
Multi-Agent Mental-State Recognition and its Application
to Air-Combat Modelling

Anand S. Rao
Australian Artificial Intelligence Institute

171 La Trobe Street
Melbourne, Victoria 3000

Australia
Email: anand@aaii.oz.au

Graeme Murray
Aeronautical and Maritime Research Laboratory

Defense Science and Technology Organisation
Port Melbourne, Victoria 3207

Australia

May 30, 1994

Abstract

Recognizing the mental-state, i.e., the beliefs, desires, plans, and intentions, of other
agents situated in the environment is an important part of intelligent activity. Doing
this with limited resources and in a continuously changing environment, where agents
are continuously changing their mind, is a challenging task. In this paper, we provide
algorithms for performing reactive plan recognition and embed it within the framework
of an agent’s mental-state. This results in a powerful model for mental-state recognition
and integrated reactive plan execution and plan recognition. We then apply this in an
adversarial domain - air-combat modelling - to enable pilots to infer the mental-state of
their opponents and choose their own tactics accordingly. The entire approach is based
on using plans as recipes and as mental-attitudes to guide and contrain the reasoning
processes of agents.

1 Introduction

Agents are computational entities that are situated in dynamic environments, acting to fulfill
desired ends, and reacting to changing situations. Agents or, at least, an important subclass
of agents, can be viewed as having mental states that comprise the beliefs, desires, plans,
and intentions both of themselves and of others. While it is reasonable for us, as designers
of multi-agent systems, to provide for an agent its own beliefs, desires, and plans (based on
which it forms its intentions), it is quite natural for the agents then to recognize the beliefs,
desires, plans, and intentions of the other agents in its environment.

There has been considerable work in recent years on plan recognition [9, 11] that focuses
on inferring the plans and intentions of other agents. However, most of this work treats
plan recognition as the reverse process of classical planning, concerned with inferring plans

.262 -

From: AAAI Technical Report WS-94-02. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved.

in a bottom-up fashion from observations. Furthermore, this work is not integrated with the
overall mental-state of the agent, i.e., its beliefs and desires.

Over the past decade the focus of research in planning has shifted from classical planning
to reactive or situated planning [7]. Reactive planning is based on two premises: (a) the
environment in which an agent is situated is continuously changing; and (b) agents situated
in such environments have limited resources. These have led to the development of various
architectures and techniques for guiding the agent in its decision-making process, for making
agents commit to their decisions as late as possible and once committed to stay committed
as long as possible, within rational bounds.

Research in reactive planning has led to the re-definition of the notion of plans. Plans
are used in two different contexts: (a) plans as abstract structures or recipes for achiev-
ing certain states of the world; and (b) plans as complex mental attitudes intertwined
a complex web of relationships with other mental attitudes of beliefs, desires, and inten-
tions [12]. Plans as recipes guide a resource-bounded agent in its decision-making process,
thereby short-circuiting the time-consuming search through a possible space of solutions as
is done in classical planning. Plans as mental attitudes constrain the agent in its future
decision-making by committing it to previously made rational decisions. The latter are called
intentions.

The use of plans as recipes to guide the recognition process and the use of plans as mental
attitudes to constrain the recognition process will be called reactive recognition. When reactive
recognition leads to the recognition of beliefs, desires, plans, and intentions of other agents in
the environment, we call the process mental-state recognition.

Mental-state recognition is applicable to a broad class of problems where: (a) agents have
limited resources; and (b) the environment and the agents in such environment are changing
their mental-state while the agents are doing their recognition. However, the process of
mental-state recognition is based on two important assumptions: (a) the recognizing agent has
correct and complete knowledge of the plans of other agents that it is trying to recognize; and
(b) under any given situation the recognizing agent has a small set of plans (i.e., hypotheses)
that it is trying to recognize.

In the first assumption, the observer’s knowledge of the plans of the executing agent
guides the observer’s recognition process. We have assumed that the oberver’s model of the
executing agent is sound and complete. The soundness and completeness of the recognition
process is dependent on the observer’s model, i.e., if the oberver’s model of the executing
agent is incomplete, the recognition would still occur but would be incomplete. In the second
assumption the adoption of plans to recognize specific desires of the executing agent constrains
the recognition process. In other words, the observer agent decides what desires need to be
recognized and when they need to be recognized. This models attentiveness of agents - an
agent is attentive towards an executing agent’s desire only if it has decided to recognize the
desire. If the observer agent is not attentive towards certain desires, these desires will not be
recognized even if the executing agent executes plans to satisfy these desires.

Elsewhere [14] we presented a limited form of reactive recognition called means-end recog-
nition and provided a model-theoretic and operational semantics for it. In this paper, we
extend the means-end recognition process to reactive recognition by modifying an existing
Belief-Desire-Intention (BDI) interpreter [17] used for reactive planning. Given that reactive
recognition is taking place within the framework of an agent’s other mental attitudes we
can also infer the mental-state of other agents, thereby providing a theory of mental-state
recognition.

.263 -

Mental-state recognition is a generic process that can be applied to a number of different
domains, like discourse understanding, automated tutoring, and adversarial reasoning. In
this paper, we focus on an application that was the driving force for developing our theory
-- modelling situation awareness in a multi-aircraft air-to-air combat system.

2 Situation Awareness and Tactics Selection in Air Combat
Modelling

A combat pilot receives large amounts of information from a variety of different sources,
analyses this information, attempts to determine his current situation, selects the tactics
to follow, and coordinates his actions with other pilots. All these steps have to be done
continuously during the entire course of his mission and have to be done quickly.

Air combat simulation studies are undertaken to determine the parameters involved in
aircraft and weapons performance, pilot reaction, and tactics adopted. Computer simulation
of air combat usuallyI involves modelling both the physical aspects of the aircraft and the
tactical knowledge of the pilot. The physical aspects of the aircraft include its performance
determinants and its sensor capabilities. The tactical knowledge of the pilot encompasses
his ability to assess the situation in which he finds himself and the selection of appropriate
actions to take.

The tasks performed by a combat pilot can be broadly divided into two areas - situation
awareness and tactics selection.

Situation awareness is defined as the knowledge, understanding, cognition and anticipation
of events, factors, and variables affecting the safe, expedient, and effective conduct of a mis-
sion [8]. Situation awareness is a central issue in all computer modelling of human decision
makers. Representation of situation awareness in air combat, an application in which time
constraints on decision making can be extremely tight, is a considerable modelling challenge.
The selection of appropriate actions in response to the situation is called tactics selection.
Both stages require sophisticated reasoning and are closely linked. Having determined his
current situation, a pilot needs to select and execute certain actions; these actions, in part,
determine the way in which the situation evolves.

A pilot’s reasoning process can be characterized as consisting of beliefs about the real
world, desires that need to be satisfied, mental plans or procedures that satisfy certain desires,
and committed partial plans or intentions that a pilot has adopted in response to external
events or internal desires.

In obtaining situation awareness, a pilot must infer the beliefs, desires and intentions of
other pilots from the behaviour of their aircraft. In tactics selection, a pilot must react to his
beliefs about the current situation or advance his own desires.

While the problems of situation awareness:and tactics selection are difficult for a single
pilot in combat with a single enemy, the problems become far more complex when a team of
pilots is in combat with an enemy team. The team as a whole needs to assess the situation
by inferring not only the individual beliefs, desires, and intentions of individual pilots, but
also the mutual beliefs, joint desires, and joint intentions of the entire enemy team. Similarly,
tactics selection by a team is more difficult than the selection of tactics by a single pilot,
because of the coordination and synchronization required.

1 Human-in-the-loop simulation may not require modelling of pilot knowledge.

-264-

Elsewhere [13], we have discussed the selecti0n of tactics by teams of pilots. In this paper,
we concentrate on inferring the mental-states of other agents. We restrict our attention to
multiple agents recognizing the mental-states of other agents. The recognition of joint mental
attitudes [18] is beyond the scope of this paper.

3 Mental-State Recognition

In this section we illustrate informally our approach to the processes of plan execution and
plan recognition using a sample scenario in air-combat modelling. Figures 7 and 8 show a
number of plans, at different levels of granularity, to perform different types of intercepts.
The syntax of the plans is based on our earlier work [6, 10] and is given in Figure 1.

(plan) ::= (name)<invocation)(preccm’d>
(postcond> (body>

(name) ::= string
(invocation) ::= (DESIRE (mode) (agent) (pln-expr))
(pln-expr) ::= (! (agent)
(precond) ::= a
(postcond) ::= a
(body) ::= (node) {- ((label)) --+)+ (body)

(node) {+ ((label)) --+)+
(node)

(label) ::-- ((mode) (agent) e)] ((mode) (agent)
(mode) ::= exec [recog
(node) ::= symbol
a ::= well-formed propositional modal formula
{b)+ stands for one or more b’s, where b is any terminal or non-terminal symbol.

Figure 1: BNF syntax for Plans

A plan has a name, an invocation condition that can trigger the plan, a precondition that
needs to be true before the plan body is started, a postcondition that is true after the plan
body is finished successfully and the body of a plan which is an AND-OR graph with the
edges labelled with certain plan expressions. In the BNF syntax an OR-node is represented as
-((label>)4 and an AND-node as +((label))4 2. For a given proposition a, the expression
(exec a (! a a)) means a executes achievement by a, o f a stateof the world where ais
true. When the executing agent and the agent achieving the state of the world are the same,
we simplify the notation and write it as (! a a). The expression (recog a (! b a)) means
recognizes the achievement by b of a state of the world where a is true. The expression (exec
a e) and (recog a e) mean the execution of the primitive plan and observation of the primitive
plan e by agent a , respectively.

Now we introduce an example scenario from the air-combat modelling domain. In most
typical air-combat scenarios aircraft are organized into pairs, with one aircraft playing the

2When displayed graphically all edges from an OR-node are shown as arrows and all edges from an AND-
node are shown as arrows with an arc connecting all the arrows.

- 265 -

lead roles and the other, supporting, aircraft playing the wing roles. Pairs of such aircraft
are then grouped together to form larger teams. Although the tasks to be done by the lead

V
and wing aircraft are well specified for different phases of air-combat, these tasks are highly
dependent on the situation awareness of the pilots at any given point in time. The tactics for
carrying out these tasks can be represented as plans.

In this paper, we concentrate on the intercept phase of air-combat. A subset of the plans
for intercepting enemy aircraft is given in Figure 7. We consider a 2 aircraft v. 2 aircraft
scenario (called 2v2 scenario) with the agent blue1 and red1 playing the lead role and blue2
and red2 playing the wing role. The agents blue1 and blue2 act together as a team and the
agents red1 and red2 act as an opposing team. The plan to intercept an enemy team is invoked
if the lead agent blue1 has the desire to intercept the enemy team (given as the invocation
condition) and also believes that the enemy team is in formation (precondition). The plan
to intercept involves the blue1 agent doing either a cut-off intercept or a pincer intercept.
Cut-off intercept involves both the lead and the wing aircraft staying together, obtaining an
offset to the left or right of the enemy aircraft, and then attacking the enemy aircraft at the
appropriate attacking range. In the case of pi~er intercept the lead and wing separate from
each other, obtain an offset on either side of the enemy aircraft and then attack. The plan
for performing a cut-off intercept from the left is given by the plan Cut-off Intercept Left.
The parallel tasks to be performed by blue1 and blue2 are given by the otgoing-arcs of an
AND-node. The plans for Cut-off Intercept Right and Pincer Intercept are very similar.

Now consider the BDI-model of reactive planning. The blue1 agent believes that the
enemy team consisting of red1 and red2 is in formation. Furthermore, it acquires a desire
to intercept the enemy team (this desire could be part of its overall desire to survive and/or
accomplish the mission). This will result in the plan Intercept being adopted as an intention
by the blue1 agent. Blue1 now acquires the desire to perform either a cut-off intercept or a
pincer intercept. In the normal course of events, the agent will adopt one of these intercepts
and carry it out. However, if there were some other important tasks to perform, e.g., the blue1
agent notices that there are four other enemy aircraft approaching from the right and left,
the agent may decide to evade enemy aircraft, r~ther than carry out its previous commitment
to intercept the enemy team. This lends the plan execution process its reactive capability.

In reactive plan execution and recognition, when an executing agent executes a primitive
plan the observer agent observes the (execution of the) primitive plan. While the executing
agent can choose an applicable plan, one after the other, until one of them succeeds, the ob-
serving agent should attempt to recognize all the applicable plans simultaneously. Otherwise,
both the executing and observing agents are performing identical operations. The correspon-
dence between execution and recognition3 and the conditions under which they succeed are
shown in Table 1. In this table, Pl, ... Pn refer to the plans that can achieve ~; and 11, ...,
In refer to the labels appearing on the outgoing edges of an OR-node or AND-node.

Now with this operational semantics let us run our example. We assume that both blue1
and red1 have the intercept plans in the plan library. In addition, the blue1 agent has the
recognition plans shown in Figure 8. The plan Recognize Pincer Intercept Left is invoked
when the agent blue1 has the desire to recognize the achievement of pincer intercept by red1
and believes that the enemy team is in formation. To recognize such a pincer intercept the

3Note that in the case of (!a c~) and OR-nodes it is sufficient for the execution to proceed sequentially;
have assumed that they are run as parallel processes mainly for convenience. However, all the recognitions
have to be run in parallel.

-2~-

Plan Entity Execution Recognition Success Condition
(a e) execute observe if e succeeds for a
(! a ¢) with Pl...p~ in parallel run Pl t~’)pn in parallel run pl to p~ if one of Pi succeeds
OR-node with 11...l~ in parallel run 11 to In in parallel run ll to In if one of li succeeds
AND-node with 11...l~ in parallel run 11 to In in parallel run 11 to In if all of Ii succeeds

Table 1: Comparison of Execution and Recognition

agent blue1 has to recognize redl doing a cut-off manouvre to the left and red2 doing a cut-off
manouvre to the right. This in turn leads to other plans for recognizing cut-off manouvres.

Assume that red1 is doing a pincer intercept. The executing agent can fulfill its desire by
adopting a plan to intercept from the left or from the right. Before blue1 can recognize this
desire it has to be attentive to this desire. In other words, blue1 should decide to recognize the
execution of a pincer intercept. At this particular phase of combat (i.e., intercept phase) it
reasonable for the blue1 agent to be attentivetowards all intercept desires. The approach to
reactive recognition presented in this paper assumes that in many domains, given a particular
situation, the observing agent will have a reasonable knowledge of the set of desires that the
executing agent is likely to pursue and may decide to be attentive to these desires.

Now, given that blue1 is attentive towards a pincer intercept it has to adopt the plans to
recognize both the pincer intercept from the left and the right. This in turn would result in
blue1 adopting the desires to recognize the cut-off manouvres from the left by red1 and from
the right by red2. Subsequently this would result in blue1 adopting the desires to recognize
red1 reaching roll-range to the left and red2 reaching roll-range to the right. Let the agent
red1 execute a pincer intercept, reaching roll-range and subsequently sort-range on the left
and simultaneously red2 reaching roll-range and subsequently sort-range on the right. Given
that the agent blue1 has desires and intentions to recognize these events the agent blue1 will
conclude that red1 is attempting to perform a pincer intercept to the left.

So far we have described the recognition process of agent blue1. While blue1 is performing
the recognition, it can also be executing other tasks, e.g., operating its radar to observe other
enemy aircraft. Also, if there is a demand on its computational resources and there are other
higher priority tasks e.g., evading other aircraft, it can suspend or abort its current recognition
tasks.

The full expressive power of the approach can be exploited by combining the reactive
recognition and execution processes. For example, to perform intercepts the agent blue1 can
either adopt the plan Intercept (as shown in Figure 7) or the more complex plan Intercept
(Complex). In the latter plan, blue1 observes what the enemy team is doing and acts ac-
cordingly. First, it tries to recognize if the enemy team is performing a pincer intercept or
a cut-off intercept. This leads to the recognition process as described above. Once red1 and
red2 are in sort-range the agent blue1 has recognized that it is the desire of red1 to perform a
pincer intercept. This is in turn results in blue1 believing that red1 has the desire to perform
a pincer intercept. Based on this blue1 performs a cut-off intercept to the left (i.e., Cut-Off
Intercept Left (Complex)). However, if red1 had(performed a cut-off intercept, the blue1 agent
would have performed a pincer intercept.

Having discussed the process informally through an air-combat example, we shall now
provide the algorithms for integrated reactive plan execution and recognition embedded within

.267 -

the mental-state of an agent.

4 Algorithms

The mental-state interpretation of means-end: plan execution is well known within the com-
munity [4, 17, 20]. One can provide an analogous mental-state interpretation of means-end
plan recognition: if the agent acquires a desire to recognize the achievement of a certain state
of the world it adopts all plans and intends to recognize all such plans; intending to recognize
a plan will result in the agent adopting a desire to recognize the first arc in the body of the
plan; this will in turn result in the agent adopting further intentions towards all plans that
can recognize the desire. At any point in time the current recognition trace will enable the
agent to infer the beliefs, desires, and intentions of other agents. Having inferred the mental
state of other agents, the agent can then base its future executions and recognitions on such
inferred mental states. In other words, one can write plans whose precondition involves the
beliefs, desires, and intentions of other agents, which have been inferred by the above process.

An abstract BDI-interpreter for performing reactive plan execution within the context of
the beliefs, desires (or goals), intentions, and plans of an agent was given elsewhere [17].

this paper, we extend this BDI-interpreter to r.~active recognition and integrate both reactive
plan execution and recognition.

Before we go into the details of the BDI interpreter we describe some of the data structures
used by the BDI interpreter.

Trigger: A trigger is an internal event which consists of a trigger type and a trigger value.
The interpreter responds to triggers by altering its internal state.

(trigger) := (type/ (value)

Trigger Type: The type of a trigger can be any one of the following: BEL-ADD, BEL-REM,
DES-ADD, DES-ItEM, INT-ADD, INT-REM, ACT-SUC, PLN-SUC, ACT-FAL, PLN-
FAL. The first six types were discussed elsewhere [17] and they initiate the addition
or removal of beliefs, desires, and intentions, respectively. The last four events are
genereated when a primitive act or plan succeeds or fails, respectively.

(type) := BEL-ADD (bel-value) I BEL-REM (bel-value)
DES-ADD (des-value) I DES-REM (des-value)
INT-ADD (int-value) I INT-REM (int-value)
ACT-SUC (act-res-val) I ACT-FAL (act-res-val
DES-SUC (des-res-val) I DES-FAL (des-res-val)
PLN-SUC (pln-res-val) I PLN-FAL (pln-res-val)

Trigger Value: The value of a trigger can be any one of the following: (a) belief value which
consists of a proposition; (b) desire value which consists of the mode, an agent, and a
plan expression; (c) intention value which consists of the end that is to be intended as
part of the means in a particular intention tree or the means that is to be intended as
part of satisfying an end in a particular intention tree. (d) plan value which consists
a means, (towards a certain) end, and an intention tree.

(value) := (bel-value) I (des-value) I (int-~value)
(act-res-val) I (des-res-val)] (pln-res-val)

(bel-value) := (prop)

(des-value) := (mode)(agent)(pln-expr)

(act-res-val), (des-res-val):= (end) (means) (intention-tree)

(pln-res-val) := (means)(end) (intention-tree)

(int-value) := (end) (means)(intention-tree)[(means)(end) (intention-tree)

Mode" The mode can either be an execution mode (denoted by the keyword "exec") or
recognition mode (denoted by the keyword "recog").

(mode) := exec [recog

Option" An option is a trigger followed by either a plan-name or an action.

(option) := (trigger) (plan-name)

End: An end is either a desire to achieve/recognize a proposition or to execute/observe a
primitive action. This is denoted by either the keyword DESIRE followed by a desire
value or the keyword PRM-ACT followed by an action value.

(end) := DESIRE (des-value)] PRM-ACT (prm-act-value)

Means: The means is given by the plan which:’ contains the keyword PLAN followed by the
mode, name, invocation, context, effects, and current-node.

(means) := PLAN (mode) (name) (invocation) (context)(effects)(current-node)

End Tree: An end tree consists of an end followed by a list of zero or more means trees.
Each means tree is a partial unwinding of a means to satisfy the end.

(end-tree) := (end)--*(means-tree)*

Means Tree" A means tree consists of a means followed by a list of one or more end trees.
Each end tree is a partial unwinding of the end that needs to be satisfied for the program
control to move to the next node.

(means-tree) := (means)--+ (end-tree)+

Intention Tree" An intention tree is a speciM~’type of end tree with at least one means tree.

(intention-tree) := (end)--+ (means-tree)+

The procedure reactive-reasoner (see Figure 2) is called in each cycle with the set
plans P, the current mental state Ms, and a list of triggers that contain both internal and
external events. The result of running the reactive reasoner is given by the mental state MT.
The agent first generates all options for all the triggers in the trigger list, i.e., the plans that
can satisfy a given trigger. The agent then deliberates on these options and selects a subset
of these options to which it commits. The mental state of the agent is then updated with
respect to this set of selected options. The agent then runs the updated intention structure
resulting in a new mental state.

We take the mental state to be the set of beliefs and intentions. Note that we have not
taken the desires to be part of the mental state. This is because desires can be of two types:
intrinsic desires that arise from within the agen.t and secondary desires that arise as a result
of the agent attempting to satisfy its intrinsic desires. Once the agent chooses to satisfy

- 269.

an intrinsic desire it becomes an intention and all the secondary desires are represented
as intentions. An intrinsic desire that is not chosen by the agent is dropped and is not
maintained from one time point to the other. However, the beliefs and intentions of the
agent are maintained from one time point to the next. This implementation is a reflection of
the different axioms of commitment we have adopted for desires, as compared to beliefs and
intentions [17].

procedure reactive-reasoner (P, Ms, trigger-list, MT)
options := option-generator(P, Ms, trigger-list);
selected-options := deliberate(Ms, options);
M := update-mental-state(Ms, selected-options);
MT := run-intention-structure(M).

Figure 2: Reactive Reasoner procedure

The procedure option-generator is straightforward and generates the set of applicable
plans (as shown in Section 4) for each trigger. The deliberate procedure could include
domain-independent decision-theoretic analysis for choosing options with the highest expected
utility or domain-dependent heuristics for filt:ering the options. Space precludes us from
discussing the deliberate procedure further.

An important part of the reactive-reasoner is the procedure that updates the mental-
state of the agent by processing the options selected by the deliberate procedure. This involves
a case-by-case analysis of all the events and how they change the mental-state of the agent.
The details of the procedure update-mental-state is given in Figure 3.

The procedure update-mental-state processes updates (such as belief, desire, and in-
tention, additions and removals) and results (such as the success or failure of actions, desires,
and plans). These are given by the procedures process-updates and process-results. The
current mental state of the agent is then returned by the update-mental-state procedure.

procedure update-mental-state(Ms, selected-options)
Get the selected triggers from the selected-options;
For each selected-trigger in selected-triggers do:

Case type of selected-trigger is
BEL-ADD, BEL-REM, DES-ADD, DES-ItEM, INT-ADD, INT-REM:

process-updates(Ms~ selected-options);
ACT-SUC, ACT-FAL, DES-SUC, DES-FAL, PLN-SUC, PLN-FAL:

process-results(Ms, selected-options);
Return the updated belief and intention states.

Figure 3: Procedure for updating mental-state

Belief add and remove events change the set of beliefs of the agent. These changes are
assumed to be internally consistent and therefore we avoid the problem of belief revision [1].

Adding a desire results in the agent creating a new intention tree with the desire as the
end and the plans that can satisfy that end as’the means of the intention tree. Removing a

- 27{}-

desire (which should be an end at the root of an intention tree) results in the entire intention
tree being removed from the intention structure.

Adding an intention results in the agent modifying the intention tree with an end tree,
i.e., the end that needs to be added and the means as the children that can achieve that end.
Removing an intention (which in this case can either be an end or a means) results in the end
or means (given by the first argument) being removed from the intention tree. The addition
and removal of beliefs, desires, and intentions is given by the procedure process-updates in
Figure 4.

procedure process-updates(Ms, selected-options)
Get the selected triggers from the selected-options;
For each selected-trigger in selected-triggers do

Case type of selected-trigger is
BEL-ADD, BEL-REM:

Update Bs with the proposition given in the selected-trigger
DES-ADD:

Create a new intention tree as follows:
(a) The root of the intention tree is the value of the selected trigger
(b) The children of the root are the various plans that appear
the selected options for the selected trigger

Add the new intention tree to Is
DES-ItEM:

Remove the intention tree whose root node matches the value of the
selected trigger from Is.

INT-ADD:
Add the end as the child for the means in the intention tree.
Add the plans that appear in the selected options as the children for the end.

INT-REM:
Remove the end (means) as the child for the means (end) in the intention tree.

Return the updated belief and intention states.

Figure 4: Procedure for processing updates

When a primitive action or desire is successful, either in the execution or recognition
modes, the end corresponding to that action or desire is removed from the intention tree. If
the parent of this end, i.e., means or plan, is currently at an OR node we can remove all the
other edges and proceed to the next node, because semantically it is sufficient for one edge
to succeed for the OR node to succeed. In the case of an AND node one can proceed to the
next node, only if the end that succeeded was the last edge of the node. If one proceeds to
the next node and the next node is an END node then the entire plan is successful and a
successful plan event is posted.

When a primitive action or desire fails in the execution mode, the end corresponding to
that action or desire is removed from the intention tree. If the parent of this end, i.e., means
or plan, is currently at an AND node we can get rid of all the other edges and fail the plan,
because semantically an AND node fails even if one of its edges fails. In the case of an OR
node one fails the plan, only if the end that succeeded was the last edge of the node.

- 271 -

i
L -_ .

Note that we have not said anything in the case of a primitive action or desire failing
in the recognition mode. In other words, the agent is committed to observing/recognizing
the primitive actions and desires and will not fail the plan until it has recognized them.
In essence, the intentions are in a suspended state waiting for the successful observation of
primitive actions to take place. To avoid blind commitment towards recognition one can have
a timeout on how long the agent waits before abandoning its desires.

In the case of a successful plan event the agent adds belief add events corresponding to
the effects of the plan, sends an event to remove the intention corresponding to the plan, i.e.,
means, and sends a successful desire event corresponding to the desire, i.e., end. For plan
failure events the effects are not added and the’ agent sends appropriate intention remove and
desire failure events. Processing the success or failure of actions, desires, and plans is given
by the procedure process-results in Figure 5.

At the end of the update-mental-state procedure we could have a number of intention
trees in the intention structure whose leaves are means (i.e., plans) or ends (i.e., desires
primitive actions). The procedure run-intention-structure runs each intention tree in this
intention structure (see Figure 6).

If the leaf node is a primitive action then the agent either executes the action or observes
the action. As discussed earlier, in the case of execution the agent performs the action once
and the success or failure of the act is informed to the agent by the environment as ACT-SUC
or ACT-FAL events. In the case of recognition if the agent cannot observe the successful
performance of the action, it waits indefinitely (or until the intention is timed out).

If the leaf node is a plan the agent exectltes the plan by adding new INT-ADD events
for each outgoing edge of the current node. For example, an AND node which has multiple
outgoing edges will have multiple INT-ADD events being generated. These events will then
be processed in the next cycle by the update-mental-state procedure.

A leaf node which happens to be a desire, i.e., DESIRE (des-value) is not processed
the run-intentlon-structure because the INT-ADD events for such cases would have been
generated by the update-mental-state procedure.

5 Air-Combat Scenario

Now let us go back to the example considered earlier. The agent bluel’s desire is to execute
an intercept. This corresponds to the following trigger in the trigger list: DES-ADD EXEC
bluel (! bluel (intercept)). The reactive-reasoner procedure first produces the various plans
that can respond to this event, namely Intercept (Complex). Assuming that the deliberator
selects these options the update-mental-state procedure will process the DES-ADD trigger
and create an intention tree whose root node is the triggering desire (see E1 of Figure 9)
and whose child is the plan that can satisfy the desire (i.e., M1 node of Figure 94). At this
stage the leaf of the intention tree is M1 which is a plan. The run-intention-structure
results in the following events being sent as triggers: INT-ADD (DESIRE RECOG bluel (!
redl (cut-off-intercept))) M1 INT-TREE and INT-ADD (DESIttE RECOG bluel (!
(pincer-intercept))) M1 INT-TREE. This cQmpletes one cycle of the BDI interpreter.

In the next cycle there will be at least two triggers in the trigger list, i.e., the INT-
ADD events discussed above. In addition, the trigger list may contain other external events.

4We have not reproduced all the different fields of El, M1, and all the other nodes due to lack of space. For
example, the agent argument is omitted and "exec" and "recog" are abbreviated by "E" and "R", respectively.

- 272-

Options will be generated for all the triggers in the trigger list. The plans Recog. Cut-Off
Intercept Left, Recognize Cut-Off Intercept Right will respond to the first trigger and the
plans Recognize Pincer Intercept Left and Recognize Pincer Intercept Right will respond to
the second trigger. The deliberator then selects a subset of these options according to some
pre-defined criteria. For example, if the deliberator selects options with the highest priority,
then depending on whether the external events have a higher priority or not the deliberator
procedure will choose the two INT-ADD events. Assume that there are no other higher
priority options. The two INT-ADD events will be processed by the update-mental-state
procedure. This will result in the intention tree having M2, M3, M4, and M5 as its leaves.
The run-intention-structure will result in eight additional INT-ADD events being generated.
The process continues for a couple of cycles b~fore we arrive at the means-end tree shown in
Figures 8 and 9 that contain all primitive plans or actions as their leaves.

If none of these actions is observed immediately the intention is suspended until at least
one of these acts is observed. As the red team is doing a pincer intercept to the left, after
some time, blue1 will be able to observe the primitive acts of red1 getting within roll-range on
the left and red2 getting within roll-range on the right. This will result in the following two
ACT-SUC events being generated: ACT-SUC (PItM-ACT ItECOG bluel (in-roll-range-on-
left redl)) M10 INT-TItEE and ACT-SUC (PItM-ACT ItECOG bluel (in-roll-range-on-right
red2)) Mll INT-TItEE.

In the next cycle both the ACT-SUC events will be processed by update-mental-state
procedure. The node E16 and E17 will be removed from the intention tree and the current
nodes of the plans corresponding to M10 and Mll will be updated. This will result in
intentions to recognize the primitive plans of red1 being in sort-range on the left and red2
being in sort-range on the right. Once these primitive plans are observed, the following PLN-
SUC events will be generated as follows: PLN-SUC M10 E8 INT-TItEE and PLN-SUC Mll
E9 INT-TItEE.

Processing the PLN-SUC event will result in a DES-SUC event. Processing this will result
in M10, E8 and Mll, E9 being dropped as the desires have been achieved. After this there
will be a PLN-SUC event for M4. Once this happens the means-end tree with M5 as the
root node can be aborted and the desire E3 succeeds. This results in E2 being removed as
E2 and E3 are parts of an OR-node. Note that at this stage blue1 believes that red1 has the
desire to perform a pincer intercept from the left. Subsequently, the agent can then choose
an appropriate counter-tactic. In this case, it will result in a desire to choose an intercept,
which will result in blue1 adopting the plan to perform a cut-off intercept to the left. This
process of incrementally updating the intention-tree will continue till the top-level deisres are
satisfied.

There are two primary differences between~the BDI interpreter given above and the Pro-
cedural Iteasoning System [6]. First, we have presented a propositional variant of the PItS
interpreter which is a restricted first-order system with full unification. Second, PItS is a re-
active planning system that expands the means-end tree in a depth-first manner for efficiency
reasons. As a result the interpreter makes use of a means-end stack to represent a top-level
intention and all its children. Therefore in PITS, Reactive recognition has to be explicitly
programmed by the user.

Elsewhere [15, 16] we have described a family of modal temporal logics with modal op-
erators for beliefs, desires, and intentions and a branching-time temporal structure based on
CTL* [5]. These logics describe the static and dynamic relationships amongst the mental
attitudes of agents. We have introduced a dynamic agent logic for a limited form recognition

- 273 -

called means-end recognition elsewhere [14]. Combining these so called BDI-logics with the
dynamic agent logic provides a powerful logic to examine the behaviours of resource-bounded
agents capable of planning based on their current mental state and recognizing the mental
state of other agents.

Although the initial motivation for developing a theory of reactive recognition was the
need to infer the mental states of opponents in an air-combat modelling system, the approach
may also be able to be used fruitfully in a number of collaborative domains such as discourse
understanding [11] and automated tutoring systems.

6 Comparison and Conclusions

Plan Recognition: Early work by Allen and Perrault [2] and more recently by Litman
and Allen [11] treat plan recognition as the reverse process of planning (in the classical
sense). Litman and Allen’s work make use of a plan library with a rich hierarchical structure.
However, unlike the theory outlined here, these plans are used in a bottom-up fashion to
construct an explanation of observed behaviour on the basis of observed actions, rather than
running the plans in a top-down fashion as is done in this paper.

Kautz [9] presents a formal approach to plan recognition which makes use of an event
hierarchy to guide the recognition process. An explanation (c-entailment) is constructed for
each observation using the event hierarchy. Different possible explanations are combined by
selecting covering models that minimize the number of events. This is done by circumscription.
Kautz also provides graph-based algorithms for plan recognition.

Kautz’s approach proceeds bottom-up, creating an explanation for each observation and
then merging these explanations, while the reactive plan recognition proceeds top-down by
requiring the agent to specify what top-level states of the world it is expecting to recognize
and then constructing the explanation incrementally guided by the plans and the observation
of events. For example, in our approach the agent needs to invoke the reactive recognition
algorithm with a trigger such as (recog bluel (!redl (pincer-intercept))) before the intercept
has started; otherwise the agent will not be able to recognize the intercepts, even if it had
plans to recognize intercepts. This is not the case in Kautz’s approach.

Situation Awareness: The simplest approach to situation awareness is to assume that
all pilots know the positions and types of all other aircraft present, and have the means of
measuring their velocities and observing their actions, but have no means of reasoning about
the opponent’s possible plans. That is, the pilots simply react to the opponent’s observed ac-
tions in trying to achieve their own goals. This approach, which minimises the representation
of situation awareness, may be adequate for comparing the relative effectiveness of different
tactics against a given enemy tactic, but does not provide an adequate representation of
tactical decision making by the pilots and does not take account of pre-mission briefing of
pilots.

Azarewicz et. al. [3] have developed a system which is based on recognizing the an oppo-
nent’s plans from a given set of possible plans, based on observing manoeuvres and actions. In
this paper we have extended this approach and developed a formalism for recognising beliefs,
desires and intentions of other agents in the environment. This allows our existing PRS-based
model [13] to represent that important part of situation awareness which involves "thinking
like the enemy". Computation time is constrained by having a limited number of possible
plans to be considered.

- 274 -

REPLAI (REcognition of PLans And Intentions) [19] recognizes plans and intentions
agents in the domain of soccer games. It makes use of a plan hierarchy that captures the
specialization hierarchy (e.g., a pincer intercept is a kind of intercept) and the decomposition
hierarchy (e.g., a "move" plan can be decomposed into "pick" and "put" primitive plans
or actions in the blocks world). The plan hierarchy is split into two distinct parts, with
the higher-level capturing the specialization and the lower-level capturing the decomposition
hierarchies. Recognition proceeds top-down from the specialization hierarchy and bottom-up
from the decomposition hierarachy.

There are a lot of similarities between REPLAI and the approach presented in this paper.
Both use libraries of plans and proceed top-down as well as bottom-up. However, due to
the separation of hierarchies in REPLAI it is not possible to have decomposition of goals (or
desires) at the higher levels. Also, the recognition process is not embedded within the beliefs
of the agents and their overall planning tasks. ’As a result, one cannot have preconditions to
plans that are complex mental attitudes (such as beliefs or desires of other agents) and then
execute plans based on such preconditions.

In summary, the primary contribution of this paper is in presenting an integrated ap-
proach to reactive plan execution and plan recognition that is applicable to a broad class of
problems where the environment is changing rapidly and the agents are resource-bounded.
By embedding these processes within a framework of the mental-state of agents, they also
facilitate mental-state recognition. The novelty of the approach is in modelling the "atten-
tiveness" of agents to constrain the execution and recognition processes. The approach looks
promising for assessing the situation awareness of pilots in Mr-to-Mr combat.

Acknowledgements

I would like to thank Mike Georgeff for valuable comments on earlier drafts of this paper
and the the anonymous reviewers for their useful suggestions. This research was supported
by the Cooperative Research Centre for Intelligent Decision Systems under the Australian
Government’s Cooperative Research Centres Program.

References

[1] C. Alchourron, P. Gardenfors and D. Makinson. On the logic of theory change: partial
meet contraction functions and their associated revision functions. Journal of Symbolic
Logic, 50:510-530, 1985.

[2] J. F. Allen, and C. R. Perrault. Analyzing intention in utterances. Artificial Intelligence,
15:143-178, 1980.

[3] J. Azarewicz, G. Fala, R. Fink, and C. Hei~heker. Plan recognition for airborne tactical
decision making. In Proceedings of the Fifth National Conference on Artificial Intelligence
(AAAI-86), pages 805-811, 1986.

[4] M. E. Bratman, D. Israel, and M. E. Pollack. Plans and resource-bounded practical
reasoning. Computational Intelligence, 4:349-355, 1988.

[5] E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen editor, Handbook of The-
oretical Computer Science: Volume B, Formal Models and Semantics. Elsevier Science
Publishers and MIT Press, Amsterdam and Cambridge, MA, pages 995-1072, 1990.

- 275 -

[6] M. P. Georgeff and A. L. Lansky. Procedural knowledge. In Proceedings of the IEEE
Special Issue on Knowledge Representation, volume 74, pages 1383-1398, 1986.

[7] M.P. Georgeff. Planning. Annual Iteviews, Inc., Palo Alto, California, 1987.

[8] S. Goss, editor. Proceedings of the IJCAI-91 Workshop on Situation Awareness. Inter-
national Joint Conference on Artificial Intelligence, Sydney, Australia, 1991.

[9] H. Kautz. A circumscriptive theory of plan recognition. In P. R. Cohen, J. Morgan, and
M. E. Pollack, editors, Intentions in Communication. MIT Press, Cambridge, MA, 1990.

[10] David Kinny, Magnus Ljungberg, Anand Rao, Elizabeth Sonenberg, Gil Tidhar, and
Eric Werner. Planned team activity. In Proceedings of the Fourth European Workshop
on Modelling Autonomous Agents in a Multi-Agent World, MAAMAW ’92, Viterbo,
Italy, 1992.

[11] D. J. Litman and J. Allen. Discourse processing and commonsense plans. In P. R.
Cohen, J. Morgan, and M. E. Pollack, edit0rs, Intentions in Communication. MIT Press,
Cambridge, MA, 1990.

[12] M. E. Pollack. Plans as complex mental attitudes. In P. R. Cohen, J. Morgan, and M. E.
Pollack, editors, Intentions in Communication. MIT Press, Cambridge, MA, 1990.

[13] A. Itao, D. Morley, M. Selvestrel, and G. Murray. Representation, selection, and exe-
cution of team tactics in air combat modelling. In Proceedings of the Australian Joint
Conference on Artificial Intelligence, AI’92, 1992.

[14] A. S. Rao. Means-end plan recognition: Towards a theory of reactive recognition. In
Proceedings of the Fourth International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KRR-94), Bonn, Germany, 1994.

[15] A. S. Rao and M. P. Georgeff. Asymmetry thesis and side-effect problems in linear time
and branching time intention logics. In Proceedings of the Twelfth International Joint
Conference on Artificial Intelligence (IJCAI-91), Sydney, Australia, 1991.

[16] A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture. In
J. Allen, It. Fikes, and E. Sandewall, editors, Proceedings of the Second International
Conference on Principles of Knowledge Representation and Reasoning. Morgan Kauf-
mann Publishers, San Mateo, CA, 1991.

[17] A. S. Rao and M. P. Georgeff. An abstract architecture for rational agents. In C. Rich,
W. Swartout, and B. Nebel, editors, Proceedings of the Third International Conference on
Principles of Knowledge Representation and Reasoning. Morgan Kaufmann Publishers,
San Mateo, CA, 1992.

[18] A. S. Itao, M. P. Georgeff, and E. A. Sonenberg. Social plans: A preliminary report. In
E. Werner and Y. Demazeau, editors, Decentralized A.L - Proceedings of the Third Euro-
pean Workshop on Modelling Autonomous Agents and Multi-Agent Worlds, Amsterdam,
The Netherlands, 1992. Elsevier Science Publishers.

- 276-

[19] Gudula Retz-Schmidt. A replai of soccer: Recognizing intentions in the domain of soc-
cer games. In Proceedings of the Eighth European Conference on Artificial Intelligence
(ECAI-88), pages 455-457, 1988.

[20] Y. Shoham. Agent0: A simple agent language and its interpreter. In Proceedings of the
Ninth National Conference on Artificial Intelligence (AAAI-91), pages 704-709, 1991.

- 277-

procedure process-results(Ms, selected-options)
Get the selected triggers from the selected-options;
For each selected-trigger in selected-triggers do

Case type of selected-trigger is
ACT-SUC, DES-SUC:

Remove the end given by the first argument of the selected trigger and all its children.
Go to the parent of end which will necessarily be a means.
Case current node of means is

OR: Remove all the children of means from the intention tree
Make the current node point to the next node in the plan

AND: If there are no more children of means then make the current
node point to the next node in the plan

If the current node is an END node then
send PLN-SUC event with means, parent of means, and the intention
structure as its three arguments

ACT-FAL, DES-FAL:
If mode of the selected trigger is EXEC then

Remove the end given by the first argument of the selected trigger.
Go to the parent of end which will necessarily be a means.

Case the current node of means is
AND: Remove all the children of means from the intention tree
send PLN-FAL event with means, parent of means, and the intention
structure as its three arguments
OR: If there are no more children of means then
send PLN-FAL event with means, parent of means, and the intention
structure as its three arguments

PLN-SUC:
send BEL-ADD events for all the effects of the plan
send INT-REM event with the same three arguments as the PLN-SUC event
send DES-SUC event with the second argument (end), parent of the second
argument (means), and the thrid argument (intention-structure) of the PLN-SUC event

PLN-FAL:
send INT-REM event with the same three arguments as the PLN-FAL event
send DES-FAL event with the second argument (end), parent of the second
argument (means), and the thrid argument (intention-structure) of the PLN-FAL event

Return the updated belief and intention states.

Figure 5: Procedure for processing results

- 278 -

procedure run-intention-structure(Intention-structure)
for int-tree in intention-structure

for leaf in leaves-of(int-tree)
Type of leaf is
PttM-ACT:

If the mode of the leaf is EXEC then execute(leaf) else observe(leaf);
PLAN:

for edge in edges-of(current-node-of(leaf))
send INT-ADD event with the label of edge, leaf, and int-tree as its arguments.

Figure 6: Procedure for running the intention structure

- 279 -

PLAN: Intercept

invocation condition:
(DESIRE
(! blue1 (intercept)))

precondition:
(BELIEF bluel
(in-formation (redl red2)))

PLAN: Cut-Off lntercept Left

invocation condition:
(DESIRE
(t bluel (cut-off-intercept)))

precondition:
(BELIEF blue
(in-formation (redl red2)))

PLAN: Intercept (Complex)

invocation condition:
(DESIRE
(! bluel (intercept)))

precondition:
(BELIEF bluel
(in-formation (redl red2)))

body: ~(cut-off-intercept))

(!~r-intercept))

body: ~(cut-off-man-left))

(! ~-man-left))

(! bluel (attack-man))

body: ~__~

((recog bluei (! redl (pincer-intercept)))
(recog blu~t-off-intercept)))

~)(! bluel (choose intercept))

PLAN: Cut-off lntercept Left (Complex)

invocation condition: body:
(DESIRE
(! bluel choose-(intercept)))

precondition:
(AND

(BELIEF bluel
(in-formation (redl red2)))

(BELIEF blue
(DESIRE (! redl (pincer-intercept)))

~([b(cut’°ff’man’right)))

off-man-fight))

luel (attack-man))

Figure 7: Plans for executing intercepts

PLAN: Recog.Pincer Intercept Left

inDESti~d~ reeOcnodi~lune1

body: //’~/\(-~ecog ~luel (! redl (cut-off-man-left)))

t(t redl (pincegintercept))))
(r~ red2 (cut-off-man-right)))

precondition: -L.Y-
(BELIEF blue 1 ~’
(in-formation (redl red2)))

PLAN: Recog. Cut-Off lntercept Left

invocation condition: body:
(DESIRE recog blue
(! red 1 (cut-off-intercept)))

precondition:
(BELIEF bluel
(in-formation (redl red2)))

~ luel (! red l (cut-off-man-left)))

el (! red2 (cut-off-man-left)))

PLAN: Recognize Cut-Off Man.Leftl

invocation condition: body:
(DESIRE recog bluel
(! redl (cut-off-man-left)))

(recog blue 1 (in-roll-range-on-left redl))

(recog blue 1 (in-sort-range-on-left red 1))

Figure 8: Plans for Recognizing Intercepts

if"
jJ

- 281-

E1
DES E (!bluel(intercept))

PLN E Intercept (Complex)

DES R (!redl(cut-off-intercept))

(see Figure
/

PLN R Recog.~@nce~r Intercept Left

DES R (!re~(cut-off-man-left)) DES R (.red2 (cut-off

DES R (]redl(pincer-intercept))

-man-right))

n. Right2

e-on-right red2)

PLN R Recog. Cut-Off Man. Leftl PLN R Recog.Cut-Off Ma

ACT R (in-roll-range-on-left redl) ACT R (in-roll-rant

MS
PLN R Recog. Pincer Intercept Right

EIO~_
DES R (!redl(cut-off-man-right))

M12~
PLN R Recog. Cut-Off Man.rightl

El8
ACT R (in-roll-range-on-right redl)

~; Ell
DES R (!red2 (cut-off-man-left))

~M13
PLN R Recog. Cut-Off Man. Left2

IE19
ACT R (in-roll-range-on-left red2)

Figure 9: Means-End Tree for Execution of Intercepts

- 282-

E2
DES R ([redl(cut-off-intercept))

PLN R Recog. Cut-Off Intercept Left

E4~E5

DES R (!redl(cut-off-man-left)) DES R (!red2 (cut-o:

PLN R Recog. Cut-Off Man. Leftl

El2]

~M7

PLN R Recog. Cut-Off

~E13

ACT R (in-roll-range-on-left redl) ACT R (in-roll-r6

E6
DES R ([redl(cut-off-man-right))

PLN R Recog. Cut-Off Man.rightl

E14~
ACT R (in-roll-range-on-right redl)

if-man-left))

~an. Left2

nge-on-left red2)

M3
PLN R Recog. Cut-Off Intercept Right

DES R (!red2 (cut-off-man-right))

PLN R Recog.Cut-Off Man. Right2

rE15
~CT R (in-roll-range-on-right red2)

Figure 10: Means-End tree for Recognizing Intercepts

.283.

