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Abstract
Introspection refers to an agent’s knowledge of its own beliefs. In this paper we explore

the use of introspection as a mechanism for control in result-sharing cooperative assumption-
based reasoning systems. Contrary to the current trend towards building agents with mecha-
nisms for selective communication, our experiments indicate there exists an interesting class
of cooperative distributed problem solving systems in which agents may broadcast results
without regard to selection. Recipient agents avoid penalties typically associated with such
broadcast strategies using introspection and a history of knowledge state to focus problem
solving.

1 Introduction

Over the past decade, cooperative distributed ~ problem solving (CDPS) has proven to 
a powerful paradigm in which high-level problem-solving agents are brought together to
cooperatively solve problems On loosely-coupled computer architectures. Examples of such
problems include scheduling for networks of telescopes [14], cooperative robotics [6], and
network monitoring systems [4,13]. A variety of applications are discussed in [1,7,10].

Cooperation among agents in a CDPS system may be coarsely divided according to the
two forms of cooperation that they model: task-sharing and result-sharing. In the former,
agents cooperate by sharing the decomposition, assignment and solution of subproblems.
In the latter, agents must not only provide solutions to subproblems, but must also reason
about when subproblem solutions should be sent, which subproblem solutions should be
sent, and to whom theyshould be sent. Here we focus on the result-sharing class of CDPS
systems.

1This research was supported by a University of California-Lawrence Livermore National Laboratory
graduate fellowship and a National Research Council Associateship from the Academy of Science.
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Figure 1:

As developers of result-sharing CDPS systems, we are concerned primarily with communi-
cation between agents. Effective coordination of problem solver agents cannot be considered
by single message exchange. Instead, communication occurs through protocols for informing,
requesting, and convincing. Cost of communication can be expensive - not just latency and
transmission and reception overhead, but an arriving message may cause a flurry of com-
putation to ensue. Result-sharing agents are subject to distraction and may waste valuable
resources exploring incoming results that may turn out to be useless or repetitive. Hence
DAI researchers strive to limit communication - designing agents to make reasoned decisions
about which agents to transmit results, what results are relevant, and when they should be
sent. So far, research towards controlling communication among result-sharing agents has
largely focused on techniques for restricting the transmission of messages - organization struc-
turing, meta-plans, planning, etc. From these trends one might conclude that the best form
of communication in result-sharing networks is a narrow casting of results towards agents in
need. To our surprise, we found that if the recipient agents used introspection, we were able
to obtain the increase in solution quality payoff that comes with broadcast communication
strategies, while paying little cost in the way of wasted or repetitive problem-solving.

The paper is organized as follows. Sections 2 and 3 describe a model of belief for our in-
trospective agent. Section 4 details the corresponding implementation of the agent. Sections
5 and 6 describes our communication experiments using 5, 7, 11, and 15 agents.

2 The Introspective Agent Model

In this section we present an informal conceptual model of our introspective agents, focusing
on the concept of belief. It has been reasonably argued by Konolige that an agent’s belief
system should be portrayed as a separate component of an agent’s cognitive architecture.

As shown in figure 1, Ai is an agent composed of: B|, a belief subsystem, I|, an inferencing
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subsystem for performing inferences, and Ci, a communications interface for interacting
with other agents. The belief system Bi consists of a finite list of facts the agent initially
believes and a belief updating mechanism. The belief subsystem Bi interacts with the other
subsystems of Ai as a fact repository, accepting propositions from the inferencing subsystem

Ii and the communications interface CI, and as a query-answering device for Ii.
As shown in figure 2, the belief subsystem of agent AI, can be described as a two-

level introspective machine, with an introspective component IMI and the heart of the
belief machinery, MI, that maintains consistency and determines proposition membership.
This model is similar in design to the conceptual models used by Konolige [12] to describe
introspection in single agents. The queries presented to the belief subsystem are posed in
some language L whose exact form is inconsequential except that there must be an explicit
reference to an agent’s own state of belief. Adapting the notation of Konolige, we represent
these expressions by the form [::]¢, which means agent Ai believes ¢ to be one of its beliefs.
In general, ¢ may represent conclusions drawn by Ai or another agent, Aj, as when ¢ has
been communicated. We use the notation Cn to represent a proposition originating from
agent An when the origin of ¢ bears relevance to the discussion.

The response of the introspective belief machine IMi is based on matching a query
against the current fact list 2. Queries of the form [:]¢ presented to IMI can be answered
by presenting ¢ to the machine Mi. This formulation of computational introspection is
intuitively appealing as it appears to mimic human introspection[8]. While multiple levels
of introspection are possible, for our purposes a single level of introspection suffices.

2Alternatively, a belief machine may try to derive ¢, however, without a mechanism to incorporate some
notion of limited resources, such machines are unimplementable as they are undecidable.
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M(¢): N ~ IM(D¢): 

M(¢): Y --~ IM(~D¢): 
~D¢ M(¢): N--> IM(-~D¢): 

When faced with the query E:]¢, IM poses the query ¢ to M, and simply returns yes if M
says yes, and no if M says no. From the cognitive perspective of the agent, "yes" means that
the agent has considered its set of beliefs and has concluded that it believes ¢, and therefore
believes that it believes ¢. In other words, [::]¢ is one of the agent’s beliefs. On the other
hand, when presented with -~D¢, IM will respond no if M says yes, and yes if M says no.
Now, "yes" means that the agent believes that it disbelieves ¢. The agent doesn’t believe
that ¢ is a belief, so ~D¢ is a belief.

We have now defined an agent’s cognitive outlook in terms of its state of belief or disbelief
in the proposition ¢. Together the set of believed facts and the set of disbelieved facts
constitute what is known by the agent. We may define the set of known facts as the set of
¢ that satisfy a query in L of the form De V -<::]¢. We define the "known" modal operator

as follows:

-- D¢ v

By definition then, the set of unknown facts is the set of ¢ that satisfy a query in L of the
form ~([::]¢ V ~t::]¢), that is, the set of all ¢ that are in the agent’s fact list regardless of state
of belief. It follows that ~ can be used to describe what an agent does not know.

In a result-sharing system, propositions in the belief system may occur not only as a result
of local inferencing but also as a result of communication. It is the case that Ai believes
DCj as a result of a previous communication of ¢ by Aj. The set of propositions an agent
believes includes not only locally generated’propositions but also propositions generated
by other agents. It follows that agents may also reason about the state of belief of the
propositions of another agent. If agent Ai believes [::]¢j where j # i, then agent Ai believes
that agent Aj believes Cj. When belief-based agents reason with assumptions or use defaults,
the conclusions that an agent holds may be retracted subsequent to the communication of
those beliefs.

Using our model the situation may be described as

For Ai, IMi([::]¢i) : or -~[::]¢i
For Aj, IMj(D¢i): or O¢i
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where Aj believes Ai believes ¢i but AI does not believe it believes ¢i.
This form of incoherency in result-sharing assumption-based reasoning systems is a result

of physical inconsistency, where two agents share copies of the same belief (here originating
with agent AI). In general, this type of incoherency may be addressed by using a global
truth maintenance system that guarantees physical global consistency[2]. The distributed
TMS systems of [2] and [19] both address this form of inconsistency.

Incoherency among result-sharing assumption-based reasoners may also take the form
of logical inconsistency. Logical inconsistency occurs when two agents disagree about a
particular conclusion or solution to a subproblem. For example, when agent Ai believes ¢,
which is counterfactual to agent Aj’s belief in --¢.

For Ai, IMi([3¢): Y or 
For Aj, IMj([::]~¢): Y or [3-.¢

More generally, logical incoherency may be described as Ai : 13¢ and Aj : [3")’, where ¢ and 7
are incompatible according to domain knowledge. The logical inconsistency may be detected
when one of agents Ai or Aj communicate a counterfactual (e.g., Ai sends ¢ to Aj) or when
each of Ai and Aj report beliefs ¢ and 7 to a shared belief systema.

Whether or not the disagreement should be permitted, that is, whether or not the logical
inconsistency can be characterized as a form of incoherency, depends upon the character-
istics of the problem domain. An agent designer’s demands for inter-agent consistency are
based on overall problem decomposition, how individual subproblems are solved, and how
subproblem solutions are synthesized to form the final network solution. These aspects of
distributed problem solving differ greatly from one application to the next. Where problem
decompositions give rise to subproblems requiring agreement, the inconsistency among be-
liefs of agents assigned to the subproblems can be viewed as incoherency. However, in many
cases, it is important to preserve a "difference of opinion", as when several agents bring
complimentary perspectives to bear on a problem.

If Ai holds a belief ¢~ that is incompatible to the belief 7j held by Aj, then either (a)
one of Ai or Aj must revise its beliefs or (b) there must be a representation of two distinct
belief spaces - one representing Ai’s assumptions and beliefs, and the other representing Aj’s
assumptions and beliefs. If A| or Aj revises its beliefs, then we may effectively consider the
agents to be reasoning in the same belief space. Justification-based global truth maintenance
systems, such as the DTMS [2], enforce logical consistency among agents sharing the same
belief space. That is, a global JTMS system guarantees:

If Ai: t3¢ then VAj(j ~ i)Aj : ~¢ =~ IMj([3¢) Y

If agent Ai believes that it believes ¢ then every agent that knows ¢ also believes that it
believes ¢.

3As a result of agent distribution, it is possible that incompatible beliefs may be derived by two agents but
not be detected unless an incompatible fact is communicated and therefore observed by one of the agents.



Figure 3:

Assumption-based global truth maintenance systems, such as the DATMS[19], allow
agents to reason about multiple, possibly conflicting, sets of beliefs at once. The mecha-
nisms of a global ATMS system guarantee only that conflicting beliefs may not be combined
to create new beliefs. Each agent may have a number of belief spaces, the union of which
may be inconsistent. These belief spaces may represent several alternative views the agent
itself is considering or the alternative views of its fellow agents. This idea is illustrated in
figure 3. The agent on the left currently maintains two belief spaces of its own, numbered 1
and 2, and one, numbered 3’, that was communicated from the agent on the right. The agent
on the right has 3 belief spaces as well; 3 and 4 are its own, while 2’ was communicated.

3 Introspection as Control

Coherency and performance in a result-sharing network are threatened by a number of
problems related to the fact that an agent unwittingly responds to facts placed in its working
memory by another agent. For example, as a result of unnecessary inferencing on facts that
have been communicated, agents may overload their working memory, increasing the cost of
belief revision and pattern matching operations. Methods directed at curtailing incoherency
in result-sharing systems focus on equipping the sending agent with representation and
reasoning structures to make intelligent decisions about what results to send, to whom
they should be sent, and when. Techniques for guiding transmission of results range from
organizational structures, communication of metaplans, and planning, to actually simulating
the reasoning of another agent to predict the problem solving relevancy of results. While
the creation of an agent that can intelligently transmit results is a worthwhile goal, our
experimentation indicates increases in coherency may be achieved in certain classes of result-
sharing systems using mechanisms designed for the receiving agent.

By making states of belief and states of knowledge explicit and available to the agent,
we provide it with the means to not only reason aboUt the propositions it believes, but also
about the state of beliefs concerning the propositions and its own state of knowledge. This is
a powerful mechanism for accessing the full history of what an agent has known during the
course of problem-solving. When implementing a result-sharing computational agent, the
developer may use this mechanism to guide the recipient agent’s selection of incoming results
to explore thereby reducing the incoherency in result-sharing systems. In the next sections,
we describe our implementation of result-sharing assumption-based reasoning agents and
explore the relative performance of the network using various communication strategies with
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and without introspection using 5, 7, 11, and 15 agents.

4 The Computational Agent Architecture

The agent model has been implemented using RO0, a DAI toolkit for building Rule-oriented
cOOperative assumption-based reasoning systems[17]. The agent architecture consists of a
social component, a problem-solving component, and a belief revision system, corresponding
to the three components, Ci, Ii, and Bi, of the agent model. Each agent is a rule-based
deduction system, where knowledge is expressed in terms of rules and beliefs. Each agent’s
knowledge is divided into (1) social knowledge about communication and use of incom-
ing results (2) problem-solving knowledge about the task domain - premises, assumptions,
and inferences; and (3) knowledge about belief revision - the combinations of beliefs that
are incompatible. Each agent has a DATMS to support belief revision in the distributed
problem-solving environment, and message-passing software. As a result of message pass-
ing, externally deduced facts are added to an ,agent’s belief database. Thus, an agent’s
interpreter component will match communication, problem-solving, and belief-revision rules
against internally and externally generated inferences. As a result of the production sys-
tem representation, the problem of choosing among competing defaults becomes a matter of
conflict resolution4.

Cooperation among production systems is realized using result-sharing. Individuals assist
one another by exchanging observations and information based on different views of the
problem. The different views or perspectives are a result of the different knowledge each
agent has and from seeing a problem instance from different perspectives.

The agents are implemented using the Belief-Based Rule Language (BBRL), a produc-
tion system language built on top of LISP[17]. Two problem solver interfaces to the belief
system, or the DATMS, were used, one that allowed introspective fetch operations and one
that did not. The introspective fetch operators consisted of ’BELIEVED’, ’DISBELIEVED’,
’KNOWN’, ’UNKNOWN’, and ’DISBELIEVED-OR-UNKNOWN’; a ’CONTRADICT’ op-
erator was available in both the interfaces for the agent to communicate a contradiction it
has detected to the belief system. Like the belief revision systems of ART5 and KEE6, the
DATMS represents each instance of a fact derivation in a separate node. Although we orig-
inally developed our fact labels this way for efficiency reasons, it has allowed us to maintain
the full history of a fact’s belief status, and therefore allows the agent to refer to a history of
its problem solving. Hence the agent may not only refer to the set of currently believed facts,
but also to those which are no longer believed, or which are not known. A prototypical CDPS
system for global seismic monitoring was developed using BBRL and is discussed in subse-
quent sections along with a description of experiments with three communication strategies.

4This was first observed by Jon Doyle
~AI~T is a registered trademark of Inference Corporation.
6KEE is a registered trademark of Intellicorp, Inc.
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Empirical Studies

5 Problem Domain - Global Seismic Monitoring

Seismic monitoring is one of the principle means available to verify compliance with treaties
regulating underground nuclear weapons testing 7. Seismic monitoring involves interpreting
signals from seismometers placed on the surface of the earth to measure and record earth
movement. A major challenge to seismic monitoring is the threat of evasion. One party may
deliberately mask or muffle an illicit nuclear test to conceal it from the seismic network. In
general, detection of an explosion may be impaired by devising a test whose signal level is
below background noise level or whose signal occurs in conjunction with other seismic events.

To address the problem of evasion researchers are developing in-country networks and
advanced sensor technologies, such as seismic arrays, to lower detection thresholds, and
are exploring new methods of signal processing that are largely computationally intensive.
Seismic monitoring techniques for a Low Yield Threshold Test Ban Treaty (LYTTBT)and 
Comprehensive Test Ban Treaty (CTBT) will require the capability to detect and identify
events having small magnitudes and occurring at distances less than 2000km from seismic
stations [3].

However, lowering the detection threshold increases the number of events that must be
analyzed. As the magnitude of the events we are interested in decreases, the number of
seismic detections increases exponentially. For a Low-Yield Threshold Test Ban Treaty,
where magnitudes may be close to 2.2, the figure reaches into the tens of thousands, just
for the former Soviet Union region[18]. In a network with 30 stations, and if we receive on
average 60 detections per day at each station/~here will be 30*60*365, or 657,000, events per
year. These seismic detections include a number of cultural "seismic" events (such as mining
blasts, saw mills, power machinery, and airports), and natural seismic events (such as ocean
waves, wind, and river ice breaking up in spring), as well as possible nuclear explosions. Each
event must be analyzed to determine if it contains a clandestine nuclear test. The amount
of data generated by such monitoring networks is overwhelming for the limited number of
experts capable of making such interpretations. Therefore, reliable verification of a CTBT
will require an automated system for interpreting and classifying seismic events. Here we
focus on the problem of interpreting (locating) an event, although to a large extent the
location may often aid in classification.

5.1 Why Seismic Networks

Networks of seismic stations are necessary to provide coverage and increase confidence in the
detection capabilities. The seismic data a sensor station receives depends on the location of

7The ability to verify 100% compliance is a subject of debate, principally due to the problem of potential
evasion. Verification goals for a CTBT are thus described as the following[9] "1) deter militarily significant
testing programs 2) ensure significant attempts to continue underground testing and evade detection are
identified in time to respond appropriately and 3) build confidence by minimizing the number of natural or
man-made non-nuclear events that are misidentified as nuclear explosions or remain unidentified."
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the energy source and the geological characteristics of the region on which the sensor site
is located. It is not known a priori what site will receive what data, nor can the quality of
data received at a site always be predicted. Using networks of sensor stations decreases the
probability that a seismic event will go undetected.

Stated more formally, the signal interpretation problem can be described in terms of a
set of events El, ..., EN and a set of sensors $1, ..., SM8. Each event Ei is a point energy
source that produces a signal e~. For each combination of event Ei and sensor Sj there is a
set of propagation paths Pija, Pij2, ..., Pijk along which energy from ei can reach Sj. Each
path P~jk has a particular propagation-delay time tijk and transfer function hijk. Thus the
signal at Sj is

N k

sj(t) = ¯ e (t)
4----1 /----1

Another reason that networks of sensors are used is because the signal interpretation of
individual stations may contain errors, and can only be used as an estimate. If more than
one sensor site independently detects the same event, confidence in the detection is increased.
However, conclusions about a particular seismic event are not made merely by counting the
number of stations that witnessed an event, but by the strength of the seismic evidence as
well. It should be noted that two seismic stations may actually witness different events.

5.2 Problem Decomposition

The studies in this section are based on a prototype system designed for the distributed
interpretation of global networks of seismic stations with characteristics similar to those
proposed by the U.N. Ad Hoc Group of Scientific Experts (GSE) [21,22] for verification of 
Comprehensive Test Ban Treaty. The basic philosophy of the design is to build a distributed
interpretation system that follows the naturally distributed interpretation by seismologists.

The seismologists’ interpretation network consists of a number of individuals who in-
terpret data for a particular geological or political region or sensor site. The knowledge to
interpret the sensor data is naturally decomposed, with each seismologist reasoning about the
data using specialized knowledge of a particular geological region and/or sensor technology.

To form an accurate interpretation of their sensor data, seismologists can exchange partial
or full interpretations, and verify what they have seen or give pointers to other seismologists
as to what they should be seeing. In no case does a seismologist conclude the presence or
absence of an event unless it is supported by his/her own sensor data. This aspect of the
network solution comes from the fact that seismologists may be viewing different seismic
events. This is particularly important in the seismic treaty verification problem, where
multiple artificially-induced seismic events, sqch as would occur in jamming or other evasion
scenarios, might be used to evade treaty provisions. A single uncompromised station may
be the only witness to a clandestine event.

In essence, the architecture of our interpretation system maps the knowledge of a group
of seismic experts onto a collection of interconnected workstations, one seismologist per

SThe description assumes a homogeneous medium and a linear system.
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workstation. Each agent is assigned the task~of interpreting data for a particular station
or group of stations within a geologically distinct area. In terms of cooperative behavior,
agents work together towards the common goal of identifying any and all seismic events, and
by exchanging partial results to improve solutions derived by each agent, thus improving
the solution derived by the network. Individually, agents work to maximally improve their
own interpretations. The form of the final solution consists of a bulletin listing each agent’s
interpretation by sensor station or geological region. The bulletin is then analyzed by a
human agent for comparison with other intelligence information.

6 Problem Solving Strategy

The goal of seismic data interpretation is to create a hypothesis about the number and
location of events which would generate the waveform features present in a seismogram. To
understand how an interpretation is formed(it helps to visualize what happens during 
seismic event.

Seismic station

~,,,,.,~~S u r face waves

Seismic
station

/_ / ~’~ PandSwaves

Mantle [ Core /

Seismic waves separate and take distinct paths through the earth

Figure 4:

As shown in figure 4, seismic monitoring looks at earthquakes and underground explosions
using seismometers placed on the surface of the earth to measure and record earth movement.
A seismic event is a lot like dropping a pebble in a pond in that it sets up a number of waves
that propagate out from the point of the energy source. A seismic event produces a number
of different kinds of waves that take different paths through the earth and travel at different
rates, thus arriving at the seismic station at different times. As a result, the waves appear as
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distinct features in the seismic signal. Figure 5 shows a seismogram recorded at the NORESS
seismic array in Norway produced by a mining’ explosion in the former Soviet Union. Three
distinct wave arrivals are shown.

Lg

I I I 1

This seismogram recorded at the NORESS seismic array in Norway was produced by a
mining explosion in the former Soviet Union. Three distinct wave arrivals are shown: (1) 
compressional wave (Pn) that propagated deep into the crust, (2) a following shear wave 
that also propagated deep into the crust, and (3) a type of surface wave (Lg) immediately
following.

Figure 5:

Longitudinal waves or phases arrive first and are called P waves or phases (P stands for
the latin primus). These are followed first by transverse waves (phases) called S waves 
stands for secundus), and then by surface waves (phases) called L waves (phases) (named
after their discoverers Love and Rayleigh). It is this difference in arrival time which enables
a seismologist to estimate the distance to an event. The further apart the phases are, the
farther they had to travel to reach the station. Direction is determined using a number of
phase characteristics calculated with signal processing tools. The location of a seismic source
is then estimated using distance and direction.

The process used to interpret seismic data, consists of 4 steps :

1. Segmentation - The seismogram is partitioned into intervals called "segments," con-
taining detectable features. Each segment in the seismogram is defined by a begin and
end time which bracket the interval.

..

.

Identification - Identify the phase type for each segment in the seismogram using mea-
surable features. Measurable waveform properties such as propagation velocity, polar-
ization and amplitude provide clues as t 9 phase type.

Association - Identified phases are grouped together as coming from the same event.
A complete interpretation consists of a number of events which together account for
all detected segments.
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4. Location - A location for a seismic event is estimated using distance and direction.
Distance is estimated using associated phase arrival times. Direction is determined
using a number of calculated phase characteristics.

These 4 steps may proceed sequentially for simple events. However, formation of an
interpretation is further complicated when signals from multiple events arrive at the seismic
recording station. Not all phases from the events will arrive, and those that do arrive can be
of poor quality. In order to form an interpretation, the seismologist needs to identify phase
type and associate phases as belonging to the same event.

Building the Solution

In essence, the seismologist forms an interpretation using a data-driven form of hypothesis
and test. The general problem-solving strategy in generating a solution is to build and extend
partial hypotheses using assumptions and computations (both symbolic and numeric) until
either an inconsistency is derived or a complete hypothesis is formed. An initial hypothesis
is formed based on the agent’s data. To extend the hypotheses, individual agents rely on
the use of assumptions to derive more information about their data, possibly using resource
intensive numerical computations. In general, the strategy of an agent in evaluating its
partial hypotheses is to make all possible inferences about the partial hypothesis trying to
find a reason to discard it. Once an agent has attempted to find consistent solutions on its
own, it considers information from other agents and continues to derive enough information
(symbolic and numeric) to create a consistent solution. The problem is solved when the
agent has found all complete and consistent solutions.

The process whereby a seismologist hypothesizes a partial interpretation and determines
its validity can be described with assumption-based reasoning using a belief revision system.
A partial interpretation is disproved if the belief in its validity leads to a contradiction. For
example, it is known that a Pn phase must haste a velocity of greater than 6Km/sec. Suppose
that it is assumed that a phase is Pn in a partial interpretation and that gives rise to an
inference that applies numerical processing and reveals the fact that the phase has a velocity
less than 6Km/sec. Then it must be the case that the belief in the assumption is incorrect
and the partial interpretation is discarded.

Agent Interaction

Each agent is assigned the task of interpreting data for a particular station or group of
stations within a geologically distinct area. In terms of cooperative behavior, agents work
together towards the common goal of identifying any and all seismic events and by exchanging
partial results to improve solutions derived by each agent, thus improving the solution derived
by the network. Individually, agents work t o maximally improve their own interpretations.

Each agent first identifies the phases whichitcan easily discern. Some agents will identify
one phase, while others will see multiple phases, or no phases at all. Any agent which has
identified and associated phases makes an approximate source location and communicates
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the interpretation including begin-time, phase-id, and source location to the other agents.9

On the basis of the information received from other agents each agent either finds initially
missed phases, or rejects mis-identified phases. Agents will add or reject phases on the basis
of supporting evidence found in their data.

The advantages of communicating are twofold. First, results from other agents may be
used to direct the use of signal processing techniques on their own data, thereby decreasing
the amount of time and computation needed to detect the presence of an event. Second,
results from other agent’s may be used to derive solutions which otherwise would not have
occurred, thus improving the strength of the network solution.

The interactions of the agents in a distributed problem-solving network are made clear
in the following example. For simplicity, we consider a 2 station network (see figure 7)
where agent A1 is receiving data from a seismic array station and agent A2 is a standard
3-component seismic sensor station. The signal received by agent A2 (at station 2) contains
substantial noise and requires extensive filtering to detect features actually present in the
data. A2 has identified 1 phase. A1 has a strong clear signal and is able to identify and
associate two phases. After receiving Al’s tenative results, A2 uses filtering in directed
fashion and is able to recognize and identify a second phase, thus establishing its own estimate
of the location of the seismic event.

Agent A1 . Agent A2

Figure 6:

7 Communication Experiments

In the following section we examine results of experiments that measure the effects of various
communication strategies on the performance of our CDPS system using 5,7,11, and 15
agent (workstation) systems. The metrics for performance were the average CPU time
required by each agent to generate an interpretation, size of working memory, CPU time for

9The decision to transmit the partial interpretati6ns and to whom is varied according to the communi-
cation strategy being used.

- 213 -



pattern-matching and manipulation of assumption sets, number of inferences, and number
of assumption sets.

Three types of communication strategies were explored: broadcast, directed-request, and
undirected-request. In the broadcast communication strategy, results are exchanged on a
volunteer basis, without solicitation on the part of the receiving agents. By contrast, the
directed-request and undirected-request communication strategies involve making requests
for information. Directed-request involves making requests to a dynamically determined
list of agents. In the undirected-request strategy, agents simply broadcast a request for
information.

7.1 Experiment Design and Selection of Test Data

To build agent knowledge bases, simplified seismic interpretation rules were adapted from
the single-agent seismic event analyzer SEA [18], and from conversations with seismic treaty
verification experts at Lawrence Livermore National Labs and at the U.N. in Geneva, Switzer-
land. Results from signal processing routines were simulated and I/O was avoided, except for
inter-agent messages. Using a simplified knowledge base reduces the knowledge engineering
effort required to construct the CDPS, without sacrificing the basic characteristics of the
distributed seismic monitoring task. The data set was chosen to contain seismic events from
which some agents make accurate identification and location (those without contradictions)
and some may not (those with contradictions). For simplification, the data in each trial has
a single correct interpretation.

The group of agents has no overall control hierarchy and each agent is data driven. Each
agent’s primary responsibility is to interpret its local data as best it can, and secondarily, to
supply information that can be used by other agents to interpret their data. The decisions
that determine which agents transmit results and to whom are made both on-line, according
to the data an agent receives, and off-line, according to the communication policy.

The goal of our experimentation was that the results should be representative of the wide
range of behavior we would expect to encounter in an operational seismic monitoring network.
In a CDPS system composed of result-sharingnon-monotonic reasoning agents, three classes
of agents can be identified in terms of communication behavior: 1) agents that rely on the
use of incoming information (partial hypotheses) to solve their subproblems, and do not
transmit results, 2) agents that have enough information to solve their own subproblem
and are capable of providing information to others, but encounter contradictions after a
message has been transmitted, and 3) agents that have enough information to solve their
subproblem, are capable of providing information to others, but do not encounter subsequent
contradictions.

A fourth class of agent is possible. If a type 1 agent creates a subproblem solution using
a shared result, it can subsequently supply help. However, this help may cause an indefinite
loop of message sharing and problem solving when agents must find all solutions. For the
general problem of seismic interpretation, we are interested in finding all solutions. We
therefore ran our experiments with three classes of agents, rather than four.
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When agents need only find a single, or few solutions, the cost of subsequently sharing
a solution may include more expensive global truth maintenance, depending on how agents
use the incoming messages to create their solution. Suppose the agent combines locally and
non-locally derived facts, and subsequently communicates that solution. Then the agent that
originally derived the non-local component of this solution no longer has knowledge of which
agents have copies of its derivations. When an agent relies on the use of a communication
history to guarantee physical consistency, we can no longer guarantee global consistency.
The solution to this is simply to ensure global consistency by broadcasting TMS-related
messages, rather than multi-cast using a communication history.

To implement the three classes of agents in the seismic domain, we vary the distribution
of noise among the signals that agents receive (this is equivalent to having varied locations,
some agents will encounter more noise than others, depending the path through the earth
the signal took and the relative noise propagation variations.) This, in turn, varies an agent’s
ability to 1) provide other agents with seismic event information, and 2) to form a solution
without cooperation.

For any given problem instance it is not known a priori which agents will need help,
and which will encounter contradictions. We assume each type of agent occurs with a
fixed probability. Each experimental trial models a particular seismic network scenario. In
general, each trial consists of an N agent network, where X agents need help, Y agents have
contradictions, and N - (X + Y) have no contradictions. The experimental trials cover all
possible combinations of numbers of the three types of agents for a given total number of
agents.

The computational capabilities of each node in these experiments are equal, so the as-
signment of agents to nodes in the network is not significant. The results from a particular
combination of agent types are independent of the particular assignment of agents to nodes
in a network. This allows us to calculate the distributions over the complete set of all possible
permutations of N agents selected from the three classes by performing only one experimen-
tal trial for each combination of N agents selected from three classes. The results taken from
each distinct combination are weighted by the number of permutations it represents and the
probabilities of the individual agent classes s~lected.

When plotting the data from the experimental trials, each possible combination of agents
is represented by one trial. Although our model allows us to assign differing probabilities to
the occurrence of each type of agent, the graphs assume each of the three types of agents
are equally likely to occur. The value from each trial is weighted by the probability that
this particular combination will occur, given the probabilities of the individual agents. For
example, values for variables taken from an experimental trial involving five agents, where
three agents encounter contradictions, and one agent needs help, is weighted less than val-
ues for variables taken from the trial where only two agents have contradictions, and two
agents need help. This is because the first configuration represents 20 = 5!/(3!1!1!), possi-
ble agent to node assignments (or permutations), while the second configuration represents
30 = 5!/(2!2!1!), possible agent to node assignments, each assignment being equally likely.
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In plotting the expected values (or averages) for an n agent network, we used the formula:

C

Expected-Value(Agent-CPU-Time} = ~ (Value-from-trial} * P R(trial)
i=1

where Value-from-trial for an n agent trial is defined as ~i~=1 CPUAge~t~. ~, the probability
of a particular network configuration occuring, PR(trial) gumber-o/-~ermutatlons and Cis

Total-Permutations ’
the number of combinations or experimental trials for a network of size n. The value of C,
or the number of trials, for each network of size n is

1 X-1

* II (Y+i)
(X- 1)! i=1

where X is the number of agents that have noise (need help), and Y is the number 
agents that encounter a contradiction after transmitting a message. Our graphs indicate an
expected value taken over C trials for each of 4 network sizes: 5, 7, 11, and 15.

Experimental Trials
Number-of-Agents Number-of-trials

n C
5 21
7 36

11 78
15 136

The experiments were conducted using MATE, the Multi-Agent Test Environment[15].
Using MATE, a suite of experiments may be run without human intervention. MATE
facilities include automatic network resource allocation, monitoring and executing sequences
of experiments, and automatic archival of experiment results and messages.

7.2 Performance and Solution Quality

We define the performance of a problem-solving system in terms of the computational re-
sources, such as time or memory, required to produce solutions of a given quality. In dis-
tributed systems composed of autonomous collaborating agents, performance is determined
both by local problem solving and communication strategies. In a distributed system, how-
ever, bandwith limitations make it impossible for any one agent to know the entire state of
the system at any point in time. As a result, agents must operate with uncertainty. The
performance of the system as a whole will necessarily be suboptimal from the perspective of
an imaginary, omniscient agent[20].

The challenge is to construct local problem solving and communication strategies that
can achieve a desired solution quality, while minimizing the costs of cooperation in the face of
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limited knowledge. DAI researchers address this problem by increasing the sophistication of
their agents, employing methods such as organizational structures, meta-plans, and reasoning
about communication. The goal of our efforts is the realization of a new level of abstraction
in the knowledge required to design such problem solving agents, the social level[ll]. The
success of this social level depends on striking a balance between the cost of computations
to support it, and the overall performance Of the system.

As described in the previous section, our motivation for bringing together autonomous
seismic interpretation systems is that through cooperation there is the promise of improved
solution quality. Solution quality can be expressed in terms of accuracy and completeness.
The accuracy of a solution involves both the correct identification of phase or feature types,
and the correct location determination. Completeness refers to the number of waveform
features present in the raw data that are accounted for, or predicted by, the agent’s final
hypothesis.

7.3 How the Communication Strategies Fared

The purpose of this experiment is to determine the effect of communication strategies on the
performance of cooperative assumption-based reasoning networks. Three different strategies
are evaluated: a) broadcast, b) undirected-request and c) directed-request. The protocol 
each communication policy is the following:

broadcast Agents broadcast results. Agents receive results without requesting them (i.e.,
a junkmail approach to communication, agents advertise results)

undirected-request An agent broadcasts a request for results to all other agents. Agents
send results only to agents making requests for information.

directed-request Send information only to agents making requests, where requests are
directed to a specific list of agents. The list of agents may be determined at run-time
or may be static. Agents are programmed to consult at most 3 other agents.

Figure 7 shows solution quality for each of, the communication schemes as measured by
the percentage of agents with complete solutions. Predictably, the broadcast-based schemes
had more complete solutions than the directed request scheme. This is largely due to the
uncertainty in determining either a priori or on-line which agents can provide help. Exam-
ining the graph, we can see that for the broadcast-based strategies, as the number of agents
increase, the percentage of agents with solutions increases. This is because the more agents
there are, the more likely it is one of them has a correct and complete solution to share. By
contrast, the number of agents has no effect on the improvement in solution quality for a
directed request communication scheme. It is related, however, to the number of requests
an agent makes.

Figure 8 gives various resource measurements for each of the three communication schemes
run on a series of trials tbr 5,7,11, and 15 agents. The graphs display the performance of an
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Figure 7:

individual agent averaged over each of the different network configuration for each different
size network.

Examining the shapes of the distributions of the various performance indicators for each
communication strategy suggests thai the number of result messages received has the most
significant effect on agent performance. This explains why the directed-request systems
have superior performance. However, whenever the agents broadcast, solution quality is
maximized in terms of the number of features that agents are successfully extracting from the
seismic data. Although broadcast and undirected-request had fewer agents with incomplete
solutions than in the directed-request system, these systems pay a penalty in the total
number of inferences each agent must perform. The undirected-request system requires fewer
inferences per agent (figure 8a ), and as a result requires fewer working memory elements
(figures 85) assumption sets (figure 8c) and total CPU 1° (fig ure 8d). In te rmsof res our
metrics, directed-request has the advantage of being much more efficient. We were therefore
driven to find a mechanism to reduce the costs associated with broadcast-based schemes.

7.4 Introspection and the Problem Solver Interface

In the previous experiments we saw that reducing the number of result messages can cause
dramatic improvement in efficiency, at a cost in solution quality. In this section we explore
the use of an extended DATMS interface, allowing agents to reason not only about the
currently believed facts in working memory, but about the state of facts in working memory,
to control inferencing and thereby improve performance.

In a directed-request communication scheme, agents rely on domain-specific knowledge
to direct requests for information. 11 This approach allows agents in need of help to receive

1°Agents ran uniformly on Sparc-1 processors.
11Although in our expcriments the list of agents to whom an agent direct requests is created based on
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useful result messages most of the time, while broadcast and undirected-request communi-
cation strategies guarantee agents will receive useful results all of the time (provided there is
at least one agent with a useful result to share). However, undirected-request and broadcast
strategies lead to inefficiencies because all incoming results must be explored when there
may be only a few solutions. Agents rediscover inferences and contradictions when incoming
results are co-referential (two beliefs or sets of beliefs are co-referent if they refer to the same
object or concept in reality.)

The general problem of co-referentiality occurs in multi-agent problem-solvers when
agents represent both the beliefs of other agents and their own beliefs in working mem-
ory. The simultaneous representation of multiple "views" requires a representation that
distinguishes one agent’s beliefs from other agents. However, a belief representation scheme
that maintains agent distinctions will by definition have no syntactic means to determine
whether beliefs are co-referent.

This aspect of non-probabilistic multi-agent problem-solving is particularly devastating
when agents each rely on the use of an ATMS-like belief subsystem and must find all solu-
tions. When an agent receives an incoming result message, new beliefs (imported beliefs) are
established in working memory, and the DATMS responds by inserting the accompanying
new assumption sets into the assumptions data base (using the ATMS terminology [5], 
new node is established, with a label containing a single environment that was imported.)
This has the effect of forcing the problem-solver to explore new contexts and determine
whether or not the consequences of the new beliefs lead to a consistent conclusion. This is
regardless of whether or not these beliefs may in actuality be equivalent to beliefs that were
previously considered. As we saw in the first experiment, the efficiency of the broadcast and
undirected-request communication strategies is related to the number of incoming results
they are forced to consider.

One way to address this problem is to use an "EQUAL" relation between beliefs or sets
of beliefs that are viewed by the agent as equivalent. The idea is when a belief or belief set
is found to be co-referent, it is bound to the equivalent beliefs in memory by the EQUAL
relation. This has the effect of establishing a single view by "merging" equivalent beliefs in
working memory. This approach, while conceptually appealing, is complicated to implement.
It is unclear how difficult it may be to determine in a domain independent fashion that two
beliefs are co-referent. An elaborate scheme is necessary to compute new assumption sets
for beliefs bound by an EQUAL to prevent work on equivalent beliefs when contradictions
involving the beliefs are discovered. A simpler way to reduce these inefficiencies is to extend
the DATMS interface to allow agents more control over the contexts they explore.

Traditionally, a TMS provides the problem-solving component with access to the cur-
rently believed set of facts. This is accomplished through the BBRL LHS clause. This
simple interface allows problem-solvers to reason only about what is currently believed.
Giving agents a means to reason about what is disbelieved, what is known (believed or not),

domain knowledge, the communication rule syntax accepts the invocation of any lisp function returning a
list of agent names. It is conceivable the list of agents may be determined by historical records indicating
previous success rates of agent communication, or a simple list of predetermined agents.
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what is unknown and so on, allows agents to base problem-solving decisions on their own
state of knowledge, as opposed to simply what is believed in working memory. Agents can
determine not to pursue an incoming result based on failing to generate a consistent solution
with a similar set of beliefs. We extend the DATMS interface for each agent to include

Believed - the facts that have an assumption set that is consistent
. ?

Disbelieved - the facts do not have an assumption set that is consistent

Known - the facts are either believed or disbelieved

Unknown’- the facts do not yet exist in working memory

UnknownOrDisbelieved - the facts either do not exist or are disbelieved

These additional functions appear as predicates that can occur in the condition part of
an inference rule. The additional predicates are implemented as a filter that is applied to
rule instantiations once all variables in the Believed clause have been bound. As a result the
justification for any fact is still monotonic and includes only the facts in a Believed clause.
These concepts are best illustrated by example.

(INF-RULE LOOK-FOR-EVENT

((UNKNOWN ((EVENT instance SEI)
($E1 has-loc SL1) 

(BELIEVE ((FOREIGN-EVENT instance $E2)
($E2 has-loc $L2)
($E2 begin-time $B2)
($E2 end-time SEND2)
($E2 origin $AGENT)
($AGENTsensor-type ’Array))))

(ASSUME (make-event ((begin-time $B2)
(end-time SEND2)))))

The rule LOOK-FOR-EVENT indicates the condition that the agent believes there is an
event, but it does not know its location. The agent tries to use information about an event
(FOREIGN-EVENT), seen by another agent using an array of sensors, to derive enough
information to build its own interpretation of the event. Using the begin and end times
as assumptions, the agent narrows the window of seismic data on which to apply signal
processing in an attempt to complete its partial interpretation about the seismic event.

Figures 9 through 12 show results of experimental trials in each of broadcast, undirected-
request and directed-request communication strategies. Graphs indicate average values per
agent.
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The extended DATMS interface succeeds by slashing total agent cpu time for the broad-
cast system agents (figure d) by almost one third, as compared to trials without it. 
also succeeds by greatly reducing the number of inferences (figure 10a), the number of as-
sumption sets and working memory elements(figures 10b and 10c) and the amount of CPU
time spent on assumption sets and pattern matching (figures 10e and 10f). The extended
DATMS interface has a similar effect on efficiency in the undirected-request system (figure
11). However, the introspection mechanism has little effect on directed-request since agents
are already operating at near optimal levels (figure 12).

In both broadcast and undirected-request systems we avoid needless inefficiency because
agents can ignore transmitted beliefs that would lead to rediscovering solutions or contra-
dictions. Conventional TMS interfaces avoid only those beliefs that have been shown to be
contradictory by conflicts in assumption sets. This finding supports the observation of [5]
on the need to extend problem-solver control for single-agent systems "if there are a large
number of solutions, of which only a few are required .... " In the multi-agent case, the more
results an agent receives, the more effective the extended TMS interface becomes.

Examining figures 9 through 12, these experiments indicate the interface has a signif-
icant effect on efficiency in both broadcast and undirected-request strategies, with little
improvement in the directed-request strategy. Despite this performance improvement in the
broadcast and undirected-request strategies, directed-request remains superior to both sys-
tems in terms of resources consumed. The remaining source of inefficiency in the other two
systems is that although it is possible to avoid working on uninteresting solutions, it is not
possible to avoid receiving an uninteresting solution. This is particularly relevant in the
broadcast system. If there is a large number of agents (say greater than fifty) then working
memory may be consumed by incoming messages, with a prohibitive cost of cooperation.
To improve solution quality while maintaining efficient performance, a fourth strategy for
communication would be to first try to find useful results using directed-request, followed
by undirected-request in case of failure.

8 Summary and Conclusions

We explored the use of introspection as a means for control in result-sharing assumption-
based reasoning systems. We presented an informal conceptual model of the introspec-
tive agent and examined broadcast, undirected-request, and directed-request communica-
tion strategies. Using broadcast schemes, result-sharing agents can maximize the number
of agents that will find solutions. The percentage of agents that find solutions increases
as we add more agents. We found recipient agents can avoid penalties usually incurred by
broadcast strategies through the use of introspection and a history of knowledge state to fo-
cus problem-solving. The effectiveness of this mechanism improves as the number of agents
increases. We found that while directed-request was the most efficient, reasonable efficiency
can be achieved with broadcast or undirected-request communication, which maximize so-
lution quality using an introspective interface to an agent’s belief system. This mechanism
represents a shift in thinking about the design of result-sharing agents by placing the burden
of communication on the receiving agent rather than the sending agent.
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