
STRATEGIES FOR DISTRIBUTED CONSTRAINT
SATISFACTION PROBLEMS

Q. Y. Luo P.G. Hendry J.T. Buchanan
Department of Computer Science, University of Strathclyde

Glasgow G1 1XH, UK
qyl@cs.strath.ac.uk pgh@cs.strath.ac.uk iain@cs.strath.ac.uk

May 27, 1994

ABSTRACT

Constraint satisfaction problems are important in AI. Various distributed and parallel com-
puting strategies have been proposed to solve these problems. In this paper, these strategies are
classified as distributed-agent-based, parallel-agent-based, and function-agent-based distributed
problem-solving strategies. These different strategies are presented and discussed. Parallel-agent-
based strategies are found to be very versatile. Computational experience is presented.

1 INTRODUCTION

A large number of problems in AI and other areas of computer science can be viewed as special
cases of the constraint satisfaction problem (CSP). Some examples [13] are machine vision, belief
maintenance, scheduling, temporal reasoning, graph problems, floor plan design, the planning of
genetic experiments, and satisfiability.

CSPs have three basic components: variables, values and constraints. The goal is to find an
assignment of values to variables, from their separate domains, such that all the constraints are
satisfied.

Many sequential algorithms for solving CSPs have been developed. However, in the real-world,
we may have to deal with distributed CSPs. There are two main reasons to address distributed CSPs.
Firstly CSPs themselves may be logically or geographically distributed. These problems may best be
solved by a multi-processor platform. Secondly parallel or distributed computers may provide more
computing power if used effectively and this is important in considering the amount of computation
required to solve CSPs.

A distributed constraint satisfaction problem (DCSP) is defined as a CSP in which multiple
agents (software processes) are involved. DCSPs are important sub-problems in distributed artificial
intelligence (DAI). As described by [29], various DAI problems can be formalised as DCSPs, and
turn DCSPs can provide a formal framework for studying various DAI methods.

2 DISTRIBUTED ALGORITHMS: AN OVERVIEW

In some special classes of CSPs, such as the problem of labeling a 2-D line drawing of a 3-D object,
there exists a fast parallel algorithm [12] that executes in time O(log3 n) with 0((m + n3)/log
processors on an exclusive-read exclusive-write (EREW) parallel random access machine (PRAM),
where n is the number of variables and m is the number of constraint relations. However, in this
paper, the DCSPs addressed will mainly be general problems to be solved on more practical MIMD
machines and so algorithms for special classes of DCSPs will not be covered.

DAI is viewed by [1], [11] and [10] as providing a strategy for problem-solving. Where the prob-
lem is naturally distributed, it can be divided among a number of agents, and a control regime has

- lli{~-

From: AAAI Technical Report WS-94-02. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved.

P1 P2 P3

v, v, v, v3 v, v3

Figure 1: A DAB example for the 3-queens problem

responsibility for co-ordinating the problem-solving activities of the respective agents. Different con-
trol regimes, such as centralised, discentralised, and other co-ordinating mechanisms may constitute
different DAI methods.

On the basis of [1] and [10], parallel artificial intelligence (PAI) involves the application of parallel
computing resources to a problem without a restructuring of that problem. The purpose of PAI is
to achieve a (linear) speed-up in response to applying multiple processors to a given problem.

However, for any particular problem, which glethod (different DAI methods or PAI) is the best?
There is little literature to answer this question. Most research papers deal solely with one of them,
without a comparison between methods.

In this paper, DAI is defined as being concerned with problem-solving situations in which several
agents can be used (together or separately) to achieve a common set or separate sets of objectives.
This is intended to encompass all of the classes above. As a consequence, different distributed
problem-solving methods can be compared without losing generality.

The structure of a distributed constraint satisfaction algorithm is dependent on which DPS
strategy it relies. Generally, the basic elements of DPS strategies related to the nature of dis-
tributed computing and the hardware are important, such as control structures (centralised or de-
centralised), search space types (shared or separated) and communication (message-passing or shared
memory). By considering these, the most common DPS strategies to solve DCSPs may be classified
as distributed-agent-based (DAB), parallel-agent-based (PAB) and function-agent-based (FAB).
Different DPS strategies may involve different qo0trol structures, problem spaces and communication
methods.

One significant difference among these three methods is whether conflicts may exist among the
problem-solving agents. In fact, only in the DAB strategy does there exist the possibility of conflicts
among agents, due to the shared search space. To guarantee the soundness and completeness of
algorithms, there is a need for an inter-agent backtracking or negotiation mechanism. Therefore,
co-operation among agents is necessary in this strategy. As is to be expected, this inter-agent back-
tracking or negotiation mechanism may cause a communication bottleneck, or complexity problems
and delays due to synchronisation of the actions of agents.

2.1 Distributed-agent-based Strategy and Algorithms

In the DAB strategy (Figure 1 1) , the problem is distributed, based on the variables. Each agent
is in charge of one or more variables and their domains. A variable is controlled by only one agent
attempting to assign it a legal value from its do/nain.

The search space is shared among agents and the action of one agent may affect other agents
directly or indirectly because of the constraints acting between variables.

Difficulties arise because of the asynchronous behaviour of agents. Other problems include dis-
tributed memory (no shared global data), infinite processing loops and communication overheads
(which can be very high in many cases).

aThis is a problem of placing 3 queens on 3 ̄ 3 chess board (i.e. three variables and each variable I,] has a domain
- a set of dij) so that no two queens attack each other. In these figures, each processor (Pk) can place queen(s) on
part of the chess board marked with shadow. In Figure8~ yC stands for the forward check function

For DAB algorithms, control mechanisms to resolve conflict can be centralised (for example by
way of a total linear order) or decentralised (by way of negotiation).

The total order is an attractive method to control both search and conflict resolution because
of the ease of implementation and similarities to sequential algorithms. However, it also introduces
several problems of its own, such as communi~e~tion overheads and load imbalance due to the fixed
search order where the higher order agents may become bottlenecks.

A DAB system that does not have a centrMised control strategy requires some other control
method that does not require global knowledge. Control mechanisms within such a negotiation
strategy are complex, due to lack of global knowledge, and they may introduce a large overhead in
problem-solving.

In this section, we examine mechanisms to support centralised and decentralised structures.
A Root Agent Algorithm: A root agent algorithm is reported in [25]. This algorithm collects

all information on variables, their domains and constraints in a special agent - the root agent. Since
the root agent has all the information on the problem space, it can find a solution. The centralised
mechanism is able to use any sequential search algorithm to solve DCSPs. On the other hand,
this algorithm does not fully exploit parallelism and communication with the root agent can be
bottleneck.

A Distributed Hill Climbing Method;~A distributed hill climbing method is introduced in
[21]. This method irrecoverably changes variable values to remove constraint violations, and does
not perform backtracking. In this algorithm, each agent asynchronously instantiates its variable so
that its own constraints are satisfied. Here the algorithm is not guaranteed to find a solution, since
no backtracking is performed.

Depth First Search with A Self-stabilising Protocol: In [8] the network consistency prob-
lem is tackled by using depth-first search with backjumping, but [4] argued that [8] is not self
stabilised since the system may not settle to a legal set of configurations from any initial configu-
ration. Both depth-first search with backjumping and a self-stabilising protocol for a connectionist
architecture are used in [4].

Multistage Negotiation: Instead of a self-stabilising protocol, [5] suggested the use of a mul-
tistage negotiation strategy to solve DCSPs. A co-operation paradigm and co-ordination protocol
for a distributed planning system consisting of a network of semi-autonomous agents with limited
internode communication and no centralised cQntrol is presented. A multistage negotiation paradigm
for solving DCSPs in this kind of system has l~n developed. Nonetheless, [5] did not clearly point
out how to prevent infinite processing loops and possibly potential message complexity.

An Asynchronous Backtracking Method: An asynchronous backtracking method to ad-
dress DCSPs was introduced in [29]. It performs the distributed search concurrently. It manages
asynchronous change by a method called context attachment where an agent must include its current
beliefs about other agents when sending a conflict-related message. To avoid infinite processing loops
[29] used a total order among agents. The use of a total (or linear) order unifies the search space
even though the algorithm is on a distributed platform. By using the idea of a total order, [29]
adopts a centralised DPS control structure, although the total order may appear "unfair" to agents,
compared with the almost uniform protocol in [4]. It is quite straightforward and easily realised on
MIMD machines. In its absence, it is necessary to establish and implement protocols among agents
to avoid infinite processing loops and to resolve any conflicts between agents, and this may bring a
large increase in message complexity.

However, as the searching order is fixed ~d the agents with certain orders, for example the
higher orders, may have to perform more search steps and process more messages than other agents,
the total order causes problems with load balancing and with message passing volume, and [29] [26]
failed to address either of these problems.

In [28] two heuristics for increasing the search efficiency of the asynchronous backtracking algo-
rithm are introduced. By using heuristics, the total ordering can be changed partially. The heuristics
are rain-conflict heuristic (when selecting a value for a variable, select a value that minimises the

- 1~-

number of conflicts) and change-oldest heuristic (when selecting a variable to change from conflicting
variables, select a variable that has not changed for the longest period). An upper bound may be
used to control the range of the order that can be changed.

An upper bound on priority values is necessary to guarantee that this algorithm does not involve
an infinite processing loop. If the priority values of all variables reach this upper bound, the algorithm
becomes identical to the basic asynchronous backtracking algorithm (with a total order) and performs
an exhaustive search until a solution is found.’~

Discrete event simulation in [28] shows, by comparison of the search steps, that the asynchronous
backtracking algorithm can solve large-scale problems which otherwise cannot be solved within a
reasonable amount of time.

However, [28] did not point out the potential message complexity this algorithm may cause. When
it processes each backtrack, it may change the ordering of variables and then must propagate this
new ordering around the network. Because of the changing order, this asynchronous backtracking
algorithm takes on the features of a sequential backtracking algorithm, since all the distributed tasks
based on the old variable ordering are performed to be later undone.

Distributed Extended Forward Checking while Conflict-directed Backjumping: A set
of distributed search algorithms is presented in [15] [16]. These include distributed forward check-
ing while backtracking (DFC-BT), distributed forward checking while conflict-directed back jumping
(DFC-CBJ) and distributed extended forwar@ checking while conflict-directed backjumping (DEFC-
CBJ). These use the context attachment and total order ideas of [29]. The algorithms address
methods for reducing the amount of communication required and ways in which redundant compu-
tation can be avoided. A simple load balancing strategy is also proposed but is not sufficient to solve
the imbalance caused by using the total order.

To avoid unnecessary search paths and consistency checks DEFC-CBJ uses distributed extended
forward checking which records nogood values (causing conflict) and uses them during search. It also
employs a conflict-directed back jump method [22], so when resolving conflicts it attempts to find the
root cause of any conflict.

An important part of the algorithm of [15] [16] is its ability to cope with dynamic changes within
a DCSP. Many real-world problems are dynamic and it is desirable not to lose valuable information
or, even worse, to have to start search again when the problem changes slightly. In [27] a similar
method called the asynchronous incremental relaxation algorithm is reported. It uses constraint
relaxation in DCSPs by way of nogoods. ~ ,,~’,

A Hybrid Search Algorithm: Both [29] and [15] made the simplification of having one agent in
charge of only one variable. This leads to an increase amount of communication as there are no local
CSPs to be solved and the ratio of computation to communication time decreases. Furthermore,
due to the total order, it is very difficult to use the dynamic variable ordering heuristic to assist
distributed search. However, both [15] and [21] noticed that a (static) variable ordering does have
a marked impact on the performance of distributed asynchronous backtracking. Dynamic variable
ordering may have a large impact on the performance of distributed search.

An alternative scenario is developed in [17] and [28] where each agent is in charge of several
variables. A mapping mechanism is demonstrated in [17], with several variables per agent meaning
that both distributed search algorithms (between agents) and sequential search algorithms (within
each agent) may be used. In turn this allows heuristic methods (attempting to guide search towards
a solution) to be used locally, where these methods may have already been developed for sequential
algorithms.:"

To even the load balance problem between processors and speed up the search, this hybrid
(distributed and sequential) search algorithm also supports the backtrack-guided overstep search.
When lower order agents become idle, they perform overstep search. This means that they continue
to generate partial local solutions based on the current beliefs about other agents. These partial

- 189 ~-

P1 P2 P3

v, v, v, v, v, v,

Figure 2: A PAB example for the 3-queens problem

solutions may then be referenced when a higher agent backtracks. If there is a valid partial solution,
the agent sends it out, if not, the agent again searches based on backtracking information.

Distributed Constrained Heuristic Search: In [24] a distributed constrained heuristic search
method is presented to address DCSPs. It provides both structure and focus in individual agent
search spaces to ’optimise’ decisions in the global space. The method achieves this by integrating
distributed constraint satisfaction and heuristic search. The notion of textures that allow agents to
operate in an asynchronous concurrent manner is introduced. The employment of textures coupled
with distributed asynchronous backtracking, a type of distributed dependency-directed backtracking,
enables agents to instantiate variables in such a way as to substantially reduce backtracking. However,
this asynchronous backtracking method does not guarantee the completeness of the algorithm.

2.2 Parallel-agent-based Strategy an’d Algorithms

In the PAB strategy (Figure 2), the problem is distributed, based on the domains of the variables.
Each agent may have a complete search space or a part of the complete search space. Each complete
or partial search space involves all variables and is independent of other search spaces. Each processor
is therefore solving a unique CSP problem and no communication is necessary.

A PAB strategy has several advantages. If the problem is not naturally distributed, it can still
be addressed. Solving the same problem using DAB may cause serious communication bottlenecks
and load balance problems. PAB can directly use any sequential CSP algorithms, needs little com-
munication and can use established global heuristic search strategies.

However, PAB may have difficulty if each agent has only a partial disjoint search space and the
problem is over-constrained. In this case, it is difficult to establish the cause of conflict due to a lack
of logical links among different search spaces. After all agents fail to find any solution, the algorithm
may need to check all conflicts again to find the true cause of failure. This approach may not be
suitable for problems that are geographically distributed.

Some strategies used in PAB are now developed.
Parallel Searching Separated Spaces: In [2] the search space is divided among a set of

processors each executing a sequential CSP algorithm. In this case, forward checking (FC) and the
dynamic variable ordering heuristic is used although any other sequential algorithm could replace it.
Dynamic load balancing is also addressed through dividing the search space. Redundant work may
however still be done because one processor does not make use of the search information obtained
by another during search.

It seems that [2] and [29] are two extremes. In [2] communication is not used to aid search
whereas [29] relies heavily on its communication of partial results, at a heavy cost to performance.
In [17], it tries to find a middle ground where the parallelism of [2] is used along with a limited
sharing of partial results to prune the search space.

The presentation of [23] is similar to [2]., ~t compares simple (standard) backtracking with
heuristic (dynamic variable ordering) backtracking parallel search method.

Parallel Search Separated Spaces while Sharing Information: It is widely believed that
a group of co-operating agents engaged in problem-solving can solve a task faster than either a single
agent or the same group of agents working in isolation from each other. Thus in [3] a blackboard is

- 190-

P2

P1 FC(1,2)

v, !,, FC(1,3)

Figure 3: A FAB example for the 3-queens problem

applied to share useful hints among agents. Hints are potentially useful information such as partial
results, and can be used to guide the selection of search paths.

In [17] the nogood mechanism (reported in [6] and [15]) is used to share information between
agents who have different search spaces. A nogood contains a (variable, value) pair that is disallowed
due to conflict. The reason for the conflict is also stored so that, if this reason no longer holds (i.e.

the search state that caused the conflict changgs) the nogood value can be released. If there is no
change in the conflicting variables then the nogood is not released. This allows the search space to
be pruned. When there is no conflict variable left in a nogood, its value will be not released. This
special kind of nogood is called a dead-end. Agents share these dead-ends and make decisions based
on the current dead-end information. When an agent receives a dead-end from another agent, it
will check that dead-end based on its belief. If it is also a dead-end to the agent, it will prune the
disallowed value from its domain to reduce search.

Dynamic Load Balancing by way of Dead-Ends: In [19] a method is proposed for sharing
partial information. When performing dynamic load balancing, instead of sending out half of the
remaining search space, this method sends out newly built dead-ends and other dead-ends. The newly
built dead-ends are used to split the remaining search space, and other dead-ends are useful partial
search information. Any values in these dead-ends will not appear in the solution. Since the two
agents search different parts of the same search space, there will be no problem in them sharing and
using these useful dead-ends.

Compared with the method of sending out half the available search space [2], this method has
some advantages. It needs less communication bandwidth, as it only sends out a few dead ends,
not the complete search space. There is no change to the original search space. The disjoint search
spaces are created by building dead-ends, and so the search space that is given away is already
pruned since the nogoods are still valid. As a consequence, there will be no need to do redundant
search (by different agents), unlike the case of directly sending out half the remaining search space,
where pruning information is lost.

2.3 Function-agent-based Strategy and Algorithms

A FAB strategy attempts to use parallelism by using spare processors to perform repeated tasks. For
example, if search is taking place on one processor using the forward checking sequential algorithm
then spare processors can be used to perform the actual forward checking (the domain filtering)
parallel (Figure 3). This will, of course, incur;some overheads starting new processes but these will
be small if the problem space is large. This filethod is only suitable for shared-memory machines
where the information in a parent process can be seen and manipulated by its children.

- 191-

A FAB algorithm is presented in [18]. The domain filtering is performed in parallel. If a domain
becomes empty then the variable will change its value or backtrack without waiting for other forward
checks to finish.

The main problem with this approach is the overhead involved in starting processes to perform
the domain filtering. If the problem size is large, requiring much filtering, then this overhead is
relatively small.

3 COMPARISON OF REPRESENTATIVE ALGORITHMS

This section presents some computational results obtained by implementing these DCSP algorithms
on a SEQUENT SYMMETRY using the C programming language, and a MEIKO Computing Surface
(a transputer array) using CSTools.

Two sets of results are presented. The first is for the Zebra problem. This is described in [7] and
[22] and is composed of 25 variables that correspond to five groups (each containing five variables)
in which the variables have constraint relations between each other and additionally there are a
number of constraint relations between the variables in different groups. The order of the variables
is important to the efficiency of search. For this reason, some of the results that follow are the
average values taken over all ordering permutations of the groups (5! = 120 permutations in total).
The order within each group was fixed. In this paper, we use the definition of the Zebra problem in
[22] that has 11 solutions. The density p2 of the Zebra problem is 0.20.

The second problem is the well-known n-queens problem. This is the problem of placing n queens
on an n ¯ n chess board so that no two queens attack each other. Although this is quite an ’artificial’
problem, it represents a ’worst case’ scenario where every variable has a constraint with all other
variables. The density p of the n-queens problezn is 1.0.

The computational results are obtained mainly from the various representative distributed or
sequential algorithms [15] [14] [18], based on the algorithm forward-checking while conflict-directed
backjump (FC-CBJ) supported by nogoods (NG) and the postponed revision (PR) mechanism
cept that DEFC-CBJ [15] does not support postponed revision). The main objective here is to
examine these different (sound and complete) algorithms with the same effective core search meth-
ods on the same problems. This is by no means to say that the observations in this paper will stand
for all other cases. However, they may give us a partial integrated view of the merits and weaknesses
of each of these algorithms and, therefore, help us to find the best method for certain problems.

In the tables, the algorithm extensions used are" HY for a hybrid using both a distributed search
algorithm and a sequential search algorithm in DAB algorithms, SN for sharing nogoods among
different processors in a PAB search strategy, DO for dynamic variable ordering (in DAB algorithms,
dynamic variable ordering is only performed locally) and OS for overstep search. All PAB algorithms
are supported by a dynamic load balancing mechanism. In Table 1 all the values (except time) are
averages over 120 runs of the algorithms, and the time includes all overheads such as the initial
propagation of constraints. In these tables, NC stands for the number of consistency checks, NB for
the number of backtracks and NM for the number of messages. The ratio in the tables is the rate of
useful partial solutions to all generated partial solutions performed by overstep search algorithms. In
Table 4, LB stands for the average CPU usage 3 (i.e., load balance) observed by the UNIX function
call time. In the Tables 4 and 5, the algorithms find all solutions for the single ordering Zebra
and n-queens problems. Ssimple and Esimple refer to the speedup and efficiency in Table 4 for the
same problems and the same algorithms with only simple relation check operations. In the tables
the abbreviation ALG is used to denote the base algorithm FC-CBJ-NG-PR and the times were
obtained using the time system call under UNIX, in units of seconds. Most performance terms such
as speedup and efficiency used are on the basis of [9].

2Density p = ~, where c is the number of constraints within the problem and n is the number of variables.
3LB = the CP in total ~ (:]

the number oJ CPUs ~’

- 192-

3.1 Speedup and Efficiency

Table 1: Comparison of Algorithms for the Zebra al ainst 120 orders
Algorithms I NC] NB I NM] Ratio I Time[s] [S] E

To find the first solution
Sequential ALGs (one processor)A,o 163o i ,~ i n,~ I n,~I 1o~
ALG-DO 268 0 n/a n/a 17
Distributed-agent-based ALGs (three processors)
DEFC-CBJ 3356 555 2859 n/a 379
HY-ALG 2036 155 363 n/a 154
HY-ALG-DO 1022 49 ,154 n/a 74
HY-ALG-DO-OS 1457 130 169 0.24 79
Parallel-agent-based ALGs(three processors)
ALG 2155 130 n/a n/a 66
ALG-SN 2012 123 n/a n/a 58
ALG-DO 816 17 n/a n/a 30
Function-agent-based ALGs(three processors)
ALG-DO I 270 0 In/a I ,,/a I

To find the all solutions

0.045 0.015
0.11 0.037
0.23 0.077
0.22 0.73

0.26 0.086
0.29 0.098
0.57 0.19

20 I 0.85 I 0.28
Sequential ALGs (one processor)
ALG

17780

83o I n/a I n/a
ALG-DO 2322 270 n/a n/a
Distributed-agent-based ALGs (three processors)
HY-ALG 10994 1113 2090 n/a
HY-ALG-DO 8942 801 1542 n/a
HY-ALG-DO-OS 11626 1414 1520 0.46
Parallel-agent-based ALGs (three p,ocessors)
ALG 9305 905 n/a n/a
ALG-SN 8570 874 n/a n/a
ALG-DO 4059 425 n/a n/a
Function-agent-based ALGs (three processors)
ALG-DO I 2363 I 270] n/a I n/a

692 0.30 0.10
549 0.38 0.13
708 0.29 0.098

298 0.69 0.23
251 0.82 0.27
160 1.29 0.43

I 221 10.9410.31

Table 2: Com)arison of A] orithms for the n-~ ueens
Algorithms I NQ INS I NC [N’B I NM] Ratio I Time[s] I S

Sequential ALGs (one processor)

Distributed-agent-based ALGs (three professors)
HY-ALG-DO 8 all 18341 1540 2542
HY-ALG-DO 15 one 19937 886 1228
HY-ALG-DO-OS 8 all 17418 1627 2355
HY-ALG-DO-OS 15 one 19057 1021 1375
Parallel-agent-based ALGs(three processors)~,,~_oo:~1

~, i ,:::: [,o~ j .,
ALG-DO one 41 n/a
Function-agent-based ALGs (three processors)ALo-oo ~l :" I 772 I 1°°~ I n/:
ALG-DO 15 one 14 n/a

n/a 11.10 0.42 0.14
n/a 12.60 0.39 0.13
0.88 9.07 0.54 0.18
0.64 10.72 0.46 0.15

i~,~I 28 11.7010.58n/a 1.2 0.49 1.6

In,al 69 1071r0~n/a 0.93 0.63 0.21

The sequential runtime Ts is defined as the time taken to solve a particular problem instance
on one processing element. The parallel runtime Tp is the time taken to solve a particular problem
instance on an ensemble of P processing elemen~ts. The speedup S achieved by a parallel system is

- 193-

Table 3: FAB Algorithm and Sequential Algorithm for the 25 queens problem to find
the first solution

Algorithms NP NC NB Time[s] S E
Sequential ALG-DO 1 9246 184 3.96 1 1
Function-agent-based ALG-DO 3 9408 185 2.89 1.37 0.46

defined as gain in computation speed achieved by using P processing elements regarding a single

processing element.

s, = TslT,,

The efficiency E denotes the effective utilisation of computing resources.
speedup to the number of processing elements used.

It is the ratio of the

E = S/P

From Tables 1, 2 and 3, we may make the following observations on speedup and efficiency,
related to each method:

a) To find the first solution to the problems, DAB algorithms perform no better then their sequen-
tial equivalents. DAB algorithms simply perform more checks, backtracks and delayed backtracks
(i.e. inter-agent backtracking that is heavily dependent on the communication complexity) and

spend much time communicating. For PAB algorithms, though they may require time to propagate

constraints among processors (this is an overhead that cannot be avoided but which would become
insignificant for larger search spaces), when the problem is hard enough, they may out perform their
sequential equivalents. .:

b) To find more or all solutions, PAB algorithms will perform better than their DAB and se-
quential equivalents. The reason for this is that a parallel agent based algorithm exhausts the search

space using several processors, each in a different part of the search tree, whereas the sequential

algorithm must exhaust the search space alone. PAB algorithms also use little communication and
use the parallel computing power in a balanced way.

c) For DAB, when the ratio of useful partial solutions to all generated partial solutions is higher,
the search speed of the overstep search algorithm may be faster than its equivalents without the

overstep search mechanism, especially if only one solution is required. However, when the ratio is
lower, the overstep search algorithm may be a little slower. The density of the problem may have

a significant impact on the over-step search ratio. When the density of the problem is high, the
overstep search algorithm has a better chance of speeding up search. This gives us a hint that the
over-step search algorithm should only be used when the problem has a ’high’ density.

d) Furthermore, in these tests, PAB algorithms are generally faster than DAB algorithms for

solving the problems. A reason for this may be that the problems tested are not naturally distributed.
When DAB algorithms are used to solve them, the problems may cause serious communication

bottlenecks and load imbalance.
e) There is little difference in checks and backtracks performed by the sequential and FAB algo-

rithms. However, the latter may perform better due to parallel domain filtering.

Initial tests [18] using a negotiation strategy to control conflict resolution showed that the extra
message passing incurred, and overheads from mechanisms to prevent problems such as processing

loops, caused the algorithm to take considerably longer to find a solution than other DAB methods.
In fact, for the 120 orders of the Zebra problem the negotiation algorithm was between 8 and 12

times slower than DEFC-CBJ alone. It is also very difficult, when not using some global knowledge,

to have an algorithm that will find all solutions to a problem.

- 194-

12000

I0000

8000

6000

4000

2000

0
1

Figure 4: Load Balancing for Distributed and Parallel-agent-based algorithms
i

3.2 Parallel Processing and Search Overheads

Table 4: Parallel Processing and Search Overheads
Algorithms I Prob I NC I NB I NM] Time[s] I S I E I LB I So
Sequential ALGs (one processor)

I+r+ 111
Distributed-agent-based ALGs (three processors)
HY-ALG-DO ZebraI single 563 775 4.64 0.41 I 0.14 I 51.9 2.54

8-q [::::11540254211.100.440.1547.91.44HY-ALG-DO I
Parallel-agent-based ALGs (three processors)
ALG-DO 291 n/a
ALG-DO I single Zebra

Function-agent-based ALGs (three processors)
ALG-DO
ALG-DO I single Zebra

1.9 1 0.3 46.8 I 1.12
2.8 1.75 0.58 70.7 1.04

2.590.73024 r 75 11.02 I
6.9 0.71 0.24 89.4 1

Table 5: Comparison of Algorithms for problems with complicated checks
Algorithms I Prob I NC I NB I NM I Time[s]] S I E I S~i.~p~e I E~imp,~
Sequential ALGs (one processor)
ALG-DO
ALG-DO I single Zebra [l J+ n/a I

10.16
48.23

Distributed-agent-based ALGs (three processors)
HY-ALG-DO] single Zebra 5538 I 518 I 682 I
HY-ALG-DO S-queens I 17955 11485~12409 I

Parallel-agent-based ALGs (three processors) ALGDO IsingloZebrat2:fi/3l/0~:0[n/a[575
ALG-DO 8-queens n/a 18.25
Function-agent-based ALGs (three processors)
ALG-DO
ALG-DO] single Zebra n/a I 8.8847.83

12.69 0.8 0.27 0.41 0.14
51.87 0.93 0.31 0.44 0.15

I1"77 08811.75 I0.24

1.01 0.37 0.71 0.24

Processors executing a parallel or distributed search Mgorithm incur a number of overheads.

These include the communication overheads, idle time due to load imbalance and contention over

shared memory structures. Clearly, due to these overheads the speedup should be less than P, if

both the sequential and parallel formulations of an algorithm do the same amount of work.

- 195-

Table 6: Scalability of DAB on MEIKO Computing Surface for DEFC-CBJ to find the
first solution of Zebra against 120 orders

Processors 1 5 15
NC 2752 3140 3599
NM 2791 2904 3698
Time[s] 7.844 2.869 5.030
S 1 2.73 1.56

Table
Methods One Agent
Algorithms ALG-DO
Processors

7: Scalability of All~orithms on SEQUENT
Distrlbuted-agent Parallel-agent Function-agent

ALG-DO

1 2 I 3

NC
NM
Time[s]
S

268

n/a
17
1

NC 2322
NM n/a
Time[~ 207
S 1

NC 795
NM n/a
Time~] 0.6
S 1

NC 12702
NM n/a
Time[~ 4.9
S 1

IIY-ALG-DO ALG-DO
2 I. 3 2 I 3

Zebra (first solution) against 120 orders
646 1022 686 816
50 154 n/a n/a

49.48 74 36.66 30
0.34 0.23 0.46 0.57

Zebra (all solutions) against 120 orders
7386 8942 3920
593 1542 n/a

506.74 549 217.33
0.41 0.38 0.95
8-queens(one solution)

1097 1138 280
58 158 n/a
1.34 1.35 0.8
0.45 0.44 0.75

8-queens(all solutions)
18195 ;q8341 12702
878 2542 n/a

10.73 11.10 3.73
0.46 0.44 1.31

270 270

n/a n/a
23.26 20
0.73 0.85

4059 2363 2363

n/a n/a n/~
160 222.92 221

1.29 0.93 0.94

420 795 795
n/~ n/~ n/~
0.89 1.30 1.18
0.67 0.46 0.51

13184 12702 12702
n/a n/a n/a
2.8 6.9 6.9
1.75 0.71 0.71

For search algorithms, the amount of work done by a parallel formulation is often different from
that done by the sequential formulation, because the space searched by them may be different.

The amount of search in CSPs or DCSPs can be observed, without loss of generality, by the
number of consistency checks performed by search algorithms, although consistency checks are only
a part of the total search work. In this section, the amount of work refers to the number of consistency
checks.

Let the amount of work done by a sequential processor be W. Now, if the total amount of work
done by P distributed processors is Wp, then the~ search overhead So of the parallel system is defined
as the ratio of the work done by the parallel formulation to that done by the sequential algorithm:

So= wp/w
From Table 4, we can see DAB methods suffer higher communication overheads and So than

the other two methods. Messages among processors and the search overheads of DAB algorithms
effectively waste a great deal of CPU time.

Figure 4 shows the load balance curves of a DAB algorithm and a PAB algorithm to solve the
Zebra and 8-queens problems. When solving these problems, a DAB algorithm causes a large load
imbalance among processors. While the higher order processors may have too much work (consistency

checks) to do, the lower order processors havel~.ost nothing to do.
’\

’,(.

Table 8: Scalability of PAB ALG-DO on SEQUENT for
Processors 1 2 3

1P-queens (one solution)
NC 2113 2540 1782
Time[s] 1.65 1.27 1.20
S 1 1.3 1.38

12-queens (all solutions)
NC 5311326 5311364 5315931
Time[s] 2458.33 1231.46 827.28
S 1 2 2.97

larger problems

The above may further explain why, in most cases, PAB algorithms and FAB algorithms out
perform DAB algorithms. They have less parallel processing and search overheads.

Parallel search involves the classical communication versus computation trade-off. As we dis-
cussed above, search overhead in many distributed and parallel algorithms is greater than 1, imply-
ing that the parallel form of the program does more work than the sequential form. We can reduce
the search overhead for such formulations at the cost of increased communication, and vice-versa.
For instance, if a search space is statically divided among different processors which independently
search them without communicating, then they together will often perform much more search than
one processor. This search overhead can often be reduced if processors are allowed to communicate,
such as passing dead ends among processors.

In both the Zebra and n-queens problems, the consistency checks are relatively simple. However,
in the real-world, the consistency checking can be complicated, such as solving differential equations.
The definition of a constraint varies enormously, as pointed in [20]. It has been taken to mean
a Boolean predicate, a fuzzy (or ill-defined) relation, a continuous figure of merit analogous
energy, an algebraic equation, an inequality, a Horn-clause in PttOLOG, and various other arbitrarily
complex relationships. Thus, the constraint che, ck is one of the key factors that may impact on the
performance of algorithms. How big is this factor? In Table 5, the complicated checks refer to 1000
operations of a = b ¯ c to be added when the algorithm performs each relation check. The test results
show that for the problems with more complicated checks, algorithms for multi-processor platforms
have a better chance of out performing their sequential equivalents. In this case, the communication
overheads become less significant, when the computation demands are heavy due to the complicated
checks.

3.3 Scalability

The scalability Sc of a parallel algorithm is determined by the ratio of the different parallel runtimes
Tpj, where Pj is the number of the parallel processors used, for a fixed problem size.

Sc = Tpj/Tp, where Pj > Pi
.,j.

If Sc is greater than one, then the algorithm is a scalable parallel Mgorithm from Pi to Pj for that
fixed problem. In fact, it may be easy to decide the scalability by way of observing the speedups
against the different numbers of processors used. For a scalable algorithm, the speedup should
become greater as more processors are used.

Table 6 presents the time to find the first solution for different versions of DEFC-CBJ on a MEIKO
Computing Surface. The time to solution includes all overheads such as the initial propagation of
constraints. The speedup shows the improvement over running the algorithm on one processor. The
speedup for 5 processors is consistently higher than for 15 processors. This is due to the natural
topology of the problem. With 5 processors it is easy to put one group on each processor. This

has the advantage that most communication t~s place within groups with only a small percentage

being across groups. Therefore, most communication takes place within each processor whereas, for

15 processors, there is more inter-processor communication. These results show that the algorithm

gives a speedup in excess of 2.5 on 5 processors and 1.56 on 15 processors.

Table 7 shows that DAB methods have poor scalability for these two problem types (Zebra and

8-queens). However, from Table 8, PAB algorithms may have a (nearly) linear scalability when

problem is hard enough and it needs to find more than one solution. Table 7 shows that for small

domain problems, such as 8-queens and Zebra, the scalability of the FAB algorithms may be quite

poor. When the problem domain size becomes larger, such as the 25 queens problem in Table 3, the

scalability of this method improves.

4 CONCLUSION

Table 9: Characteristics of Basic DPS Strate tes
Characteristics Distributed-agent Parallel-agent Function-agent

Prefered Problems naturally distributed tightly coupled tightly coupled
Algorithm Design specially designed any sequential any sequential
Search Space Type shared shared complete disjoint single

Cooperation necessary necessary beneficial beneficial n/a
Control Type central negotiation n/a n/a n/a
Memory type both both both both shared

Communication Cost medium high lower lower n/a
Load Balancing poor fair. good good good
Heuristic scope local local global global global

Dynamic Change easy easy easy difficult easy
Scalabflity poor poor fair good reasonable

Termination Detection difficult difficult easy easy easy
Find a solution poor poor fair good good

Find more solutions poor poor good excellent fair

Table 9 summaries the properties the meth6’ds described in this paper.

From the table it can be seen that PAB strategy is very versatile. However it suffers from not

coping easily with dynamic changes to the problem if one agent has only a disjoint search space.

This is quite important as many real-world problems naturally require reactions to dynamic change.

DAB algorithms are generally slower than other methods but, if given the correct problem type

and fast communication channels, may perform better. For some naturally distributed problems

they may be the only algorithms that could be used.

Acknowledgement: This work is partially supported by the U.K. Science and Engineering Research

Council (GR/F82733).

REFERENCES

[1] A Bond and L Gasser. Readings in Distributed Artificial Intelligence. Morgan, Kaufmann, 1988.

[2] Bernard Burg. Parallel forward checking parts 1 and 2. Technical Report TR-594, TR-595,

Institute for New Generation Computer Technology, Japan, 1990.

[3] S tt Clearwater, B A Huberman, and T Hogg. Cooperative solution of constraint satisfaction

problems. Science, 254:1181-1183, 1991.

[4] Zeev Collin and Rina Dechter. A distributed solution to the network consistency problem.

Technical report, Israel Institute of Technology, 1990.

- 198-

[5]

[6]

[7]

[8]

[9]

S E Conry, K Kuwabara, and V R Lesser. Multistage negotiation for distributed constraint
satisfaction. IEEE Transactions on Systems, Man, and Cybernetics, 21(6):1462-1477, 1991.

R Dechter. Learning while searching in constraint-satisfaction problems. In Proceedings of the
Fifth National Conference on Artificial Intelligence, pages 178-183, Menlo Park, Calif., 1986.

R Dechter. Constraint processing incorporating, backjumping, learning, and custer-
decomposition. In Proceedings of CAIA-88, pages 312-319, 1988.

E C Freuder and M J Quinn. Parallelism in algorithms that take advantage of stable sets of
variables to solve constraint satisfaction problems. Technical Report Tech Rep 85-21, University
of New Hampshire, Durham, New Hampshire, 1985.

Anath Y Grama and Vipin Kumar. Parallel processing of discrete optimization problems: A
survey. Technical report, Dept of Computer Science, Univ of Minnesota, Minneapolis, November
1992.

[10] D G Griffiths and C Whitney. Fundamentals of distributed artificial intelligence. Br Telecom
Technol J, 9(3):88-96, July 1991.

[11] M Huhns. Distributed Artificial Intelligence, volume I and II. Morgan, Kaufmann, 1987.

[12] L M Kirousis. Fast parallel constraint satisfaction. Artificial Intelligence, 64:147-160, 1993.

[13] V Kumar. Algorithms for constraint-satisfaction problems: A survey. AI Magazine, pages 32-44,
Spring 1992.

[14]Q Y Luo, P G Hendry, and J T Buchanan. Extending algorithms for constraint satisfaction prob-
lems. Technical Report KEG-5-92, Dept of Computer Science, Univ of Strathclyde, Scotland,
June 1992.

[15]Q Y Luo, P G Hendry, and J T Buchanan. A hybrid algorithm for distributed constraint
satisfaction problems. In Parallel Computing: From Theory to Sound Practice, pages 164-175,
Barcelona, Spain, March 1992. IOS Press. ::~

[16]

[17]

Q Y Luo, P G Hendry, and J T Buchanan. A new algorithm for dynamic distributed con-
stralnt satisfaction problems. In Proceedings of the Fifth Florida Artificial Intelligence Research
Symposium 92, pages 52-56, Florida, USA, April 1992.

Q Y Luo, P G Hendry, and J T Buchanan. Comparison of different approaches for solving
distributed constraint satisfaction problems. In Proceedings of the AAAI 1993 Spring Sympo-
sium: Innovative Applications of Massive Parallelism, pages 150-159, Stanford University, USA,
March 1993.

[18] Q Y Luo, P G Hendry, and J T Buchanan. Heuristic search for distributed constraint satisfac-
tion problems. Technical Report KEG-6-93, Dept of Computer Science, Univ of Strathclyde,
Scotland, February 1993.

!4 ..

[19] Q Y Luo, P G Hendry, and J T Buchanan. Methods used to implement an integrated distributed
scheduler. In Proceedings of the CKBS-SIG workshop 1993, pages 47-60, Unversity of Keele,
UK, September 1993.

[20] W Meyer. Expert Systems in Factory Management Knowledge-based CIM. Ellis Horwood, 1990.

[21] Y Nishibe, K Kuwabara, and T Ishida. Effects of heuristics in distributed constraint satisfaction:
Towards satisficing algorithms. In Proceedings of the 11th International Workshop for DAI, 1992.

- 199-

[22] Patrick Prosser. Hybrid algorithms for the constraint satisfaction problem. Technical Report
AISL-46-91, Dept of Computer Science, University of Strathclyde, Scotland, 1991. Also in
Computational Intelligence, 9(3):268-299, 1993.

[23] V N Rao and V Kumar. On the efficiency of parallel backtracking. IEEE Transactions on
Parallel and Distributed Systems, 4(4):427-437, 1993.

[24] K Sycara, S Roth, N Sadeh, and M Fox. Distributed constrained heuristic search. IEEE
Transactions on Systems, Man, and Cybernetics, 21(6):1446-1461, 1991.

[25] M Yamaguchi, K Hagiwara, and N Tokura. On upper bounds of communication complexities
and ideal time complexities of distributed algorithm. In COMP86-83, pages 17-28, 1987.

[26] M Yokoo and E Durfee. Distributed search formalisms for distributed problem solving:
Overview. In Proceedings of the Eleventh International Workshop on Distributed Artificial In-
telligence, pages 371-390, Glen Arbor, MI, February 1992.

[27] Makoto Yokoo. Constraint relaxation in distributed constraint satisfaction problems. In 5th
IEEE International Conference on Tools with Artificial Intelligence, 1993.

~It ~’

[28] Makoto Yokoo. Dynamic variable/value brdering heuristics for solving large-scale distributed
constraint satisfaction problems. In 12th International Workshop on Distributed Artificial In-
telligence~ 1993.

[29] Makoto Yokoo, Toru Ishida, and K Kuwabara. Distributed constraint satisfaction for dai. In
Proceedings of the lOth International Workshop for DAI~ 1990.

- 2{}{} -

