Memo TM-93-02, DFKI, Kaiserslautern, Germany, 1993.

[27] S. Sandip and E. Durfee. A formal analysis of communication and commitment in distributed meeting
scheduling. In Proceedings of the Eleventh International Workshop on Distributed Artificial Intelligence,
pages 333-344, Glen Arbor, Michigan, February 1992.

[28] Sandip Sen and Edmund H. Duffee. On the design of an adaptive meeting scheduler. In Proc. of the
Tenth IEEE Conference on AI Applications, March 1994. (to appear).

[29] Philip D. Strafl]n, Jr. Topics in the Theory of Voting. The UMAP Expository Monograph Series.
Birkh~user, Boston, 1980.

[30] T. N. Tideman and G. Tunock. A new and superior process for making social choice. Journal of Political
Economy, 84(6):1145-1159, 1976.

[31] G. Tullock. The demand-revealing process as a welfare indicator. Public Choice, 29(2):51-63, 1977.

[32] G. Zlotkin and J. S. Rosenschein. Negotiation and task sharing among autonomous agents in cooperative
domains. In Proceedings of the Eleventh Intcrr~ational Joint Conference or~ Artificial Intelligence, pages
912-917, Detroit, Michigan, August 1989.

[33] G. Zlotkin and J. S. Rosenschein. A domain theory for task oriented negotiation. In Proceedings of the
Thirteenth International Joint Conference on Artificial Intelligence, pages 417-42, Chambery, France,
August 1993.

[34] G. Zlotkin and J. S. Rosenschein. Negotiation with incomplete information about worth: Strict versus
tolerant mechanisms. In Proceedings of the International Conference on Intelligent and Cooperative
Information Systems, pages 175-184, Rotterdam, May 1993.

- 92-

