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Abstract

Information sharing among heterogeneous reusable agents in cooperative distributed search
systems can greatly affect the quality of solutions and the runtime efficiency of the system. In
this paper, we first give a formal description of shareable information in systems where agents
have private knowledge and databases and where agents are specifically intended to be reusable.
We then present experiments, run within a mechanical design system for steam condensers, that
substantiate expected performance improvements related to information sharing and assimilation.
Finally, we discuss the practical benefits and limitations of information sharing in application sys-
tems comprising heterogeneous reusable agents. Issues of pragmatic interest include determining
what types of information can realistically be shared and when the costs of sharing outweigh the
benefits.

1 Introduction

Search has always been a central issue in Artificial Intelligence. Search systems are historically
described as comprising three components: a database or state space describing the current state
of the search, a set of operators used to manipulate the database, and a control strategy used for
deciding what to do next, specifically, deciding what operator to apply and where to apply it [1].
When all operators reside in a single program or logical entity and have access to a central store of
knowledge and databases, the search is centralized. In this paper, we are concerned with the problem
of distributed search as described in [10]:

A distributed search involves partitioning the state space and its associated operators
and control regime so that multiple processing elements can simultaneously perform local
searches on different parts of the state space; the (intermediate) results of the local
searches are shared in some form so that the desired answer is produced in a timely
manner.

When information is represented in a modi}il,@;r and logically separable way, the information is
potentially reusable [11]. The computational equivalent to teams of human specialists is the reusable-
agent system, a multiagent system for which the agents can be dynamically selected from an existing
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library and integrated with minimal customized implementation. With reusable agents, diverse types
of information can be applied in situations that were not explicitly anticipated at agent-development
time. The partitioning of the state space in this type of system is induced by the a priori division
of expertise of agents in the agent set.

Throughout the paper, we will augment the:presentation of concepts with examples from a seven-
agent system, STEAM, that performs parametric design of steam condensers. The agents in STEAM each
take responsibility for either: 1) designing some component of a steam condenser; or 2) critiquing
some aspect of the condenser. The agent set in STEAM, A, is

A = {pump-designer heat-exchanger-designer, motor-designer,
platform-designer, vbelt-designer, shaft-designer,
system-frequency-critic}

Figure 1 shows the general form of a steam condenser.
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Figure 1: A Steam Condenser

The agents in this system are globally cooperative, meaning that there is some global measure of
system performance that overrides any local measures. This is generally true for design problems:
there is some measure of the quality of a design that is distinct from the quality of any subcomponents
of that design. An important aspect of globally cooperative systems is that it is not useful for agents
to attempt to maximize their local payoffs for solutions by withholding information from other agents.
The overriding goal of the system is to maximize the global, rather than local, payoff for solutions.
In this situation, sharing information is not restricted by selfish or adversarial motives of agents as
in some multiagent domains [15, 16].

Another example of a globally cooperative multiagent system is found in [3], which describes
the Asynchronous Team (A-Team) approach to solving a class of problems where multiple partially
satisfactory algorithms exist but no completely satisfactory algorithm is known (such as the Traveling
Salesman Problem). In the A-Team approach, each agent represents one of the known algorithms and
the goal is to cooperate in such a way that the agent set produces better results as an organization
than any one agent would produce alone. In this work, the only information shared among agents
is in the form of partial solutions and the emphasis of the research is on how intermingling of the
control flow of the agent organization improves iierformance‘

Our goal in this paper is to show that globally cooperative agents involved in distributed search
can improve their joint performance by assimilating information from the other agents and using this
information to refine their local views of the state space. The development of operators and control
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strategies for distributed search is an important issue and is addressed in [9]. Current research on
languages, ontologies, and protocols for agent interaction, such as KQML [4], complements this work
but focuses on the mechanics of communication rather than on the impact of the communicated
information on problem solving.

In Section 2 we give a formal description of how information sharing among heterogeneous agents
in globally cooperative domains affects the local view of each agent. The next section, Section 3,
presents experimental results from STEAM that substantiate our hypothesis that information sharing
and assimilation can improve system performance, both in terms of solution quality and in terms of
problem-solving efficiency. Section 4 discusses what costs are involved in information sharing and
what the practical limitations of the technology are from an application-system perspective. We
conclude with a summary of the observed results and some speculation as to the significance of these
results within the STEAM system and within the more general realm of multiagent systems.

2 Shared Spaces

When talking about the shared spaces of agents, we distinguish between the local space of an agent
and the composite space of the system. A local space is one that is private to an agent, the composite
space is one that is shared by all agents.! The local solution space of an agent is defined by the
parameters that are assigned values by an agernt in its local solutions. The local search space is
defined by the parameters the agent uses to constrain its local search. Each agent starts out with
a completely local view of search and solution spaces. However, this local view is unlikely to be
effective in finding solutions that are mutually agreeable to all agents (solutions in the composite
space). A primary goal of communication among agents, therefore, is for each agent to end up
perceiving the closest approximation possible to the actual composite search and solution spaces.
In nontrivial cases, it is unlikely that a complete and correct global view can be achieved at every
agent. However, to the extent that its local view approaches the global view, an agent is likely to be
more effective at proposing solutions that will be mutually acceptable.

We will use examples from the STEAM system to illustrate the concepts being discussed. Figure 2
shows a simplified version of the solution space of pump-agent. This figure is simplified both in the
number of parameters and the specification of the parameters’ domains. The set of parameters in
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Figure 2: The Local Solution Space Of Pump-Agent from the STEAM System

the solution space of an agent a will be represented as P, the parameter set of a. The parameter
set of pump-agent, as shown in Figure 2, is {watér-flow-rate,head,run-speed,pump-cost}.

!Spaces may also be shared by some subset of agents, but not the entire agent set [8]. These common spaces are
outside the scope of this paper, however, and we will not discuss them further here,
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The set of legal values for a parameter 6 at agent o is its parameter space, Vg'. To illustrate,
the parameter space of run-speed from Figure 2 is the set of integers {1200,1800,2400, 3000,3600}.
The legal values of parameters can be of different types such as integers, reals, numeric intervals
of the form {(min,maz), min,maz € R}, or discrete labels such as {model-1, model-2,...,model-n}.
A solution in the solution space of o is a tuple s¢ = (p1,p2,...,pn) such that p, € V3 and such
that all constraining relationships on and between the p, € s§' are satisfied. A parameter space may
be constrained by explicit constraints on solutions such as (run-speed > 1200) or through implicit
requirements that are embedded in the functions an agent uses to search for solutions.? As a trivial
example of an implicit constraint, consider the following loop in pseudo-code:

head :== 0;

DO water-flow-rate = 0 to 500
new-head :== calculate-head water-flow-rate;
head :== select-best new~head head;

END LOOP;

An agent using this code implicitly constrains the parameter space of water-flow-rate to be the
set of integers from 0 to 500, although it may not declaratively represent this anywhere. In reality,
functions tend to be more complex and the implicit constraints more difficult to discern. In the above
example, the value of head is tacitly constramed by the implicit constraint on water-flow-rate.
However, the effect of the implicit head constraint on the values that can be assigned to that param-
eter may not be determinable without in-depth expertise.

The existence of implicit constraints must be expected in the general case of expert agents because
much expert knowledge is captured in application systems in a procedural format. If this were not
true, all agents could essentially be reduced to a single inference engine being applied over different
sets of constraints. Implicit constraints cannot normally be shared since they are an integral part
of the agent’s expertise and cannot be easily extricated.®> Unshareable constraints strongly affect
properties of the agent sets in which they are embedded. For example, in [6], Khedro and Genesereth
present a search model in which agents provably converge on a globally satisfactory design if one
exists. However, the property of convergence can only be guaranteed if all constraining information
can be explicitly exchanged. When implicit constraints are added, this desirable property no longer
holds.

Ezplicit (declaratively represented) constraints are those that can be shared and, as will be
discussed in Section 3, this sharing can greatly enhance the effectiveness and coherence of the
agent set. In STEAM, explicit constraints are limited to simple boundary constraints of the form
(water-flow-rate < 800) and (water-flow-rate > 0) that specify minimum or maximum values
for a parameter. In Section 3, we will describe experiments in which we measure the effect of ex-
changing constraints of this form. To explicitly include these constraints in the definition of a solution
space, we use the following notation: let cf be a declaratively represented local solution requirement
of agent o in the set of all explicit solution requirements of c, C*. Then, let the notation {c : s§}
mean that ¢ is satisfied with respect to a particular solution, s%. For example if ¢¢ is (p; < 10)
and sf = (8,5,3,7), then {cf : s¢}. If ¢ is neutral with respect to s§ (it does not constrain any
parameters in s§), it is considered to be satisfied.

2We use the terms solution requirement and constraint interchangeably. The terms are not intended to imply any
specific representation.

31t is possible that some agents may be able to share either code or some form of abstracted explanation of implicit
constraints. However, this requires specialized capablllt;es on the part of both the sending and receiving agents.
Although it is possible to support these capabilities in specific situations, generalized code exchange and assimilation
among heterogeneous reusable agents is not a realistic option.
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Using this notation, the shareable solution space of agent a can be defined by specifying the
parameter set of o, P* and the set of explicit solution requirements over those parameters, C%,
This shareable solution space is an approximation of the actual solution space since it does not
represent any implicit solution requirements that are embedded in the agent. We formally describe
the shareable local solution space of agent a as follows: 6 = {(py,ps,..., pn) | Ve; € C* {c; :
(P1,P2,...,Pn)}. In nontrivial cases, §* will be a superset of the valid solutions of agent « since it
does not take implicit constraints into account.

The Composite Solution Space: Given a set 6f agents, A, and a problem that they are cooperating
to solve, the desired solution must derive its parameter values from the local solution spaces of the
agents. However, as seen in Figure 3, the parameters of the global solution space are not necessarily
the union of all parameters in the local solution spaces . In this figure, the solution space of agent
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Figure 3: Constructing a Global Solution from the Local Solutions of Agents

p (the pump agent) contains the parameters water-flow-rate, head, run-speed, and pump-cost. The
solution space of agent % (the heat-exchanger agent) contains the parameters water-flow-rate, head,
required-capacity, and heatz-cost. Ignoring for the moment the problems associated with determining
the semantic equivalence of local parameter spaces, we find in Figure 3 that the parameters water-
flow-rate and head are common to both agents while run-speed, pump-cost, required-capacity, and
heatz-cost represent parameters unique to individual agents. The global solution space shown in
Figure 3 contains the shared parameters, water-flow-rate and head, the parameter required-capacity
from agent h, and also a unique parameter, cost. Cost is not local to either agent p or agent h,
but represents a transformation on local paramieters of those agents, i.e., the sum of pump-cost and
heatz-cost. To summarize, each parameter in the global solution space is local to either agent p or
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agent h, local to both agent p and agent h, or is a unique parameter whose value can be derived
from parameters local to agent p and/or agent h.

In Figure 3, notice that the constrained set of values (the shaded areas) of the shared parameters,
water-flow-rate and head, are not identical for the two agents. If we are looking only at constraint-
satisfaction problems, problems in which all constraints must be satisfied or no solution can be found,
the constrained global parameter space is the intersection of the constrained local parameter spaces.
When the intersection is empty, no solution exists. Consider a global parameter such as water-flow-
rate from Figure 3 which is the intersection of the local water-flow-rate parameters of the two agents
p and h. To differentiate the spaces, we will denote the global parameter as w®. If w9 is empty, no
solution exists that will be mutually acceptable to agents p and h. If w® is not empty, there are two
possibilities: 1) a mutually acceptable solution, s$ = (p1, p2, p3, ps), exists in the global space with
p1 € wC; or 2) no solution exists in the global space because there are implicit constraints at one or
both agents that exclude any solutions in the explicitly constrained space. Because of the possibility
that implicit constraints exist, it is impossible to tell by looking at w® whether or not a mutually
acceptable solution exists. If one exists, however, it will be in that space.

In constraint-optimization problems, not all constraints must be satisfied in a solution. Instead an
attempt is made to satisfy constraints to the fullest extent possible. Constraints may have differing
amounts of flexibility: some may be hard, meaning that they must be satisfied in any legal solution,
while others may be soft, meaning that they can be relaxed if necessary. Soft constraints again can
have different degrees of flexibility: some can be “softer” than others. In these types of problems,
composite solutions must lie within the intersection of the local parameter spaces under the set of
hard constraints, but not necessarily under all soft constraints. Issues of which constraints should
be relaxed and when are beyond the scope of thi§ paper. The order in which constraints are relaxed
can strongly affect system performance and solution quality. Several researchers have looked at
developing heuristics for constraint ordering [5, 12]. In distributed search, not only is constraint
ordering at a single agent important, but power and ordering relationships among agents must be
considered.

In this section, we have looked at how information sharing can be used to refine local perspectives
to more closely approximate the composite perspective required for effective solution generation. In
the next section, these techniques are empirically investigated through information-sharing experi-
ments conducted in the STEAM system.

3 Empirical Analysis of Information Assimilation

In this section we empirically demonstrate the.cost effectiveness of sharing potentially useful infor-
mation with other agents during distributed sear¢h. Notice that with reusable agents, the usefulness
of shareable information cannot be determined at agent-development time since it is dependent on
capabilities and interests of other agents that may eventually be integrated into a joint agent set.
The experiments described here were run in the STEAM system with seven active agents. In order
for an agent to use information received from an external source to guide its local processing (i.e.,
learn about other agents’ requirements for solutions), the agent must be able to receive constraining
information sent from other agents, translate that information into a locally usable form, and store
the translated information into a local knowledge base, indexed by its source. We call this process
information assimilation. The assimilated information can then be retrieved by the agent to guide
its search for local solutions. We have developed mechanisms that extend or replace the traditional
retrieval capability of an agent to extract relevant constraining information from its knowledge base.
These extensions were developed specifically to enable reusable agents to handle potentially con-
flicting information that has been received from external sources since there is no guarantee that
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shared external information will be consistent with internal information. The goal of the retrieval
process is to find the most restrictive, but non-conflicting, set of known solution requirements for
the current problem using both local and assimilated information. Intelligent conflict-resolution
capabilities are required to select which information should be applied when inconsistencies are de-
tected. Conflict resolution is an important and encompassing problem that has been extensively
studied [7, 8, 13, 14, 16].

The information shared in these experiments was limited to simple boundary constraints: single-
clause constraints of the form (z < n), (z <= n), (z > n), or (x >= n) where z is a shared numeric
parameter and n is some numeric value. For example, pump-agent specifies a hard constraint (water-
flow-rate <= 404.34).

In the experiments reported below, there are two categories of experimental trials: non-assimilation
trials and assimilation trials. For the assimilation trials, three agents instantiate the capabilities re:
quired for information assimilation: the pump, motor, and heat-exchanger agents. The other agents
do not attempt to assimilate information. The reasons for this are explained in Section 4.1. In the
non-assimilation trials, the assimilation capabilities are not active at any agent. The system was run
on each of 100 different feasible problem specifications, once with active assimilation capabilities and
once without.

3.1 Measuring System Performance

We expected to see that the extra costs associated with assimilating information would be balanced,
in the majority of cases, by improvements in performance. To test this hypothesis, we first had to
determine how to measure performance. '

There are two measures of system performance in the STEAM system: run time and solution quality.
In the STEAM domain, solution quality is more important—we don’t mind spending extra time in the
design process (within reason) to get a high-quality design. In other domains, however, this tradeoff is
not always the best one. Also in deference to the design domain, in order to give the user final control
over the design process, the termination policy used was to process until three acceptable solutions
were completed. Solutions were deemed acceptable if they were locally acceptable to all agents and
if the solution cost was below a user-defined threshold. After the completion of three acceptable
solutions, no new solutions were initiated, but existing acceptable partial solutions were completed
before halting. When the system halted, all acceptable solutions were ranked and presented to the
user.

3.2 Solution Quality

We compared the results of running the system when agents assimilated constraining information
and when they did not. In STEAM, solution quality is determined by the monetary cost of each
solution: the minimum-cost acceptable design is considered the most highly rated. The results of
these experiments are graphically summarized in Figure 4. In this figure, the results are sorted into
ascending order based on cost in the assimilation trial.

For the 100 problem specifications tested, the mean cost in the assimilation trials was $8504.77, in
the non-assimilation trials, it was $9020.43. The mean cost improvement with assimilation operators
enabled was 5.72%, meaning that the monetary cost of the most highly rated solution in an assimi-
lation trial was 5.72% lower on average than that in the associated non-assimilation trial under the
identical problem specification. We had hypothesized that enabling assimilation would lower the cost
of a design (thereby improving solution quality) and the experimental results appeared to support
this hypothesis. To statistically confirm this result, we applied a paired difference t-test. In this
type of test, the results from two matched trials are compared—in our case non-assimilation trials
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Figure 4: Solution Quality Results in Assimilation Ezperiments

are compared to assimilation trials performed under the same problem specification. For each paired
trial the difference between the design costs is taken, and then the mean of the differences across
all trials is computed. The null hypothesis in this case is H, : up = 0 (the population mean of the
differences is 0), meaning that the results of the two trials are not significantly different. The alter-
native hypothesis is H, : up > 0 (the population mean of the non-assimilation trial results minus the
assimilation trial results is greater than 0), meanjng that the cost of designs in the non-assimilation
trials are higher than those in the assimilation trials. Applying the paired t-test results in a t-score
of 6.455, which allows us to reject the null hypothesis with a confidence of more than 99%. We can
thus say with a high level of confidence that when STEAM agents apply assimilation capabilities, the
average quality of solutions improves.

An inherent characteristic of the STEAM domain is that good solutions are easy to find under
many problem specifications (the solution space is dense). We believe that there is a significant floor
effect in the domain, meaning that minimum-cost designs are easy enough to find even in the non-
assimilation trials that it is difficult to dramatically improve solution quality. However, the ability to
consistently lower design costs approximately 5.72% by sharing simple boundary constraints is com-
pelling evidence that information sharing and assimilation is an important technique for improving
solution quality in multi-agent systems. Furthermore, if it is the case that a floor effect is influencing
our results, larger improvements could be expected in some domains.

3.3 Run Time

Run time was directly measured in these experiments as the elapsed real time from the invocation
of the system until termination of the system.# The average runtime with assimilation is 121.98
seconds, without assimilation the average runtime is 132.67 seconds. The assimilation runtimes are,
on average, 8.06% lower than the non-assimilation runtimes. However, direct comparison of the run
times of assimilation and non-assimilation trials is somewhat misleading. As discussed earlier, the
termination policy used for the STEAM system is that when 3 acceptable solutions are found, the

“These experiments were run on a TI Explorer. Incremental garbage collection was turned off during the runs. How-
ever, the recorded time includes time spent on process and memory management tasks such as paging, etc. Therefore,
recorded times varied slightly across identical runs.
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system enters a termination phase during which all acceptable partial solutions are completed. The
intent is to finish potentially good solutions that are initiated later in problem solving. This policy is
appropriate for the STEAM domain since solution quality and user participation are higher priorities
than run time. If it is assumed that agents are assimilating information, agents are more likely
to initiate good solutions as information is incrementally accumulated, i.e, solutions get better as
problem solving progresses. One result of this termination policy is that there are likely to be more
acceptable solutions produced per run in the assimilation trials than in the non-assimilation trials
and this is indeed the case. However, this leads to a bias in which direct runtime measures favor
non-assimilation trials. In those trials, the system doesn’t complete as many solutions as it does in
the matching assimilation trial because it isn’t able to focus on mutually acceptable regions of the
composite search space.

To make runtime comparisons more meaningful, we divided the run time of each trial by the
number of solutions completed during that trial, resulting in a runtime-per-solution measure. The
results obtained using this method are graphed in Figure 5.
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Figure 5: Runtimes-per-Solution Results in Assimilation Ezperiments

The runtime-per-solution observations in the assimilation and non-assimilation trials were av-
eraged over the 100 experiment sets for comparison. The average runtime per solution in the as-
similation trials was 11.58 seconds and in the non-assimilation trials it was 19.50 seconds. The
average percent improvement achieved by the assimilation trials over the non-assimilation trials in
runtime-per-solution was 40.62%.

The results presented in this section demonstrate that information sharing can positively affect
both solution quality and system performance in a heterogeneous reusable-agent system. However,
there are costs associated with information sharing and, in fact, the more sophisticated information
sharing becomes, the higher the costs are likely to become. In the following section, we discuss what
costs are involved in information sharing, particularly in the case of sharing among heterogeneous
reusable agents.
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Sharing information has five primary costs:

1. constraint generation costs: generating restricting information that can be transmitted to other
agents to guide their local searches;

2. information determination costs: determining which constraints to transmit to other agents at
a given point in problem solving;

3. transmission costs: the actual costs associated with the physical transfer of messages among
agents;

4. translation costs: translating constraining information from the local language to a sharable
format at the sending agent and then translating the information from a sharable format into
a local language at the receiving agent;

5. local management costs: determining the applicability of the information at the receiving agent
(sorting, filtering, detecting conflicts and locally resolving those conflicts) and managing the
greater volume of information that results from accumulating received information (storage
and retrieval costs).

In the timing analysis described later, we assume that transmission costs (those associated with
the physical transfer of information from one agent to another) are minimal. This is consistent with
the current implementation of STEAM in which all agents reside on the same machine and run in
the same process, but this assumption cannot be extended to the general case. However, in these
experiments, we do not track transmission costs separately, but do break down the other information-
sharing costs. :

Constraint Generation: The ability of an agent to generate restricting information to send to other
agents is highly domain- and representation-dependent. There are three primary types of informa-
tion that can be sent: 1) constraints that are completely independent of the specific problem being
addressed (independent constraints); 2) constraints that are dependent only on the problem specifi-
cation without regard to any particular solution (problem-dependent constraints); and 3) constraints
that are dependent on existing instantiated parameters for a particular solution (solution-dependent
constraints). These different categories are explained in more detail in [8].

In the timing studies reported here, we investigated primarily the use of problem-dependent
constraints. Costs associated with independent constraints are not considered to be part of the normal
cost of developing a solution because these constraints can be generated in a one-shot preprocessing
procedure. In some domains, it may be possible to exploit solution-dependent constraints. For
example, in their work on multistage negotiation, Conry et. al. have developed a formalism that
explicitly represents the interactions of solution-dependent constraints among subplans and uses
these constraints to either derive a solution or,determine that no solution exists [2]. However,
solution-dependent constraint generation and manipulation techniques are difficult in this domain
because of the combinatorics of potential value interactions.

Information Determination: An agent must decide what information to transmit. In STEAM,
agents transmit information directly in response to conflict situations rather than transmitting in-
formation that is anticipated to be potentially useful. Therefore, only constraints that are in direct
conflict with an existing solution are transmitted. The costs of retrieving potentially conflicting
constraints and checking each constraint to see if it conflicts with the existing solution are reported
in the information-determination measure.
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Constraint Translation: In the general case of heterogeneous reusable-agent systems, local knowl-
edge can be represented at an agent in any form that is appropriate for that agent but some mecha-
nism must be provided to ensure that agents are able to understand each other. When translation is
necessary, the cost can vary greatly depending on exactly what is entailed. Some agents may share
a language and have no translation costs, others may translate using simple syntactic procedures,
and others may require complex semantic translation. In STEAM, the local representation of an
agent’s knowledge is unrestricted, but in order for information to be shared, it must be translated
into a globally specified language. All agents use the same simple syntactic procedures for translation
between local and global formats. Translation costs, therefore, do exist but are relatively small.

Local Management: Conflict between local and assimilated information is one factor that poten-
tially mitigates the benefits of information sharing: what happens when an agent receives information
that contradicts something it already knows? With logically heterogeneous agents, it must be as-
sumed that conflict will occur. In the STEAM system, the costs of storing information and managing
conflicts between inconsistent local and external information are categorized as local management.
Other local management costs include costs that accrue from the greater volume of information that
must be stored and retrieved due to assimilated information.

4.1 Observed Information-Sharing Costs in STEAM

In these experiments, the costs attributed to sharing information are broken down into the cate-
gories: 1) constraint generation (for problem-dependent constraints); 2) transmission determination;
3) constraint translation; and 4) local management, as described earlier. The observed costs for each
of these categories over the 100 problem specifications are summarized in Figure 6.
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Figure 6: Information-Sharing Costs in STEAM

The approximate average time spent in constraint generation per problem is 7.3 seconds, con-
straint transmission is .4 seconds, translation is .5 seconds and local management is 4.2 seconds,
for an average total time for information assimilation of approximately 12.4 seconds per run. The
average total percentage of time spent in information sharing in these trials is 10.17%. These fig-
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ures are highly domain-dependent and each of the different areas could be more or less expensive
in other situations. For example, if more elaborate constraints were being generated, the constraint
generation time would be higher and consume a larger proportion of the processing time. Likewise,
if translation were more difficult and involved some semantic interpretation as well as strict syntactic
replacement, it would take more time. The question that must be asked is not whether information
sharing and assimilation takes time—it does. Rather, the questions to ask are:

1. What information should be shared by each agent?

2. For each type of information that can potentially be shared, will sharing it decrease or increase
the processing time of the system?

3. For each type of information that can potentially be shared, will sharing it improve solution
quality in the system?

Although it is possible to empirically answer the second and third questions for a particular
system and, therefore, to tune the system to appropriate tradeoffs in quality and processing time
based on information sharing, the first question'cannot be answered in any general way when agent
reusability is an issue. In the assimilation experiments described above, only three of the seven
agents instantiated information-assimilation capabilities. The primary reason for this is that im-
plementing these capabilities is very difficult. For each agent, the implementation is unique and
requires a thorough understanding of the information requirements and search mechanisms of that
agent. This suggests that it must be done by the agent implementor at the time the agent is built.
The agent implementor cannot be responsible for determining what information will be relevant in
a particular application system since the agent may be embedded in different systems. However,
the agent implementor must determine what internal knowledge will be sharable. Furthermore, the
agent developer must anticipate the types of information that may become available to the agent
during problem solving and build into the agent the capabilities required to effectively apply that
information.

We demonstrate the difficulty inherent in implementing effective information assimilation through
an example. Say that the pump agent receives.a constraint from the heat-exchanger agent that
restricts the run-head parameter of pumps proposed by the pump agent. This constraint is not
directly applicable during the search for candidate pumps because the value of run-head is computed
after the specific pump is chosen: it is an output parameter rather than an input parameter. However,
once a candidate pump has been generated, the run-head for that pump can be computed and the
constraint can be applied as a filtering mechanism to eliminate non-viable candidates. If pump-agent
does apply the filtering constraint, it will still have to iteratively generate and test candidate pumps
locally, but will eliminate infeasible ones before other agents are asked to respond to them. Therefore,
by appropriately applying assimilated information, it can reduce the workload of other agents.

The point here is that it is not only necessary to understand the language of received information,
it is also necessary that the agent know how to apply it. Applying the information appropriately can
be very subtle because it may have to be applied differently than the agent’s own local knowledge,
for example, as a post-search filter as described above. This implies that an agent must anticipate
the kinds of information it may receive and have internal procedures available to effectively use that
information. :

5 Conclusions

In this paper, our objective was to show that the ability of agents to assimilate external information
about the composite search space and use this information to guide local search affects both solution
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quality and system performance. The experiments in Section 3 demonstrated conclusively that this is
so. When external information is assimilated by an agent, that agent is able to focus its search efforts
in areas of its local solution space that are more likely to be contained in the composite solution
space as well. By focusing its search in areas that are likely to be mutually acceptable, the agent’s
work is more productive and will tend to improve both solution quality and system performance.
However, there are implementation and performance costs associated with information sharing and,
in some situations, these costs may outweigh the benefits.

After empirically demonstrating the benefits of information assimilation in multiagent problem
solving, we took a detailed look at the costs of assimilation. We classified the costs of information
sharing as involving: the generation of information to share; the translation of information into and
out of a shared language; the determination of what information to communicate at any given time;
the transmission of information®; and local management (storage, retrieval, and use of potentially
conflicting assimilated information). We observed these costs within the STEAM system and found
them to total approximately 10.17% of the overall runtime. Although this is not a trivial figure,
in this domain, the time spent in sharing information is more than balanced by the productivity
enhancement that comes from focusing on mutually acceptable areas of the composite solution space.

Our experience with information assimilatign suggests some conflicting perspectives on achiev-
ing information sharing in systems of heteroge;i‘éous and reusable agents. On the one hand, the
experiments showed that information sharing and assimilation can be highly effective in improving
system performance, both in terms of solution quality and runtime. On the other hand, we found
sharing and assimilation difficult to actualize because they require in-depth understanding of the
domain characteristics of individual agents. The application-system developer that is responsible
for integrating a set of reusable agents into a system cannot be expected to have a deep enough
understanding of individual agent domains to install the necessary mechanisms into the agents.

Information sharing requires that each agent know: 1) what information it can share; 2) what
information it can assimilate; and 3) how information that is assimilated from external sources
is to be applied. When the mechanisms required for information sharing are installed at agent-
implementation time, the implementor will not know whether shared information will ever be used,
whether anticipated information will ever arrive, or whether functional capabilities for applying cer-
tain types of information will ever be applied. If the agent is implemented with highly sophisticated
information-sharing capabilities, it must be expected that in any given application system, these
capabilities may be beyond what is required or even usable for the domain. The price of generality
goes beyond implementation costs for the agent, since there may be system-wide runtime repercus-
sions based on the transmission of unusable information, or on applying assimilated information that
degrades system performance rather than enhancing it. Future research in reusable-agent systems
should examine questions of balancing the information-sharing capabilities of agents with the benefits
of sharing various types of information. It may be that some general guidelines will emerge that can
be applied by agent implementors to decide what capabilities are likely to be beneficial in an agent.

In conclusion, we have shown that information sharing and assimilation can enhance system per-
formance in the STEAM system. Although there is no basis on which to generalize any specific figures
outside of STEAM, the STEAM domain is typical of a class of small-scale globally cooperative design
domains. This leads us to believe that information sharing and assimilation can improve perfor-
mance in this class of systems. Furthermore, the categories of information-sharing costs described in
this chapter hold across all domains. Both the gmpirical evidence demonstrated here and intuitive
arguments for the benefits of focused search suggest that information sharing and assimilation will

®Although we recognize that transmission of information will add to the cost of information sharing, it was not
included as one of the categories in our experiments. Because of the physical environment in which our experiments
were run, these costs were trivial,
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be effective in more complex domains. However, although information sharing is potentially benefi-

cial,

it is not particularly easy to achieve. Most of the work must be done at agent-implementation

time when nothing is known about the application system(s) into which the agent will be embedded.
The costs of making agents that are highly proficient in sharing and using assimilated information
may outweigh the benefits that accrue from those capabilities. Future work may clarify the bound-
aries of benefit versus hindrance based on typéé of information and the capabilities required by
agents to use those various types. Until that time, however, it is clear that information sharing and
assimilation should be considered a potential source of performance enhancement when designing
distributed-search systems comprising heterogeneous reusable agents.
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