
The Automated Mapping of Plans for Plan
Recognition*

Marcus J. Huber, Edmund H. Durfee, Michael P. Wellman

Artificial Intelligence Laboratory
The University of Michigan

1101 Beal Avenue
Ann Arbor, Michigan 48109-2110

{ marcush, durfee, wellman } @engin.umich.edu

May 26, 1994

Abstract

To coordinate with other agents in its environment, an agent needs models of what
the other agents are trying to do. When communication is impossible or expensive, this
information must be acquired indirectly via plan recognition. Typical approaches to
plan recognition start with a specification of the possible plans the other agents may
be following, and develop special techniques for discriminating among the possibilities.
Perhaps more desirable would be a uniform procedure for mapping plans to general
structures supporting inference based on uncertain and incomplete observations. In
this paper, we describe a set of methods ~for converting plans represented in a flexible
procedural language to observation models represented as probabilistic belief networks,
and we outline issues in applying the resulting probabilistic models of agents when
coordinating activity in physical domains.

1 Introduction

Decisions about what to do should be based on knowledge of the current situation and expec-
tations about possible future actions and events. Anticipating the actions that others might
take requires models of their decision-making strategies, including models of goals that they
are pursuing. Unfortunately, ascertaining ,tlhe goals of others can be problematic. In com-
petitive situations, agents may forfeit some advantage by revealing their true goals. Even in
cooperative situations, explicit dialogue about goals can be impossible or undesirable given
possible failures, restrictions, costs, or risks.

*This research was sponsored in part by NSF grant IRI-9158473, DARPA contract DAAE-O7-92-C-RO12,
and AFOSR grant F49620-94-1-0027.

- 104-

From: AAAI Technical Report WS-94-02. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved. 



Agents that function in environments where explicit communication about goals is often
impractical need alternative means to ascertain each others’ goals, such as recognizing the
plans and goals of other agents by observing their actions. To perform plan recognition, an
observing agent needs a model of the observed agent’s possible goals and plans, and what
actions the observed agent could take to accomplish those plans and goals. We focus on
the case of collaborative agents, where efficient and effective team coordination requires good
models of each team participant’s goals and plans. If we assume that team participants will
either be designed or trained similarly, then they will have similar or identical knowledge for
planning actions to achieve goals. Unfortunately, however, knowledge of the plan structures
of the other agents does not, by itself, permit the agent to perform plan recognition.

To perform plan recognition, therefore, an agent needs to reason from the evidence provided
by observations of other agents’ activities. An agent’s actions are, in general, applicable toward
a number of different goals, so that observation of any single action will not provide enough
evidence to disambiguate the goal that motivated the agent’s choice of action. Sequences of
actions will tend to disambiguate the intentions of other agents, as the hypotheses that are
consistent with all (or many) of the observed agents’ actions gain more and more support.

An agent therefore needs to be able to take the plan structures that it has for another
agent and convert them to a model that relates plans to observable actions. In this paper, we
describe a method that takes plans as generated by a planning system, and creates a belief
network model in support of the plan recog/a!~ion task.

2 Related Work

An issue common to all plan recognition systems is the source and availability of the plan
structure, which defines the relationships among goals, subgoals, and primitive actions. Many
different plan structures have been utilized, including hierarchies of varying forms (plan spaces
[CLM84], action taxonomies [KA86], AND/OR trees [Ca189], context models [Car90], plan
libraries [LG91]), associative networks [CC91], SharedPlans [LGS90], plan schemas [GL90],
and multi-agent templates [AFH89]. All of these structures were designed specifically to
support the plan recognition task. The direct output of a planning system, in contrast, is
an object designed to be executed, not recognized. For the most part, prior work has not
addressed the problem of how the plan recogiiition structures are (or could be) derived from
executable plans as generated by planning systems.

In our research, we start from a language designed (not by us) for plan specification, 
opposed to plan recognition. The particular language we have adopted is PRS [IGR92, IG90],
though any standard plan language would serve just as well. PRS was chosen for a number of
reasons, including that it supports all of the standard planning constructs such as conditional
branching, context, iteration 1, subgoaling, etc. PRS also has a hierarchically structured plan
representation which we exploit to create belief networks that are organized in a similar,
hierarchical manner.

1Our methodology does not currently support iteration, although this is being investigated.

- lOS-



From a PRS plan, we generate a model that directly serves plan recognition by relating
potential observations to the candidate plans. The model we generate is in the form of a prob-
abilistic belief network (henceforth: belief network) [PeaS8], which expresses probabilistically
the causal relations among underlying goals, intentions, and the resulting observable actions.2

Our research bears the strongest resemblance to Goldman and Charniak’s prior work on
plan recognition using belief networks [CG93]. Like ours, their system generates a belief net-
work dynamically to solve a plan recognition problem. There are several significant differences,
however. First, the plan language they employ is a predicate-calculas-like representation based
on collections of actions with slot fillers with hierarchical action descriptions. This represen-
tation seems well suited for modeling part-subpart relationships (goal/subgoal and is-a), and
their target domain of story understanding and may have influenced this. Our plan language
is based upon PRS, which has a very different set of structural primitives, including explicit
sequencing, conditionalization, iteration and context. PRS is a general purpose planner, with
a representation that is intended to permit any form of plan structure.

Second, Goldman and Charniak first translate plan knowledge into an associative network
(their term) by using a set of generic rules for instantiating (unifying) the network with 
plan knowledge. It is these instantiated rules from which they dynamically generate a belief
network for a given sequence of observations (i.e. bottom-up). Our system, on the other
hand, generates a belief network from the pian representation itself, and before receiving any
observations (i.e. top-down). We foresee thetop-down approach having the characteristic 
being able to prune (perhaps significant) portions of the resulting belief network based upon
the context in which the plan recognition system finds itself. We believe these approaches are
complementary, both in addressing separate sets of plan-language issues, and in emphasizing
different forms of dynamism in model generation.

Finally, this work is related to a growing body of other work in the the dynamic generation
of belief networks [Bre92, WBG92]. Although our methods are specifically geared to plan
recognition (like Goldman and Charniak’s), techniques for generating probabilistic models
from other forms of knowledge may have wider applicability.

3 P RS and Belief Networks

In this section, we give a basic description!of the PRS plan representation, from which we
start, with and belief networks, the target representation for performing plan recognition.

3.1 The Procedural Reasoning System (PRS)

[IGR92, IG90] specifies plans as collections of actions organized into Knowledge Areas, or KAs.
PRS KAs specify how plans are selected given the current goal (its purpose) and situation
(its context). PRS KAs also specify a procedure, called the KA body, which it follows while

~The issue of probabilistic plan recognition is orthogonal to the issue of probabilistic planning (cf. BURI-
DAN [KHW93], for example) and hence the representations created for planning under uncertainty are not
inherently any more conducive to the plan recognition process.



attempting to accomplish its intended goal. This procedure is represented as a directed graph
in which nodes represent states in the world and arcs represent actions or subgoals. Actions
may consist of primitive operations (indicated by * in KA diagrams), goals to achieve (!), goals
to maintain (#), goals to be tested (?), or conditions to be waited upon (^). KA actions 
also assert facts (---+), or retract them (~). Branches in the graph may be of type AND or 
indicating, respectively, that all or only one of the branches must be completed successfully
in order to satisfy the KA’s purpose. See [IGR92, IG90] for a more detailed description.

3.2 Belief Networks

A belief network is a directed acyclic graph (F, X) representing the dependencies F among 
set of random variables X. Each random variable xi C X ranges over a domain of outcomes
f~i, with a conditional probability distribution IIi specifying the probabilities for x~ = wi for
all wi E fl~, given all combinations of outcome values for the predecessors of xi in the network.
For a more thorough account of belief networks, see, for example, [Pea88] or [Nea90]. To avoid
confusion, we refer to the action and goal nodes in a KA as nodes, and the nodes of a belief
network as (random) variables.

4 The Mapping Method

We now describe our method for mapping plans into belief networks, first with simple se-
quences of actions and then with more complex plan structures. The resulting procedures a
broad class of plans, including those with conditional branching and subgoaling. Two notable
features that we do not cover, however, are iteration (or recursion), and plan variables. Both
are left for future work.

In the remainder of the section, we discuss the basic operations involved in mapping PRS
KAs to belief networks. Our description is iilustrated with an example military reconais-
sance task, in which two (or more) cooperative agents pass through a sequence of locations,
alternately navigating (also called bounding) or protectively watching (overwatching) while
concealed from view:

4.1 Single, non-branching plans

Figure l(a) depicts an example PRS plan corisisting of a simple sequence of primitive actions.
This KA says that in order to achieve the go£i of accomplishing a "bound" goal, the operations
of moving to the next location (the via point) and finding a place of concealment must be
accomplished. Knowing this, if an observer were to see an agent moving toward a grove of
trees, the observer might predict that the observed agent was about to enter the grove. We
would like the belief network generated from this KA to support this sort of inference.

The first step in creating the belief network is to create a variable representing the goal to
be achieved by the KA. The remaining variables, connections, and probabilities all provide
evidence for or against the proposition that this is the goal being pursued by the observed

.107-



Name: perfon’n bound
Purpose: I bound~oedormed (~
Context: enemy_in /vicinity *move to_next_vlapt

*find_cover

(a) (b)

Figure 1: (a) Single level, non-branching KA. (b) Belief network.

agent. In our figures, we use the KA’s name for the variable in the belief network representing
the KA’s goal.

We now create a new random variable for each action in the KA. The state space for each
variable is determined by whether the action is a goal--with a state space of {Inactive, Active,
Achieved}, or a primitive action (a basic, non-decomposable behavior of the agent)--with 
state space of {Performed, NotPerformed}. Each of these new variables is dependent upon
the KA’s goal variable because it is the adoption of this goal that causes the performance
of these actions in this particular sequence.3 To model the temporal relationship between
move_to_viapt and find_cover, we create an arc between these variables.4

Because we are constructing the belief network in order to perform plan recognition, it
is important to model the uncertainty associated with observations [HD93]. For example,
detecting the exact movements of another agent might be error-prone, while it might be
easy to ascertain when the agent enters a grove of trees. Yet whether this entry represents
a concealment action may be relatively les6 certain. To capture these differences, we add
evidence variables to represent the relation between an observation and our belief that the
observed event is an instance of the corresponding action. Evidence variables also provide a
way to account for features that, while not corresponding to actions directly, provide some
information regarding whether the action was performed. This indirect evidence is often all
we have, as some fundamental actions may be inherently unobservable. In Figure l(b), 
indicate evidence variables by drawing them with heavy outlines)

A typical KA also specifies the context in which it is useful, which restricts its applicability
for the associated goal. For example, the %ounding overwatch" technique of travel between
locations might only be necessary when enemy forces are in the vicinity. To capture these
constraints in the belief network, we add One new variable for each condition in the KA’s
context, and include a dependency link from the goal to each context variable. The belief
network constructed for the KA shown inFigure l(a) is shown in Figure l(b).

The last task is to determine the probability distributions for each of the random variables.

3In our depiction of belief networks, we distinguish among the various sources of dependency graphically
by line type: subgoal/subaction arcs are normal-weight solid lines, inhibitory arcs are normal-weight dashed
lines, temporal dependency arcs are heavy dashed lines, and context arcs are heavy solid lines.

4To apply this technique for a plan language supporting partially ordered actions, we would simply omit
the temporal dependency arcs between steps in plans that are unordered.

5In subsequent figures, for simplicity, we treat evidence implicitly by depicting the pair of action and
evidence as a single variable.

. .os-



fT~
Name: perform bound
Purpose: ! bound_performed/Context: none

fmoved_to_next_vlapt

*find_cover

(a)

Name: move to next viapt (~)
Purpose: I moved_to_next1vlapt
Context: none *determine next_viapt

*navlgate_to_pt

(b)

Figure 2: (a) Multi-level KA. (b) Corresponding belief network.

Unfortunately, information about the degree of uncertainty in these relationships is not in-
herent in the executable plan description, and no planning system provides this probabilistic
knowledge as a matter of course. We could Specify this information separately based on our
own subjective assessment of the domain, or it could be estimated syntactically by analyzing
the frequency of occurrence of particular actions among all those that achieve particular goals.
Alternately, the probabilities might be determined through empirical study of the frequency
of occurrence of goals and actions during the execution of the plans in actual situations. If
there is no available probabilistic information, a default assignment of equiprobability among
alternatives can be used to indicate this lack of knowledge. This would permit a belief network
to be fully specified in the presence of incomplete modeling information while perhaps still
providing useful inferences based upon the part of the model that was specified.

Some of the dependencies of the constructed belief network are generically specifiable,
however. For example, the relation between goal and context variables (if they represent
true constraints) are partially deterministic, as the goal cannot be active unless the context
condition is satisfied.

The procedure for subgoaling plans is essentially the same as that for the single-level case,
with the extension that subgoals need to be expanded into their constituent KA procedure.
This requires treating the subgoal as a goal variable in Section 4.1. An example multi-level
KA is shown in Figure 2(a), and Figure 2(b) depicts its corresponding belief network. Notice
that the belief network structure beneath the move_to_next_viapt variable has the same form
as that of perform_bound in Figure l(b).

4.2 Conditional plans

For plans with conditional branches, the KA’s goal is again the root variable for the belief
network. Each action in the KA body becomes a random variable in the network as in
the mapping specified in Section 4.1. HoweVer, in the conditional case, not all actions are
linked. For instance, an OR branching in a KA means that an agent need only successfully
execute one of those branches. We assume that one branch is executed (either successfully or
unsuccessfully) before another one is tried, so that only one sequence of actions will be active
at one time. Therefore, the action variables within a branch are linked temporally as in a
non-branching plan, and the variables representing the first actions in each of the disjunctive
branches are linked with inhibitory arcs representing their exclusivity. The effect of this arc
is that positive belief that the agent is pursuing one of the branches will inhibit belief in the

. ,109 -



Name: hide
Purpose: I hidden
Context: none

j---o Z
~nd_conce aling_f oliage *find_concealing_object

(a) (b)
Figure 3: (a) Single plan with OR branch. (b) Corresponding belief network.

Name: perform bound Name: hide
Purpose: I bound Purpose: t hidden

performed

~
Comex~:none

~
Context." none

*move_to_next_vlapt *find_concealing_foliage

+ +
*find_cover *mo~e_into_foliage

Figure 4: Multiple top-level plans.

alternative branch(es). 6 For AND branches, we can similarly assume either independence
(our default), or a positive mutual reinforcement among branches. An example of a KA with
an OR branch, and the resulting belief network, are shown in Figure 3(a) and Figure 3(b),
respectively. If the branch were an AND instead, the same belief network would result, minus
the arc between find_concealing_foliage and find_concealing_object.

4.3 Multiple goals, multiple plans

Quite often, there are several top-level goals that an agent may be pursuing. To represent the
interdependencies between multiple top-level goals, we adopt the convention of always creating
an arc between the top-level goal variables and modeling the dependence (or independence)
through the conditional probabilities associated with these variables. An example of a mapping
for this type of plan to a belief network is shown in Figures 4 and 5.

Thus far we have assumed that an agent being observed is pursuing only a single approach
(KA) to satisfy each of its goals. However, there are often multiple KAs for any goal. The

6The assumption of exclusivity can be relaxed by suitable assignments of inhibitory probabilities. Or, we
could alternately have chosen to assume that pursuit.of the alternate branches are independent, in which case
the inhibitory dependencies would be unnecessary.

Figure 5: Belief networks for multiple top-level plans.

- 110-



Name: hide Name: attack
Purpose: I enemy_dealt_with Purpose: I enemy_dealLwith
Context: enemy_sighted Context: enemy_sighted

Q Q
I I

* flnd_conceaUng_foliage * move_Into_range

I I
* move_into_foliage * aim

s +
* fire_at_enemy

Figure 6: Multiple top-level KAs of observed agent.

Figure 7: Belief network for multiple top-level goals.

approach that we take is similar to the mapping for OR branches. We first create an abstract
goal variable that encompasses the KAs with a common purpose (goal). The variables that
represent each of the alternate plans (KAS)~are then connected, with the alternate plans 
the dependents, in keeping with the future expected use of the belief network. An example of
multiple goals is presented in Figures 6 and 7.

5 An Example

The following example illustrates the entire process, mapping PRS plan structures to a belief
network, and using the result for plan recognition.

5.1 Mapping to belief network

Figure 8 depicts four KAs relevant to the bounding overwatch task. The ~bound_performed KA
shows that the agent must first move to its inext via point before looking for a suitable place
from which to watch over the other agent. There are two KAs for dealing with an enemy agent,
both conditioned on the context of an enemy agent having been sighted. Hiding, however, can
consist of either moving into foliage or moving behind some concealing object. Furthermore,
moving to a via point requires the agent to first accomplish !moved_to_next_viapt, the rightmost
KA in Figure 8, which consists of a simple, non-branching sequence of operations.

Using the methods described in Section 4, the system begins mapping this collection

- 111-



Name: perform bound Name: moveJo_next Name: hide Name: attackPurpose: I bound, performed vlapt Purpose: I enemy_deelLwlth Purpose: I enemy_dealLwlthContext: none Purpose: I moved_to_next ¯ " Context: enemy_in_vicinity Context: enemy In_vicinityvlapt
Context: none

S-o o
l moved to noxLvlapt - * - -- - * ’ _ _ apt

s + + +
¯ find cover

vl
*move_Into_foliage"move_behind_object

* aim¯ na gatejo_next_viapt(~

4 4

¯ navigate_to_cover * fire_at_enemy

"mova_lnlo_cover

Figure 8: KAs’ of observed agent.

of KAs into a belief network, starting with the top-level goals of !bound_performed and
!dealt_with_enemy. The system finds that the first action in the !bound_performed KA is
the goal ]rnoved_to_next_viapt and recurses. The !moved_to_next_viapt KA is straightforwardly
added and the mapping of !bound_performed resumes. The system then proceeds to map
!dealt_with_enemy. As !dealt_with_enemy has two potentially applicable KAs, the methodol-
ogy of Section 4.3 is used, where each KA is processed individually and then joined by an
abstract goal variable representing both KAs. In addition, the OR branch in the hide KA
complicates the construction a bit by introducing additional dependencies (as discussed above
in Section 4.2). To complete the mapping, the system creates an inhibitory link between the
two top-level goals (!bound_performed and !dealt_with_enemy) to indicate that only one OR
the other of these goals can be achieved at the same time. The finished belief network struc-
ture is shown in Figure 9. The margina! and conditional probabilities are then loaded into
the network (as mentioned in Section 4). We now show how the new representation permits
an agent to infer the plans and goals of another agent based on its observed behavior.

5.2 Plan recognition

Suppose that Agent A is watching Agent B as they perform a reconnaisance task. Agent A and
Agent B are in the military so of course there are standard operating procedures for everything.
In this case the agents are using bounding-overwatch for reconnaisance, which means that one
agent moves while the other agent watches for danger while concealed, with the two agents
alternating between roles. These procedures are represented by the KAs in Figure 8, which
get mapped into the belief network structure shown in Figure 9. Agent A observes the actions
taken by Agent B, and, whenever an actiot~:is performed that fits into the model, Agent A
adds this information to the belief network.’ After the evidence is propagated, the resulting
probability distributions represent Agent A’s beliefs about Agent B’s goals posterior to the
evidence.

Starting with a belief network without any applied evidence, suppose Agent A notices

- 112-



Figure 9: Final belief network representation.

that Agent B moves in the direction of, and arrives at, the next stop in the reconnaisance
route.7 Agent A interprets this as having completed !moved_to_next_viapt (an example of the
ability to make observations at a higher level than the "primitive" action level) and propagates
this evidence through the network. This results in distributions of perform_bound: Inactive
0.19; Active 0.69, Achieved 0.11, and deal_with_enemy: Inactive 0.41; Active 0.49; Achieved
0.09. The relatively high level of belief in the deal_with_enemy goal is due to its having a
high prior. This evidence alone suggests to Agent A that Agent B might be involved with
performing the bounding role of the reconnaisance task, but it is not entirely clear at this
point. Agent A determines, based upon its beliefs, that it should continue to watch for enemy
agents. Continuing, if Agent A later observes Agent B moving into cover, Agent A now
strongly believes that Agent B is finishing its bound process with beliefs of perform_bound:
Inactive 0.0; Active 0.17, Achieved 0.83, and deal_with_enemy: Inactive 0.62; Active 0.32;
Achieved 0.06. Agent A reasons that everything is going according to plan and maintains its
own position until Agent B has established itself in an overwatch position.

However, if instead of moving to a via point as above, Agent B moves in some other
direction and moves into a growth of foliage, Agent A, through the plan recognition system,
realizes that Agent B established a goal of hide (Inactive 0.03, Active 0.51, Achieved 0.46)
since Agent B has detected an enemy (Performed 0.64, NotPerformed 0.36) and that Agent 
should therefore come to its aid. Agent A and Agent B might then go one to use their
respective plan recognition systems to individually infer the goal(s) of the enemy agent and
to determine what each other are intendin":to do asg,.:. so to coordinate an attack or defense
against the enemy agent.

7Until Agent B actually arrives at the via point, its movements might be ambiguous enough that it is
unclear which of the move-type observations should be instantiated. In this case, evidence for all of them
might be instantiated and the resulting beliefs used, providing Agent A with at least some information.

- 113-



This above simple example illustrates how the plan recognition system can aid an agent in
coordinating its own activities with another, ~ observed agent (be it friend or foe). Of course,
this can be done without any, perhaps dangerous, explicit communication between the agents.
One of the issues that must be faced by an agent relying upon coordinating through plan
recognition, however, is determining whether to take action based on the observations, or
whether to wait and gather more observations.

6 Commitment

In order to get a feel for how an agent might reason with plan recognition belief networks, we
performed a series of experiments (one of which is detailed here) where we explored this issue.
For, unlike coordination approaches involving communication, where agents explicitly declare
their goals/plans to each other, coordinagion involving plan recognition involves uncertainty
in whether plans have been correctly identified. Because uncertainty often decreases as an
agent gathers more information, a tradeoff exists between acting in a timely manner (by not
waiting) and ensuring a correct action (by waiting). That is, if the agent commits too early,
when beliefs are low and somewhat ambiguous concerning the other agents’ goals, the agent
might waste effort on actions that are inappropriate, redundant, etc. On the other hand, if
the agent waits until there is little or no ambiguity before it acts (when the belief in one goal
is much higher than any other), a great amount of time (or some other resource) might have
been wasted.

We explored this tradeoff before we developed the transformation method in this paper,
using hand constructed belief networks for several robotic navigation scenarios. A hand-
constructed belief network for an extremely simple scenario is shown in Figure 10. This
belief network represents the simple behavior of moving directly to a destination location
(goal) from the robot’s current location. The PRS KA from which something like this might

:i! t
result is shown in Figure 11s. Note, however, that the belief network in Figure 10 is not the
network that would actually result from oui: methodology. This is shown in Figure 12(a),
with Figure 12(b) being the identical belief network simply renamed for comparison purposes
with the simplistic labels used in our hand-constructed network. The differences between the
networks are not important to the general implications of our research on commitment, which
we summarize here (for more details regarding the specifics of the belief network shown in
Figure 10, see [HD92].) We do, however, plan on performing experiments similar to those
found in this section on belief networks actually generated by our methodology.

The setting for our commitment experiments is a simple simulated grid world in which
exist two agents, one of which observes the other and attempts to determine the observed
agent’s destination. A small set (10) of the grid locations in the grid "world" are given 
possible destinations. After the agents are started in random initial locations, one agent moves
to a prespecified destination while the othe~ agent observes and performs plan recognition.
The observing agent’s task was to either rendezvous with the observed agent or move to the

SThe ’vfh’ in the primitive function vfh_move_to_xy stands for Vector Field Histogram, an algorithm for
obstacle avoidance while navigating [BK91]

- 114-



Figure 10: Hand constructed belief network.

destination location furthest from the observed agent’s goal. The observing agent was told
which strategy to use for each experiment. Then, in each experiment, we kept track of the
following variables:

Ave End Time: The average time step at which the simulation ended. The criterion for
this was the time at which all agents arrived at their final destinations.

Ave Last Move Time: The average time step at which the observing agent performed its
last movement action.

Ave Total Moves: The average number of:moves made by the observing agent throughout
the experiment.

Because we wanted to get an understanding of the tradeoffs of time versus effort as com-
mitment changed, we established a threshold of belief. Only when the overwatching agent
held belief in a potential destination location above this threshold would it commit to the ap-
propriate destination location. In the results shown in Figure 13, where the destinations are
distributed randomly throughout the "world", the tradeoff between time and effort is clearly
seen. It is evident that, as the watching agent waits for higher levels of belief before commit-
ting to action, the watching agent saves in the total number of moves that it has to make (on
the average). In this scenario, the agent saves approximately two moves if it waits until it is
absolutely sure which destination the agent that it is watching is going to. The extra time
spent waiting, six time steps, might be qui~elcostly relative to the cost of motion, however,
and would have to be considered within the constraints of the domain. Another observation
from these results is that there seems to be little affect of having a threshold below 0.3 or
0.4. It appears that beliefs below this level indicate that the overwatching agent is still pretty
confused about the final destination of the other agent.

More extreme results resulted from changing the destination distribution and assigning
the "move to opposite" task to the observing agent. The results are shown in Figure 14.
Here we see a sharp and very large decrease (approximately twenty) in the total number 
moves. Most notable, however, is the decrease in the simulation times. This "worst-case"
illustrates and example of an environment in which actions are very costly. In other words,
early commitment to an incorrect final destination, resulting in subsequently switching to the
correct destination later in the simulation, led to movement on the part of the observing agent
that took it pretty much in the opposite direction of where it eventually wanted to go. The
decrease in the simulation times for large thresholds results from not moving in the wrong
direction, which would require later backtracking. And, of general note, is the relatively high

.115-



Name: move to destination
Purpose: I moved_to_dest
Context: none

*vfh_moveto_xy

Figure 11: Possible PRS KA for belief network.

m~_to_des~ ~____~tination~

Ca) Cb)

Figure 12: Belief network resulting from using our automatic construction methods.

values for all of the variables in this environment. This is an indication that it is a very
difficult environment in which to operate, with a high cost associated with mistakes based on
early commitment.

7 Conclusions

We have described methods by which plans in their executable form can be automatically
mapped to belief networks. The examples of the implemented system illustrate that, at

40-

/
J

B .J
J v

n
36J J

34-"
32-
3o::
28-
26-
24-
22-

o d d <:5 o d c~ d d
C)

Threshold Levels
(104 runs at each threshold level)

Figure 13: Results with random destination distribution.

Ave End Time

Ave Last Move Time

Ave Total Moves

- 116-



72.

A~

\
""dr

\
’x

-%

\

67.’

62.’

57.’

52.’

47.’
O ,--:. O4 t’3 ~ Lf3 kO f’- CO ~ O~

o <5 <5 6 <5 6 <5 o 6 o~
d

Thresh0]d Levels
(51 runs at each threshold level)

B Ave End Time

Ave Last Move Time

Ave Total Moves

Figure 14: Results with "worst-case" destination distribution.

least for the simple plans so far explored, :our methods yield belief networks that facilitate
coordination by allowing agents to recognize the plans of other agents. In the near future
we plan to extend our methodology to deal with iteration and recursion, and to implement
this system on physically embodied agents (robots) that will use plan recognition as part
of their coordination mechanism. Based on our preliminary experiments in simulation, plan
recognition represents a promising tool for improving agent’s knowledge for coordination, but
raises important issues in deciding when and how to act given uncertain models of other
agents.

While much work yet remains, we see these methods as important steps toward knowledge
re-use, where automating the mapping process allows the same knowledge to be used for both
planning and plan recognition. Moreover, just as concerns about storing all possible plans for
all possible combinations of goals and worlds led to algorithms for dynamically constructing
plans on the fly, so too do concerns about building unwieldy models of agents’ actions in

~:5’. i !
all possible worlds lead to a desire for dynamically constructing belief network models for
situation-specific plan recognition activities. Our methods represent some initial steps in this
direction.

8 Acknowledgements

We would like to acknowledge the reviewers for their insightful and helpful comments on this
paper. We have addressed their concerns as best we can given time and space constraints.

References

[AFH89] J. Azarewicz, G. Fala, and C. Heithecker. Template-based multi-agent plan recog-

- 117-



[BK91]

[Bre92]

[Ca189]

[Car90]

[CC91]

[CG93]

[CLM84]

[GL90]

[HD92]

[HD93]

[IC90]

nition for tactical situation assessment. In Proceedings of the Sixth Conference on
Artificial Intelligence Applications, pages 247-254, 1989.

Johann Borenstein and Yoram Koren. The Vector Field Histogram for fast obstacle-
avoidance for mobile robots. IEEE J. Robotics and Automation, 7(3), 1991.

John Breese. Construction of belief and decision networks. Computational Intelli-
gence, 8(4):624-647, 1992.

Randall J. Calistri. A modified A* algorithm for robust plan recognition. In IEEE
Workshop on Tools for AI Architectures, Languages, and Algorithms, pages 36-42,
Fairfax, VA, October 1989. IEEE Computer Society.

Sandra Carberry. Incorporating default inferences into plan recognition. In Pro-
ceedings of the Eighth National Conference on Artificial Intelligence, pages 471-478,
Boston, MA, July 1990.

Glenn Carroll and Eugene Charniak. A probabilistic analysis of marker-passing
techniques for plan-recognition. In Proceedings of the Seventh Conference on Un-
certainty in Artificial Intelligenc%!pages 69-76, Los Angeles, CA, July 1991.

E. Charniak and R. P. Goldman. A Bayesian model of plan recognition. Artificial
Intelligence, 64(1):53-79, November 1993.

Norman F. Carver, Victor R. Lesser, and Daniel L. McCue. Focusing in plan
recognition. In Proceedings of the National Conference on Artificial Intelligence,
pages 42-48, Austin, Texas, August 1984.

Bradley A. Goodman and Diane J. Litman. Plan recognition for intelligent inter-
faces. In Proceedings of the Sixth Conference on Artificial Intelligence Applications,
pages 297-303, 1990.

Marcus J. Huber and Edmund H. Durfee. Plan recognition for real-world au-
tonomous agents: Work in progiehs. In Working Notes: Applications of Artifi-
cial Intelligence to Real-World Autonomous Mobile Robots, AAAI Fall Symposium,
pages 68-75, Boston, MA, October 1992. American Association for Artificial Intel-
ligence.

Marcus J. Huber and Edmund H. Durfee. Observational uncertainty in plan recog-
nition among interating robots. In Working Notes: Workshop on Dynamically
Interacting Robots, pages 68-75, Chambery, France, August 1993.

Francois. F. Ingrand and Michael P. Georgeff. Managing deliberation and reasoning
in real-time AI systems. In Proceedings of the 1990 DARPA Workshop on Innovative
Approaches to Planning, Scheduling, and Control, pages 284-291, Santa Diego, CA,
November 1990. i

- 118-



[IGR921

[KA86]

[KHW931

[LG911

[LGSg0]

[Nea90]

[Pea88]

[WBG92]

Francois Ingrand, Michael Georgeff, and Anand Rao. An architecture for real-time
reasoning and system control. IEEE Expert, 7(6):34-44, December 1992.

H.A. Kautz and J.F. Alien. Generalized plan recognition. In Proceedings of the
Fifth National Conference on Artificial Intelligence, pages 32-37, Philadelphia, PA,
August 1986.

Nicholas Kushmerick, Steve HanksI and Daniel Weld. An algorithm for probabilis-
tic planning. Technical Report 93-06-3, The University of Washington, Seattle,
Washington, June 1993.

Dekang Lin arm Randy Goebel. A message passing algorithm for plan recognition.
In Proceedings of the Twelth International Joint Conference on Artificial Intelli-
gence, pages 280-285, Sydney, Australia, August 1991.

K. Lochbaum, B. Grosz, and C. Sidner. Models of plans to support communica-
tion: An initial report. In Proceedings Eighth National Conference on Artificial
Intelligence, Boston, MA, 1990. AAAI.

Richard E. Neapolitan. Probabilistic Reasoning in Expert Systems. John Wiley and
Sons, 1990. .:

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo, CA, 1988.

Michael P. Wellman, John S. Breese, and Robert P. Goldman. From knowledge
bases to decision models. Knowledge Engineering Review, 7(1):35-53, 1992.

- 119 -




