
Global Information Management
via Local Autonomous Agents

Michael N. Huhns, Munindar P. Singh, Tomasz Ksiezyk, and Nigel Jacobs
MCC

3500 West Balcones Center Drive
Austin, TX 78759-5398

(512) 338-3651 or huhns @mcc.com

Abstract

In this paper we describe how a set of autonomous computational agents can cooperate

in providing coherent management of information in environments where there are
many diverse information resources. The agents use models of themselves and of the re-
sources that are local to them. Resource models may be the schemas of databases, frame

systems of knowledge bases, or process models of business operations. Models enable
the agents and resources to use the appr0~:iate semantics when they interoperate. This

is accomplished by specifying the semantics’ in terms of a common ontology. We discuss
the contents of the models, where they come from, and how the agents acquire them. We
then describe a set of agents for telecommunication service provisioning and show how
the agents use such models to cooperate. Their interactions produce an implementation

of relaxed transaction processing.

1 Introduction

Business operations, including sales, marketing, manufacturing, and design, can no
longer be done in isolation, but must be done in a global context, i.e., as part of an enter-
prise. A characteristic of such enterprises is that their information systems are large and
complex, and the information is in a variet~"6f forms, locations, and computers. The to-

pology of these systems is dynamic and their content is changing so rapidly that it is dif-
ficult for a user or an application program to obtain correct information, or for the
enterprise to maintain consistent information.

Some of the techniques for dealing with the size and complexity of these enterprise in-

formation systems are modularity, distribution, abstraction, and intelligence, i.e., being
smarter about how you seek and modify information. Combining these techniques im-
plies the use of intelligent, distributed modules---a distributed artificial intelligence ap-
proach. In accord with this approach, we distribute and embed computational agents

- 120-

From: AAAI Technical Report WS-94-02. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved.

throughout an enterprise. The agents are knowledgeable about information resources
that are local to them, and cooperate to provide global access to, and better management
of, the information. For the practical reason that the systems are too large and dynamic
(i.e., open) for global solutions to be formulated and implemented, the agents need to ex-
ecute autonomously and be developed independently. To cooperate effectively, the
agents must either have models of each other and of the available information resources
or provide models of themselves. We focus on the latter in this paper.

For such an open information environment, the questions arise: what should be modeled,
where do models come from, what are their constituents, and how should they be used?
We discuss the types of models that might be available in an enterprise and how agents
can acquire them. We use the ontology developed for the large knowledge-based system,
Cyc, for semantic grounding of the models. This provides a common ontology. We then
describe a set of agents for telecommunication service provisioning--a scheduling
agent, a schedule-repairing agent, a schedule-processing agent, and an interface agentm
and describe their models and how they use them to cooperate. We also describe the use
of actors [Agha 1986]----one per agent--who manage communications among the
agents. Each actor independently maintains the relationship between its agent and the
common ontology (in the form of articul~i~i0n axioms), and updates that relationship

the ontology changes or the agent itself evolves.

2 Modeling

Enterprise information modeling is a corporate activity that produces the models needed
for interoperability. The resultant models should describe all aspects of a business envi-
ronment, including

¯ databases

¯ database applications

¯ software repositories

¯ part description repositories :. .~.~

¯ expert systems, knowledge bases, and computational agents

¯business work flows, and the information they create, use, maintain, and own,
and

¯ the business organization itself.

The models provide online documentation for the concepts they describe. They enable

- 121-

application code and data to be reused, data to be analyzed for consistency, databases to be
constructed automatically, the impact of change on an enterprise to be assessed, and appli-
cations to be generated automatically.

An enterprise might have many models available, each describing a portion of the enter-
prise and each constructed independently. For example,

¯ the information present in a database is modeled by the schema for the database,
which is produced through a process of logical data modeling

¯ the data values present in a database are modeled (weakly, in most cases) by data
dictionary information, which is produced through data engineering

¯ the information present in an object-centered knowledge base is modeled by the
ontology of the objects, which is produced through ontological engineering

¯process models, possibly in the form of Petri nets or IDEFx descriptions, are pro-
duced through logical process modeling

¯ STEP (Standard for the Exchange of Product model data) schemas, written in Ex-

press, are produced from component and physical process modeling.

Although it might appear that interoper~i~ility would require all of these models to be

merged into a single, homogeneous, globalmodel, this is not the case in our approach. In-
stead, there are good reasons for retaining the many individual models: 1) they are easier
to construct than a single large model; 2) enterprises may be formed dynamically through
mergers, acquisitions, and strategic alliances, and the resultant enterprises might have in-
herited many existing models; 3) because enterprises are geographically dispersed, their re-
sources are typically decentralized; and 4) as enterprises (and thus models) evolve, it
easier to maintain smaller models.

Unfortunately, the models are often mutually incompatible in syntax and semantics, not
only due to the different things being modeled, but also due to mismatches in underlying
hardware and operating systems, in data structures, and in corporate usage. In attempting
to model some portion of the real world, in]~ormation models necessarily introduce simpli-
fications and inaccuracies that result in semantic incompatibilities. However, the individual
models must be related to each other and their incompatibilities resolved [Sheth and Larson
1990], because

¯A coherent picture of the enterprise is needed to enable decision makers to oper-
ate the business efficiently and designers to evaluate information flows to and
from their particular application.

¯ Applications need to interoperate correctly across a global enterprise. This is es-
peciaUy important due to the increasing prevalence of strategic business applica-
tions that require intercorporate linkage, e.g., linking buyers with suppliers, or
intracorporate integration, e.g., producing composite information from engineer-
ing and manufacturing views of a product.

¯ Developers require integrity validation of new and updated models, which must
be done in a global context.

¯ Developers want to detect and remove inconsistencies, not only among models,
:; ~.~

but also among the underlying business operations that are modeled.

We utilize a mediating mechanism based on an existing common ontology to yield the ap-
pearance and effect of semantic homogeneity among existing models. The mechanism pro-
vides logical connectivity among information resources via a semantic service layer that
automates the maintenance of data integrity and provides an enterprise-wide view of all the
information resources, thus enabling them to be used coherently. This logical layer is im-
plemented as a network of interacting agents. Significantly, the individual systems retain
their autonomy. This is a fundamental tenet of the Carnot architecture [Woelk et al. 1992],
which provides the tools and infrastructure for interoperability across global enterprises.

3 Semantic Integration via a Common Ontology
0,

In order for agents to interact productively, they must have something in common, i.e., they
must be either grounded in the same environment or able to relate their individual environ-

ments. We use an existing common context--the Cyc common-sense knowledge base
[Lenat and Guha 1990]--to provide semantic grounding. The models of agents and re-

sources are compared and mapped to Cyc but not to each other, making interoperation eas-
ier to attain. For n models, only n mappings are needed, instead of as many as n(n-1)
mappings when the models are related pairwise. Currently, Cyc is the best choice for a
common context, because of 1) its rich set of abstractions, which ease the process of repre-

senting predefined groupings of concepts, 2) its knowledge representation mechanisms,
which are needed to construct, represent, and maintain a common context, and 3) its size:
it covers a large portion of the real world ~nd the subject matter of most information re-

sources. : :.

The large size and broad coverage of Cyc’s knowledge enable it to serve as a fixed-point
for representing not only the semantics of various information modeling formalisms, but
also the semantics of the domains being modeled. Carnot can use models constructed using
any of several popular formalisms, such as

- 123-

¯IRDS, IBM’s AD/Cycle, or Bellcore’s CLDM for entity-relationship models

¯Ingres, Oracle, Sybase, Objectivity, or Itasca for database schemas, and

¯MCC’s RAD or NASA’s CLIPS for agent models.

Cyc’s knowledge about metamodels for these formalisms and the relationships among them
enables transactions to interoperate semantically between, for example, relational and ob-
ject-oriented databases.

The relationship between a domain concept from a local model and one or more concepts

in the common context is expressed as an ~iculation axiom [Guha 1990]: a statement of
equivalence between components of two theories. Each axiom has the form

ist (G, tp) ¢:~ ist (Ci,

where ¢p and ~ are logical expressions and ist is a predicate that means "is true in the con-
text." This axiom says that the meaning of ¢p in the common context G is the same as that
of ~ in the local context Ci. Models are then related to each other----or translated between
formalisms--via this common context by means of the articulation axioms, as illustrated
in Figure 1. For example, an application’s query about Automobile would result in sub-
queries to DB1 about Car, to DB2 about Auto, and to KB1 about car. Note that each

model can be added independently, and the articulation axioms that result do not have to
change when additional models are added. :Also note that applications and resources need
not be modified in order to interoperate in the integrated environment. The Appendix con-
tains a description of the graphical tool, MIST, that we have built to aid in the construction

of articulation axioms.

Figure 2 shows a logical view of the execution environment. During interoperation, medi-
ators [Wiederhold 1992], which are implemented by Rosette actors [Tomlinson et al.
1991], apply the articulation axioms that relate each agent or resource model to the com-
mon context. This performs a translation of message semantics. At most n sets of articula-
tion axioms and n mediators are needed for interoperation among n resources and
applications. The mediators also apply a syntax translation between a local data manipula-

tion language, DMLi, and the global context language, GCL. GCL is based on extended
first-order logic. A local data-manipulationqanguage might be, for example, SQL for rela-
tional databases or OSQL for object-oriente’d databases. The number of language transla-
tors between DMLi and GCL is no greater than n, and may be a constant because there are
only a small number of data-manipulation languages that are in use today. Additional de-
tails describing how transactions are processed semantically through the global and local

views of several databases can be found in [Woelk et al. 1992].

- 124.

Application1 Interface1

Context

Common Context
TransportationDevice

Context

g

Train Vehicle Boat / DB~Attribute

OBObject
s

ss

Jeer"- Art. axiom 3Truck Automobile

¯ ,sArticulation axiom I ~’.
~n_ ".. ,*%. Articulation axiom 2t~Kt~ntlty ****

DB1 Context ,-"
sS

s ¯
s

Car ’j

KB1

Context

Car

Car id mnko

Auto

Knowledge Base

car

Ford VW

Figure l: Concepts from different models are related via a common aggregate context by
means of articulation axioms

The mediators also function as communication aides, by managing communications among
the various agents, databases, and application programs in the environment. Figure 3 shows
how they buffer messages, locate message recipients, and translate message semantics. To
implement message transfer, they use a tree-Space mechanism--a kind of distributed virtu-

al blackboard--built on the OSI and TCP/IP protocols [Tomlinson et al. 1991].

- 125-

I Application I

I
[DML1 --> GCLI

I

~ocal-to-Common Semantic Translatio~
by Articulation Axioms

/

Mediator for apt

I Application [

Rule-Based Application I

i iI ,~_,ocal-to-Common Semantic Translatio~

/ by Articulation Axioms |

Mediator for agent

resource

Common-to-Local Translation Common-to-Local Translation Common-to-Local Translation
by Articulation Axioms by Articulation Axioms by Articulation Axioms

I°~’.V~°~] I°c~ ~"nl I°c"-->~il
I

Local Schema 1 (~ocal Frame Svste~

Figure 2: Logical view of the execution environment, showing how mediating agents apply
articulation axioms to achieve semantic interoperation

- 126-

Tree ace L / T--e FaceIn,er ce In,e ace¯ rosmi, 1 ’ 1
IH~ [Message

[~ Message
Agent

~ Buffer
~ /~

Buffer

A

~Mediator[/’Media
]Mediator ~

Demand

Resource

B

Figure 3: Each database, application, and reasoning agent has a mediator (actor) that
manages its communications through a tree space

4 Application to Transaction Processing

We have applied our methodology to achieve relaxed transaction processing in the provi-
sioning of telecommunication services, the task of providing communication facilities to
customers. This task is executed in a heterogeneous multidatabase environment. It is an ex-
ample of workflow control, in that it provides control and data flows among transactions
executing on multiple autonomous systems [Jin et al. 1993; Tomlinson et al. 1993]. Service
provisioning typically takes several weeks and requires coordination among many opera-

tion-support systems and network elements. Configuring the operation-support systems so
that they can perform such a task often take~ several months to complete.

We investigated ways to improve the provisioning of one type of communication facility--
digital services (DS- 1). Provisioning DS- 1 takes more than two weeks and involves 48 sep-
arate operations--23 of which are manual--against 16 different database systems. Our
goals were to reduce this time to less than two hours and to provide a way in which new
services could be introduced more easily. Our strategy for accomplishing these goals was
to 1) interconnect and interoperate among the previously independent systems, 2) replace
serial operations by concurrent ones by making appropriate use of relaxed transaction pro-
cessing [Attie et al. 1993; Bukhres et al. 1993; Elmagarmid 1992; Ansari et al. 1992], and
3) automate previously manual operations, thereby reducing the incidence of errors and de-
lays. The transaction processing is relaxed inthat some subsystems are allowed to be tem-
porarily inconsistent, although eventuai’consistency is guaranteed. Relaxing the
consistency requirements allows increased concurrency and, thus, improved throughput
and response time.

- 127-

Graphical ¯ ~. [Transaction
User ~____~ Interaction !~. "~ ~! Scheduling

Agent
]

Agent

Schedule Sched
]l Repairing I "~l Processing

/ [_ Agent - J [
Agent

Figure 4: Agents used for relaxed transaction processing

The architecture of the agents used to implement relaxed transaction processing is shown
in Figure 4. The agents operate as follows.The graphical-interaction agent helps a user fill
in an order form correctly, and checks inver~l~0ries to give the user an estimate of when the
order will be completed. It also informs the user about the progress of the order.

The transaction-scheduling agent constructs the schedule of tasks needed to satisfy an or-
der. The tasks are scheduled with the maximum concurrency possible, while still satisfying
their precedence constraints. Some of the rules that implement the schedule are shown in
Figure 5. These particular rules, when appropriately enabled, generate a subtransaction to
update the database for customer billing. When executing such rules, the transaction-sched-
uling agent behaves as a finite-state automaton, as shown in Figure 6.

The schedule-processing agent maintains connections to the databases involved in telecom-

munication provisioning, and implements transactions on them. It knows how to construct
the proper form for a transaction, based on :the results of other transactions. The transac-

- 128-

;; This set of rules (i) executes an external program that

;; translates an Access Service ReqUeSt into a command file

;; to update the database for cnstomer billing, (2) executes

;; the conmmnd file, and (3) checks for completion. Note that

;; the scheduling agent, due to its truth-maintenance system,

;; stops processing this subtransaction whenever an abort of

;; the global transaction occurs.

;; ?grid denotes the global transaction identifier.

Bill-Preparation~

If (service-order(?gtid)

new-tid(?subtid)

unless(abort(?gtid)))

then (do(,run-shell-progrem

("asr2bill"
~input ("asr-?gtid.out")

zoutput "bill-?gtid.sql"))

bill(?gtid ?subtid)

tell(GIAgent "Task ?gtid~BILLING ready"))

Bill-Executionz

If (bill(?gtid ?subtid)

logical-db(?db))

then (tell(SchedProcAgent

"task-execute ?subtid BILL ?db bill-?gtid.sql")

tell(GIAgent "Task ?grid BILLING active"))

Bill-Completion~

If (success(?subtid)
bill(?gtid ?subtid))

then (tell(GIAgent "Task ?grid BILLING done"))

Bill-Failure:

If (failure(?subtid) .~:
excuse(bi11(?gtid ?subtid)))

then (abort(?gtid)

tell(GIAgent "Task ?grid BILLING failed"))

Figure 5: Some of the rules used by the transaction-scheduling agent to generate a schedule
for DS-1 workflow

tions are processed concurrently, where appropriate. If something goes wrong during the

processing of a transaction that causes it to abort or fail to commit, the schedule-repairing

agent provides advice on how to fix the problem and restore consistency. The advice can

be information on how to restart a transaction, how to abort a transaction, how to compen-

- 129-

Start / Prepare message

Message ready/
Tell Schedule-Processing Agent

Receive OK from Receive fail from

Figure 6: Representative finite-state automaton for a telecommunication service
provisioning task as implemented by the transaction-scheduling agent

sate for a previously committed transaction, or how to clean-up a failed transaction. The
integrity knowledge that is stored in the schedule repairing agent comes from a comparison
of the models, as expressed in terms of the common ontology.

The agents, as described above, are simply expert systems whose expertise is in processing
orders for telecommunication services. However, they have the additional abilities to inter-
act and cooperate with each other. Their interaction is via the mediators shown in Figure 3.

The agents cooperate, at the knowledge level [Newell 1982], via models of themselves. For
example, a conceptual domain model for the graphical-interaction agent is shown in Figure

7. An interface form that provides user access and modifications to the knowledge pos-
sessed by this agent is shown in Figure 8.. Entries on the form, or the form’s completion,
cause queries and transactions to be sent to the other agents or databases in the environ-
ment. Note, however, that the model does not capture the procedural knowledge necessary

- 130-

ServiceOrder

Circuit

Customer~

Figure 7: Semantic model (simplified) for the graphical-interaction agent

DS-1 Access Service Request

Order ID Date
--

Customer Name
wm

Phone ----

Quantity

Circuit Information

ALocation ZLocation Type

Figure 8: User interface form (simplified) corresponding to the declarative knowledge of the
graphical-interaction agent

- 131-

id

binDir

subtrans

Transaction

subclass

initiat6~

workDir

¯l

\

\

Agent

\

\

Figure 9: Semantic model for the transaction-scheduling agent (dashed arrows indicate
instance relationships, and solid arrows indicate subclass relationships)

to specify the queries and transactions; a technique for modeling processes is needed to

capture such knowledge In other words, the models represent the static knowledge of the

agents, not (unfortunately) their dynamics. Nevertheless, they have proven useful in en-

abling the agents to interact coherently, as we describe next.

Conceptual models for two more of the ag6nts are shown in Figures 9 and 10. Each model

consists of organized concepts describing the context, domain, or viewpoint of the knowl-
edge possessed by thatagent, i.e., the knowledge base of each agent contains rules written

in terms of these concepts.

The models in Figures 7, 9, and 10 are related to the common context, and thereby to each

other, via articulation axioms. For example, the concept Transac t d.on for the transac-

tion-scheduling agent and the concept DBTransac t: 5.on for the schedule-repairing agent

- 132-

command

status

DBTransaction

Agent

DB

Figure 10: Semantic model for the schedule-repairing agent
/

are each related to the common concept DatabaseTransaction via the axioms

ist (Cyc,Database Transaction (T)) ¢=~ ist (Scheduler, Transaction (

ist (Cyc,Database Transaction (T)) ¢:~ ist (Repairer, TDBTransaction (

The axioms are used to translate messages exchanged by the agents, so that the agents can
understand each other. In the above example, the two agents could use their axioms to con-
verse about the status of database transactions, without having to change their internal ter-
minology. Similar axioms describing the semantics of each of the databases involved
enable the schedule-processing agent to issue transactions to the databases. The axioms
also relate the semantics of the form shown :in Figure 8to the semantics of the other infor-
mation resources in the environment. Such axioms are constructed with the aid of a graph-

ical tool called MIST, for Model Integration Software Tool. The operation of MIST is
described in the Appendix.

Operationally, the axioms are managed and applied by the mediators that assist each agent.
They use the axioms to translate each outgoing message from their agent into the common
context, and to translate each incoming message for their agent into its local semantics.

- 133-

5 Background and Discussion

Integrating enterprise models is similar to integrating heterogeneous databases. Two ap-
proaches have been suggested previously for this [Buneman et al. 1990]. The composite ap-
proach produces a global schema by merging the schemas of the individual databases.
Explicit resolutions are specified in advance for any semantic conflicts among the databas-
es, so users and applications are presented with the illusion of a single, centralized database.
However, the centralized view may differ from the previous local views and existing appli-
cations might not execute correctly any more. Further, a new global schema must be con-
structed every time a local schema changes or is added.

The federated approach [Heimbigner and McLead 1985, Litwin et al. 1990] presents a user
with a collection of local schemas, along with tools for information sharing. The user re-

solves conflicts in an application-specific manner, and integrates only the required portions
of the databases. This approach yields easier maintenance, increased security, and the abil-
ity to deal with inconsistencies. However, a user must understand the contents of each da-
tabase to know what to include in a query: there is no global schema to provide advice about
semantics. Also, each database must maintain knowledge about the other databases with
which it shares information, e.g., in the form of models of the other databases or partial glo-
bal schemas [Ahlsen and Johannesson 1990]. For n databases, as many as n(n-1) partial
global schemas might be required, while n iii/~ppings would suffice to translate between the
databases and a common schema.

We base our methodology on the composite approach, but make three changes that enable
us to combine the advantages of both approaches while avoiding some of their shortcom-
ings. First, we use an existing common schema or context. In a similar attempt, [Sull and
Kashyap 1992] describes a method for integrating schemas by translating them into an ob-
ject-oriented data model, but this method maintains only the structural semantics of the re-
sources.

Second, we capture the mapping between each model and the common context in a set of
articulation axioms. The axioms provide a means of translation that enables the mainte-
nance of a global view of all information ,resources and, at the same time, a set of local
views that correspond to each individual resource. An application can retain its current
view, but use the information in other resources. Of course, any application can be modified
to use the global view directly to access all available information.

Third, we consider knowledge-based systems (KBSs), interfaces, and applications, as well
as databases.

Our use of agents for interoperating among applications and information resources is sim-

mappings that result should not have to change when additional objects are inte-
grated.

The above principles are incorporated in an integration tool, MIST, for assisting an admin-
istrator in generating articulation axioms for a model, and in a set of agents that utilize the
resultant axioms to provide users and applications with access to the integrated resources.

They can use a familiar local context, while still benefiting from newly added resources.
These systems constitute part of the semantic services of Camot [Cannata 1991], under de-
velopment at MCC. They help specify and maintain the semantics of an organization’s in-
tegrated information resources.

Extensions of our work are focused on developing additional information-system applica-
tions for agents, including

¯intelligent directory service agents

¯ negotiating electronic data interchange (EDI) agents

¯ database triggers--making passive databases active

¯ rule-based database applications

¯database administration agents

¯intelligent information retrieval agents.
i,’7:"

Our most important future work is centered on ways in which agents can acquire and main-
tain models of each other in order to improve their interactions.

References

[Agha 1986] Gul Agha, Actors: A Model of Concurrent Computation in Distributed Sys-
tems, MIT Press, Cambridge, MA, 1986.

[Ahlsen and Johannesson 1990] Matts Ahlsen and Paul Johannesson, "Contracts in Data-
base Federations," in S. M. Deen, ed., Cooperating Knowledge Based Systems 1990,
Springer-Verlag, London, 1991, pp. 293-310.

[Ansari et al. 1992] Mansoor Ansari, Marek Rusinkiewicz, Linda Ness, and Amit Sheth,
"Executing Multidatabase Transactions," Proceedings 25th Hawaii International Confer-
ence on Systems Sciences, Janaury 1992.

[Attie et al. 1993] Paul C. Attie, Munindar P. Singh, Amit P. sheth, and Marek Rusink-
iewicz, "Specifying and Enforcing Intertask Dependencies," Proceedings of the 19th

VLDB Conference, 1993.

- 136-

[Bukhres et al. 1993] Omran A. Bukhres, Ji~san Chen, Weimin Du, Ahmed K. Elmagar-
mid, and Robert Pezzoli, "InterBase: An Execution Environment for Heterogeneous Soft-
ware Systems," IEEE Computer, Vol. 26, No. 8, Aug. 1993, pp. 57-69.

[Buneman et al. 1990] O. P. Buneman, S. B. Davidson, and A. Watters, "Querying Inde-
pendent Databases," Information Sciences, Vol. 52, Dec. 1990, pp. 1-34.

[Cannata 1991] Philip E. Cannata, "The Irresistible Move towards Interoperable Database
Systems," First International Workshop on Interoperability in Multidatabase Systems, Ky-
oto, Japan, April 7-9, 1991.

[Ceri and Widom 1992] Stefano Ceri and Jennifer Widom, "Production Rules in Parallel
and Distributed Database Environments," Proceedings of the 18th VLDB Conference, Van-
couver, British Columbia, Canada, 1992, pp. 339-351.

[Collet et al. 1991] Christine Collet, Michael N. Huhns, and Wei-Min Shen, "Resource in-
tegration using a large knowledge base in Camot," IEEE Computer, Vol. 24, No. 12, Dec.
1991, pp. 55-62.

[Cutkosky et al. 1993] Mark R. Cutkosky, Robert S. Englemore, Richard E. Fikes, Michael
R. Genesereth, Thomas R. Gruber, William S. Mark, Jay M. Tenenbaum, and Jay C. We-
ber, "PACT: An Experiment in Integrating Concurrent Engineering Systems," IEEE Com-
puter, January 1993, pp. 28-38.

[Elmagarmid 1992] Ahmed Elmagarmid,’ ed., Database Transaction Models, Morgan
Kaufmann Publishers Inc., San Mateo, CA, 1992.

[Guha 1990] R. V. Guha, "Micro-theories and Contexts in Cyc Part I: Basic Issues," MCC
Technical Report Number ACT-CYC-129-90, Microelectronics and Computer Technolo-
gy Corporation, Austin, TX, June 1990.

[Heimbigner and McLeod 1985] Dennis Heimbigner and Dennis McLeod, "A Federated
Architecture for Information Management," A CM Transactions on Office Information Sys-
tems, Vol. 3, No. 3, July 1985, pp. 253-278.

[Jin et al. 1993] W. Woody Jin, Linda Ness, Marek Rusinkiewicz, and Amit Sheth, "Exe-
cuting Service Provisioning Applications as Multidatabase Flexible Transactions,"
Bellcore Technical Report (unpublished), 1993.

[Lenat and Guha 1990] Doug Lenat and R. V. Guha, Building Large Knowledge-Based
Systems: Representation and Inference in the Cyc Project, Addison-Wesley Publishing
Company, Inc., Reading, MA, 1990.

[Litwin et al. 1990] Witold Litwin, Leo Mark, and Nick Roussopoulos, "Interoperability

- 137-

of Multiple Autonomous Databases," ACMComputing Surveys, Vol. 22, No. 3, Sept. 1990,

pp. 267-296.

[Newell 1982] Allen Newell, "The Knowledge Level," Artificial Intelligence, Vol. 18, No.

1, January 1982, pp. 87-127.

[Sheth and Larson 1990] Amit P. Sheth and James A. Larson, "Federated Database Sys-

tems for Managing Distributed, Heterogeneous, and Autonomous Databases," ACM Com-
puting Surveys, Vol. 22, No. 3, Sept. 1990, pp. 183-236.

[Smith and Broadwell 1988] David Smith and Martin Broadwell, "The Pilot’s Associate--
an overview," Proceedings of the SAE Aerotech Conference, Los Angeles, CA, May 1988.

[Sull and Kashyap 1992] Wonhee Sull and,~Rangasami L. Kashyap, "A Self-Organizing
Knowledge Representation Scheme for Extensible Heterogeneous Information Environ-
ment," IEEE Transactions on Knowledge andData Engineering, Vol. 4, No. 2, April 1992,
pp. 185-191.

[Tomlinson et al. 1991] Chris Tomlinson, Mark Scheevel, and Vineet Singh, "Report on
Rosette 1.1," MCC Technical Report Number ACT-OODS-275-91, Microelectronics and
Computer Technology Corporation, Austin, TX, July 1991.

[Tomlinson et al. 1993] Christine Tomlinson, Paul Attie, Philip Cannata, Greg Meredith,
Amit Sheth, Munindar Singh, and Darrell Woelk, "Workflow Support in Carnot," IEEE
Data Engineering, 1993.

[Wiederhold 1992] Gio Wiederhold, "Mec[~a[~rs in the Architecture of Future Information
Systems," IEEE Computer, Vol. 25, No. 3, March 1992, pp. 38-49.

[Woelk et al. 1992] Darrell Woelk, Wei-Min Shen, Michael N. Huhns, and Philip E. Can-
nata, "Model-Driven Enterprise Information Management in Carnot," in Charles J. Petrie
Jr., ed., Enterprise Integration Modeling: Proceedings of the First International Confer-
ence, MIT Press, Cambridge, MA, 1992.

Appendix: The Development of Articulation Axioms

Camot provides a graphical tool, the Model Integration Software Tool (MIST), that auto-
mates the routine aspects of model integration, while displaying the information needed for
user interaction. The tool produces articulation axioms in the following three phases:

1. MIST automatically represents an enterprise model in a local context as an in-
stance of a given formalism. The representation is declarative, and uses an ex-
tensive set of semantic properties.

- 138-

ilar to the uses of mediators described in [Wiederhold 1992]. However, we also specify a
means for semantic translation among the agents, as well as an implemented prototype.
Other applications of similar agents, such as the Pilot’s Associate developed by Lockheed
et al. [Smith and Broadwell 1988], handcrafted their agents. This is not possible for large
"open" applications: the agents must be such that they can be developed independently and
execute autonomously.

Our architecture employs two kinds of computational agents: finer-grained, concurrent ac-
tors and coarser-grained, knowledge-based systems. The actors are used to control interac-
tions among the components of the architecture. The knowledge-based agents are used
where reasoning is needed, such as in deciding what tasks should be performed next or how
to repair the environment when a task has failed. This seems to be a natural division of re-
sponsibilities for our example application. However, we took an engineering, rather than a
scientific, approach, in that we did not investigate any alternative architectures.

6 Conclusion

For years, information-system personnel managed corporate data that was centralized on
mainframes. The data was kept consistent, but eventually the amount of data increased to
the point that centralized storage was no longer viable. Also, users wanted a way to share
data across applications and wanted more direct involvement in the management of the da-
ta. So, data then began proliferating onto w0H~stations and personal computers, where users

could manage it themselves. But this resulted in redundancy, inconsistency, and no coher-
ent global view. Hence, there are now attempts to reintegrate data. Users still need to man-
age their own data, which remains distributed, but they and their applications need coherent

global access and consistency must be restored.

This paper describes Camot’s approach to enabling interoperation among enterprise infor-
mation objects, i.e., among suppliers and consumers of information. In this approach, an
enterprise information object is integrated based on articulation axioms defined between
two contexts: the context of a model of the object and a common context provided by the
Cyc knowledge base. The methodology is based on the following principles:

¯ Existing information resources shquld not have to be modified and data should
not have to migrate.

¯Existing applications should not have to be modified.

¯ Users should not have to adopt a new language for communicating with the re-
sultant integrated system, unless they are accessing new types of information.

¯Resources and applications should be able to be integrated independently, and the

- 135-

2. By constraint propagation and user interaction it matches concepts from the lo-
cal context with concepts from t~e common context.

3. For each match, it automatically constructs an articulation axiom by instantiat-
ing axiom templates.

As shown in Figure 11, MIST displays enterprise models both before (lower right) and after
(lower left) they are represented in a local context. MIST enables the Cyc knowledge base
to be browsed graphically (middle right) and textually (upper left), in order to allow the
rect concept matches to be located. It enables a user to create frames in the common context
or augment the local context for a model with additional properties when needed to ensure
a successful match. MIST also displays the articulation axioms (upper right) that it con-

structs. The rest of this appendix describesthe three phases of articulation axiom develop-
ment in more detail. ~""rd,:

In the model representation phase, we represent the model as a set of frames and slots in a
Cyc context created specially for it. These frames are instances of frames describing the
metamodel of the schema, e.g., (for a relational schema) Relation and DatabaseAt-
tribute.

In the matching phase, the problem is: given a (Cyc) representation for a concept in a local
context, find its corresponding concept in the common context. The two factors that affect
this phase are (1) there may be a mismatch between the local and common contexts in the
depth of knowledge representing a concept, and (2) there may be mismatches between the
structures used to encode the knowledge. For example, a concept in Cyc can be represented
as either a collection or an attribute [Lenat’and Guha 1990, pp. 339ff].

If the common context’s knowledge is more than or equivalent to that of the local context’s
for some concept, then the interactive matching process described in this section will find
the relevant portion of the common context’s knowledge. If the common context has less

knowledge than the local context, then knowledge will be added to the common context un-
til its knowledge equals or exceeds that in the local context; otherwise, the common context

would be unable to model the semantics of the resource. The added knowledge refines the
common context. This does not affect previously integrated resources, but can be useful
when further resources are integrated.

Finding correspondences between concepts in the local and common contexts is a sub-

graph-matching problem. We base subgraph!0atching on a simple string matching between
the names or synonyms of frames representing the model and the names or synonyms of
frames in the common context. Matching begins by finding associations between attribute/
link definitions and existing slots in the common context. After a few matches have been

- 139-

View Micro Filter Info

postalAddress

instanceOf
allInstanceOf
makesSenseFor
entryIsA
inverse
entryFormat
allGenlSlots
allSpecSlots

Slot
BinaryRelation
Agent
Addres sTheFormat
postalAddressOf
SetTheFormat
postalAddress
postalAddress

Clear Kill File Misc

*** Using pointer
over panning area,
place object in
graph inspector

L - create new node and place it under pointer

:: :Integration Suggestions Inconsistencies File

> Create Articulation Axiom: #%address II

I

Articulation axiom created for address:

ERMASS35Mt:"
MASSInfo.address
<--->

LodgingOrganization.postalAddress

i

Qaddress

~ ostalAddress

Integer

numberOfFloors

String

Figure 11: MIST displays an information model both before and after it is integrated,
and shows the mappings (articulation axioms)that it constructs

- 140-

identified, either by exact string matches or by a user indicating the correct match out of a
set of candidate matches, possible matches for the remaining model concepts are greatly
constrained. Conversely, after integrating an entity or object, possible matches for its at-

tributes are constrained.

In the third phase, an articulation axiom is constructed for each match found. For example,
the match between a relational attribute phone in model AAA and the Cyc slot phoneNura-
ber yields the axiom

ist (Cyc, phoneNumber (L, N)) ¢:~ ist (AAA, phone (L,

which means that the phone attribute definition determines the phoneNumber slot in

the common schema, and vice versa. Articulation axioms are generated automatically by
instantiating stored templates with the matches found.

-- _ __ _ .

- 141-

