From: AAAI Technical Report WS-94-02. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved.

1

In characterizing computational tools for supporting cooperative work, researchers have often
considered how dimensions of time and space lead to different tools. The result is often a
characterization [4] of tools like that shown in Figure 1, with representative entries in each

Adaptive surrogate agents *

'8

Sandip Sen Edmund H. Durfee
Mathematical & Computer Sciences Dept Department of EECS
University of Tulsa University of Michigan
600 South College Avenue 1101 Beal Avenue
Tulsa, OK 74104 Ann Arbor, MI 48109
sandip@kolkata.mcs.utulsa.edu durfee@engin.umich.edu
Abstract

Computational infrastructures for coopérative work should contain embedded agents
for handling many routine tasks [3], but as the number of agents increases and the
agents become geographically and/or conceptually dispersed, supervision of the agents
will become increasingly problematic. We argue that agents should be provided with
deep domain knowledge that allows them to make quantitatively justifiable decisions,
rather than shallow models of users to mimic. In this paper, we use the applica-
tion domain of distributed meeting scheduling to investigate how agents embodying
deeper domain knowledge can choose among alternative strategies for searching their
calendars in order to create flexible schedules within reasonable cost. In particular,
we are interested in developing mechanisms by which agents can adapt their strategy
choices to suit the demands imposed by a dynamically changing environment. In this
paper, we first enumerate various strategies we have investigated to focus distributed
negotiation between scheduling agents. Next, we demonstrate the necessity for such a
scheduler to be adaptive in its choice of options for the various strategy dimensions, so
that it can perform effectively over time. In order to build an adaptive scheduler that
can effectively choose from available strategy options, we develop quantitative perfor-
mance estimates of these options using detailed probabilistic analysis. Results from
these analyses are used to provide guidelines to choose the most appropriate strategy
combination given current environmental conditions and local problem-solving states.

Introduction

of the matrix elements. o

f3

*This research has been sponsored, in part, by the National Science Foundation under Coordination

Theory and Collaboration Technology grant IRI-9015423, and by a grant from Bellcore.

-299.

|| ” Same Time |Different Times ||

Same || Electronic Electronic
Place whiteboards | bulletinboards

Different || Tele- Electronic
Places | conferencing| mail

Table 1: Tools for Supporting a Collaboration.

Implicit in the entries of this matrix is the question being addressed by these tools. To
make this explicit, we could say that the matrix categorizes “tools that support collaboration
on a task among multiple participants who are in the z”, where z is some combination of
time and place dimensions.

But consider what happens if we use the same matrix but ask a different, though just as
important question. Since most if not all participants in a collaboration are also participating
in other collaborations, let us use the matrix to categorize “tools that support collaborations
for a single participant when the collaborative tasks are in the z”.

A person can face tasks at the same place’and different times, as visitors (email messages)
arrive periodically at the person’s office (workstation) in the course of a day. Or the tasks
might be at different places at different times, so that the person must travel (perhaps elec-
tronically) from task to task during a day. Either way, computational tools such as advanced
interfaces and networking software can support the person in his or her collaborations by
allowing the person to move more quickly among tasks and to complete each task faster.

Often, though, tasks for various collaborations must be done at the same time. For such
tasks, there are two general approaches to providing computational support. One approach is
to use computer processes to prioritize tasks, which serves to conceptually push the problem
back into the “different times” column. These processes can, for example, filter and sort
email [5], and can solve scheduling problems to help the user navigate among competing
tasks so as to attend to them one at a time in the proper order. Hence, this approach
performs “triage” on the tasks, but the user. has to eventually attend to them all.

The other general approach is to delegate ‘responsibility for tasks so that they can indeed
be handled in parallel. The idea here is to generate, to some degree, processes for the user
that act on the user’s behalf when he or she is otherwise occupied. Thus, in this approach,
the user might never have to attend to some of the tasks. In the case of “same place, same
time,” these processes could reside at the user-machine interface, intercepting tasks meant
for the user and completing them semi-autonomously. Much of the recent work in building
“agents” into interfaces has been directed toward this problem. In the case of “different
places, same time,” the processes could reside (geographically or conceptually) remotely
from the user, acting on his or her behalf with little if any supervision on the part of the
user. Thus, while interface agents could be monitored and continously tailored by the user,
remote surrogate agents cannot be. A user employing surrogate agents must therefore have
confidence in their decisionmaking, and the agents must have the ability to adapt themselves
to changing circumstances based on well-founded criteria. These approaches are summarized

-300-

” || Same Time I Different Times ”

Same || Filtering | Tools for rapid

Place agents— | task completion
Interface upon task arrival
agents

Different || Scheduling | Tools for rapid
Places | agents—= | movement among

Surrogate | distributed tasks
agents

Table 2: Tools for Supporting a User in Multiple Collaborations.

in Figure 2.

Our work has focused on the problem of how an application domain for intelligent surro-
gate agents can be analyzed, understood, and represented such that these agents can make
quantitatively appropriate (as opposed to heuristically motivated) adaptations to their en-
vironment, to carry out tasks on behalf of human users. Our particular domain of inquiry
has been the meeting-scheduling application, and we have been working on the design of
an automated meeting scheduling agent that can schedule meetings on behalf of associated
users [7, 6, 10]. The agents preserve privacy requirements of users, and reveal only restricted
amount of information about calendar states, as and when required, to schedule meetings
with other users. In this paper, we outline the design of an intelligent meeting scheduling
agent that can adapt its choice of heuristic strategies for negotiation to suit the current
problem-solving environment. Our design is based on the precise analytical evaluation of
alternative strategy choices. We present the probabilistic analysis used by agents to choose
between strategy options, and illustrate the benefit of adaptive scheduling by using example
problem scenarios. Our work promises to provide efficient automated meeting scheduling
capabilities that are not available with the current top-of-the-line calendar management
software [12].

2 Distributed Meeting Séheduling

The agents in a Distributed Meeting Scheduling (DMS) system exchange relevant information
to build local schedules that fit into a globally consistent schedule. To facilitate information
exchange, the agents need a common communication protocol for negotiating over meeting
times. For our agents, we have chosen to adapt the multistage negotiation protocol [2],
which is a generalization of the contract net protocol [11]. In our protocol, each meeting has a
particular agent who is responsible for it, called the host. The host contacts other attendees of
the meeting (who are called invitees) to announce the meeting, and collects bids (availability
information). This process could be repeated several times before a mutually acceptable
time interval is found, or it is recognized that no such time interval exists. Other meetings
could be undergoing scheduling concurrently; in general, an agent can simultaneously be

-301-

involved in scheduling any number of meetings, acting as a host for some and an invitee for
others.

How well this protocol performs in efficiently converging on good schedules is strongly
impacted by heuristic strategies about what information to exchange and how to model
tentatively scheduled meetings. In order to decide what to propose for a meeting, the agents
have to search their calendars in a systematic manner using some appropriate search bias.
Strategies for communication must balance demands for privacy (which lead to exchanging
less information) with demands for quickly converging on meeting times (which can be sped
up by exchanging more information). Strategies for modeling tentatively scheduled meetings
can range from blocking off tentative time(s) for a meeting unless and until the arrangements
fall through, to ignoring tentative commitments about a meeting when scheduling other
meetings. We have embarked on research to develop, analyze, and verify a formal model
of DMS to formulate rigorous, quantitative predictions of the performance of the following
types of heuristic strategies:

Search Biases determine the order in which the calendar space is searched to find
acceptable time intervals for a meeting. We have considered linear early (LE) where agents
try to schedule a meeting as early as possible, and hierarchical (H), where agents build
a temporal abstraction hierarchy over the calendar space. At each node in the hierarchy,
agents keep a record of the number of intervals of different lengths free below that node in
the hierarchy. The calendar space lends itself to a very natural hierarchy of hours, days,
weeks, etc., and the agents participating in a meetlng can first identify a good week to meet
in, then 1dent1fy a good day within that Week and finally an actual interval within that day.
leen a meeting of some particular length to schedule, the host obtains information about
the invitees regarding how many intervals of that length are open at each node (e.g., at each
week) at the highest level of the hierarchy. The host uses this information to calculate the
probability of scheduling the meeting under each of the nodes, ranks the nodes, elaborates
the best one, and proceeds to repeat the process for the next level of the hierarchy under
the elaborated node.! Backtracking occurs if a particular portion of the ground level being
elaborated contains no solution to the scheduling problem.

Announcement Strategies determine how a meeting is announced, and usually involve
proposing some number of possible times. We specifically consider the options called best
(where only the best meeting time from the host’s perspective, ranked by some heuristic like
being the earliest, is communicated) and good (where several times preferred by the host,
3 by default, are commumcated) o

Blddlng Strategies determine what information an invitee sends back based on an
announcement. We consider the options called yes_no (where an invitee says yes or no to
each proposal sent by the host) and alternatives (where an invitee proposes other time(s)
when it can meet).

Commitment Strategies are committed (when a time is proposed by a host or invi-
tee agent, that agent tentatively blocks it off on its calendar so no other meetings can be
scheduled there) and non-committed (times are not blocked off until full agreement on a
meeting time is reached).

1While some of this information could be obtained indirectly, we assume in this paper that agents will
directly communicate about the densities of various intervals, with a resulting decrease in privacy.

-302-

3 Adaptive scheduling

Our analysis of various strategy options [8] show that no one strategy combination dominates
another over all circumstances. Changing environmental factors like system load, organiza-
tion size, etc., can produce a change in the strategy combination that will produce the best
results on any given performance metric. If there is a way to predict the best strategy com-
bination for a given performance metric and given environmental and system conditions, we
would like our automated scheduler to take advantage of that. Such a scheduler would be
adaptive to changes in the system and the environment, providing us with the most desirable
performance as measured by certain performance metrics.

In the following, we will first illustrate the benefits of adaptive scheduling by describing
how an adaptive search bias technique can improve the performance of a scheduler over a
static choice of the search bias. We then discuss the choice of different announcement, bid-
ding, and commitment strategies. We note that the different strategy dimensions are not
mutually independent in that certain options along one dimension combine more meaning-
fully with certain options from another dimension. This leads us to the development of a
step by step procedure of choosing different strategy options given a snapshot of the meet-
ing scheduling scenario which can be used by an adaptive scheduling agent every time it
attempts to schedule a meeting.

4 Adaptive search bias

We believe that it is to our advantage to biiild schedulers that choose between alternative
search biases based on the current context, rather than using a default option under all
circumstances.

For example, if the scheduling agents were all using the H search bias, their schedules
would be evenly dense, and all parts of the calendars would be equally likely to schedule a
new meeting. At this point, one can save on the number of iterations by switching to a LE
search bias. The latter would not incur the iterations required by the hierarchical search
bias to traverse down the inner nodes of temporal abstraction of the calendar space, and
would focus search on a part of the space that is just as good as any other portion.

If the LE search bias is used for a while to schedule meetings, there will be considerable
density variations along the length of the calendar; when a meeting is being scheduled for
a large number of attendees, such variations can combine to give very different success
probabilities at different parts of the calendar. Additionally, if the host is more free than
invitees, and the latter are using a yes_no bidding strategy, a savings can be obtained by
using the hierarchical search bias (see Section 4.3 for examples). Hence, after a while there
will be sufficient mismatch between the schedules of agents to warrant the switch back to
the hierarchical search bias. The selling point of adaptive search bias is that the scheduling
agent can choose the most appropriate bias for any meeting based on the current states of
the attendee calendars.

To help decide between alternative search bias techniques, the following probabilistic
analysis will assume the availability of the density profile characteristics (or DPCs, which
depict the variation of meeting densities over the length of agent calendars) for the desired

-303-

meeting length for the attendees of the meeting.!

4.1 Scheduling probability with linear early search bias

In this section, we calculate the expected number of iterations taken by agents to schedule a
meeting using the linear early search bias. We assume that the total number of free intervals
of any given length is known for each of the days of the calendar of the agents attending a
meeting. Let possible(l,£) = L — [+ 1, be the maximum possible number of intervals of
length [open on a calendar day of £ hours (this happens when no meeting has been scheduled
on the day). Let available(s, j,1, L) be the number of intervals of length [currently free in
the jth day of agent #’s calendar, where each day is of length L.

Let us calculate the probability of scheduling the meeting on the first day (or any ar-
bitrary day). To simplify the expressions below, we introduce the following notations:
K = possible(l,L), A agents numbered 1,...,A are the invitees to the meeting, n, =
available(z,1,1, L) are the number of intervals of desired length open in the zth attendee’s
calendar on the chosen day. The host of the meeting will propose free intervals from its cal-
endar one at a time (assuming the best announcement strategy) until an interval is found
which is free in every invitee’s calendar. We will calculate P;, the probability that exactly ¢
iterations are required to schedule the meeting. This means that the ith interval proposed
was free in every invitee’s calendar and, for all of the previous i — 1 proposals, the proposed
interval was not available in the calendar of at least for one invitee. Let Pr(:) denote the
probability that the ith interval is free on the calendar of every invitee, and Pr(z) = 1— Pr(z)
denote the probability that the ith interval is occupied in the calendar of at least one invitee.
Now, K

P, = Pr(i,s—1,...,1)
= Pr(i) x
{1=Pr(i-1Ji)} x
{1 —=Pr(i—2i,s — 1)} x

{1- Pr(1[i,i=T,...,2)}.

There are ¢ multiplicative factors in the expression for P,. The jth factor in the expression,
where j > 1, is of the following form (see [6] for the proof)2:

A A K—y—l)

y A K
=6

[K—y—-1Y\"
Hm:l(nw_y_l

A K
e

?In the following and other calculations in this paper, we assume (Z) =0,ifb<Oorifa<b.

1—Pr(i—j+1li,i=1,...,i—j+2) =

s (77

y

-304 -

The denominator of the jth term is the same as the numerator of the (j — 1)th term Vj €
{2,...,i}. Hence, P; is equal to the numerator of the last of the ¢ multiplicative factors in
its expression. The probability that the ith proposal is the first to find the same interval
open in the calendar of all A invitees is thus:

Pi=§(—1)"(i—l) ﬁzl(i:ﬁ:i)' (1)

= J 4+ [K
=1 Ny

Using this equation, we can find out the probability of the host succeeding in scheduling
the meeting on any of the iterations proposing meeting on the first day. Suppose the host
agent is numbered 0 and it has ng, intervals open on the first day of its calendar. So, the
probability of the host scheduling the meeting on the first day is P(D,) = .2y Pi, where
F; is as given in equation 1. Let the failure of scheduling the meeting on the first day be
Q(Dy) = 1 — P(Dy). The probability that the meeting is scheduled by the ith proposal on
day 2 (requiring a total of ng 1 +1 to be proposed) is Q(D;)* P;. In general, the probablllty of
scheduling the meeting by the ith proposal on the jth day (requiring a total of ¢ + Zk_l no,k
intervals to be proposed) is given by P; *[T;—; @(Dy). This set of probabilities constitutes a
probability mass function for the random varlable corresponding to the number of intervals
to be proposed to schedule the required meeting given the current states of the calendars
of all attendees. This is identical to the probability mass function of the random variable
corresponding to the number of iterations taken by the best announcement strategy to
schedule the meeting (since this strategy proposes one interval per iteration). If the host
uses the good announcement strategy, proposmg N intervals per iteration, the probability
of scheduling the meeting in ¢ iterations is given by Pr(:, N) = N_*]V(z _1)+1 Pr(],), where
Pr(j,1) is the probability that the best announcement strategy required j iterations to
schedule the meeting.

4.2 Scheduling probability with hierarchical search bias

In this section, we calculate the expected number of iterations taken by agents to schedule a
meeting using the hierarchical search bias. Let us assume P agents (numbered 1,..., P) are
involved in scheduling a meeting of length [, and they have constructed identical temporal
abstraction hierarchies over the base calendar space (linear ordering of calendar hours). For
any internal node in the hierarchy, we will calculate the probability that one or more common
intervals are free in the base space of the calendars under that node, for every attendee of
the meeting. !

Let = be the node in question. Since, the hierarchies formed by the agents are identical,
every agent has a(l,z) intervals of length ! below this node of its abstraction hierarchy
(calculation of a(l, z) is simple; for now we assume that these invariant numbers are available
from a lookup table). We assume that the host has also collected the number of intervals of
length [currently free under node z for each of the agents. For agent 7, let this number be
f z(l » T)

Let A;,Vi € {1,...,a(l,z)} be the event that the ith (chronologically) of the a(l,z)
intervals is free in every attendees calendar. The probability that at least one of the events

- 305 -

Ay, ..., Ag(,z) occurs can be calculated as follows. Algebraic counting techniques based on
an inclusion-exclusion argument [1] can be used to show that, for n such events we have:

= Pr(A1)+ -+ Pr(An)
—PT(A1/\A2)—"'—PT(Ai/\Aj)—"'
FPr(A; A Ay A Ag) + -+ + Pr(A; A Aj A A) + - (2)

—(—1)”PT(A1 A A2 VANCERAN An)

We define p; = Pr(A;),V: € {1,...,a(l,z)},p;; = Pr(A; A A;),Vi € {1,...,a(l,z) —
]'} v] € {Z + 1 7a’(l 37)} s Pae(le) = Pr(Al JARRRNA Aa(lw)), and Sl = za(l'm)pn 52

Zz— 1,.,a(l,z)-1,5=141,..,a(l,z) pip;j, etc.
We first calculate Sk, the sum of the probabllltles of all & common intervals:

P a(l,z) — k)
a(l, z) S filbe) -k
Sk = .
k a(l,z)
I\ f,0)
From the above and from Equation 2 we can express the probability of at least one free
interval in each attendees calendar under node z as:

a%)(—l)fr1 (a(l,z)) - (Z((ll’,i)):i) (3)
t J P a(l,z)

Given the density profile characteristics of the attendee agents, we can use Equations 3
and 1 to calculate the probabilities of scheduling the meeting in any given number of itera-
tions. Since we are considering finite length calendars, there may be a non-zero probability
of failing to schedule the meeting. In that case, we have the probability of success for a
finite number of iterations, and a probability of failure. As the probabilities of success over
all iterations do not add up to 1, it is not a true probability mass function. We can nor-
malize these probabilities, producing a probability mass function conditioned upon success
of scheduling the meeting. Once the latter set of probabilities are calculated, we choose the
search bias with smallest expected number of iterations to success.

4.3 Some examples

In the following, we will consider two different sets of DPCs (see Figure 1). Each set involve
a host trying to schedule a meeting of length ! = 2 hours with two invitees. All the agents
are assumed to be managing calendars divided into 10 blocks of 5 hours each. We assume, in
the case of the hierarchical search bias, that the temporal abstraction hierarchy is comprised
of calendar hours, which are grouped into these blocks. The hierarchical negotiation mech-
anism, used by the host, first gathers information from the invitees about their respective

- 306 -

calendar densities in each of the blocks, orders these blocks by the probability of successfully
scheduling a meeting in each of the blocks, and negotiates over one block at a time going
down the ordered list. As the first iteration involves exchanging information about the inter-
nal nodes of the abstraction hierarchy, meetings can be scheduled starting from the second
iteration only.

Assuming meetings cannot straddle blocks, there are 4 intervals in each block that could
have accommodated the meeting if the calendars were empty. So, the constant K in equa-
tion 1, and terms a(l,z),Ve € {1,...,10} in equation 3, are equal to 4. The n, terms of
equation 1, and f;(l,z) terms for all the attendees and for all the blocks in equation 3, are
obtained from the DPCs of each agent.

DPCs of meeting attendees DPCs of meeting attendees
4 I I i I I ¥ I i 4 { J I I I 1 1 1

=] =]
)]

& &
’g 2 DPC1 —-— § Host +—
g DPC +- & Invitee] -+
A DPC3 -a- 2 Tvitee2 -6
Q]
Z L Z

1 b——————————————

0 1 1 1 1 L L | 1 ¥

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Block Numbers Block Numbers

Figure 1: Some example density profile characteristics for host and invitee calendars (each
calendar has 10 blocks of 5 hours each; desired meeting length is 2).

The first set of DPCs in Figure 1 corresponds to even density schedules for each of the
agents, though the load on each agent is different. We will use this DPC to construct two
examples, one in which the host has 1 interval open per block, and another in which the host
has 3 intervals open per block. The second set of DPCs in Figure 1 presents a more complex
scenario where the DPC curve has a constant value for only one of the three agents. We will
use this set of DPCs to construct one example. We now present results from using the the
hierarchical search bias and the linear early search bias with the best and good (proposing
3 intervals per iteration) announcement strategies on three example cases.

Case 1: The host calendar corresponds to the curve DPC1 (one interval open per block).
The host using the LE search bias with the best announcement strategy will end up an-
nouncing the open interval from successive blocks in successive iterations, taking at most 10
iterations within which it either schedules or fails at the end. The LE bias with the good
announcement strategy proposes intervals in three different blocks per iteration, and hence
requires a maximum of 4 iterations. The H search bias spends one iteration in the internal
nodes of the abstraction hierarchy and then steps through the 10 blocks, one at a time, and

-307 -

[Cases [LE(best) [LE(good)| H |

Case 1 2.575 1.294 3.575
Case 2 6.725 2.575 3.575
Case 3 10.68 3.836 2.193

Table 3: Expected number of iterations for scheduling the given meeting in three example
cases using different search biases and announcement strategies.

hence requires a maximum of 11 iterations. The order of the performance of the different
strategy combinations for this case is LE (Good) better than LE (best) better than H.

Normalized probability mass functions of iterations

0-8 [1 1 I 1 1 1
\ LE(Best) *— |
071 LE(Good) -+ 08 b7
06 P H oo .
0.5 1 06 b
04 F LE(Best) ~—
LE(Good) -+--
03 04¢ 4 H -0
0.2
02 1
0.1 [;
0 I_é’ } } + Y = - 0 m: 1 1 L 1 L
2 4 6 8 10 2 4 6 8 10
Number of iterations Number of iterations

Figure 2: Normalized probability mass function and probability distribution function with
different search biases for the first example.

Case 2: The host calendar corresponds to the curve DPC3 (three intervals open per
block). The host using the LE search bias with the best announcement strategy will spend
three iterations per block announcing the three open intervals in its calendar on any block in
successive iterations. It will thus take at most 30 iterations within which it either schedules or
will fail at the end. The LE bias with the good announcement strategy requires a maximum
of 10 iterations, and the H search bias requires a maximum of 11 iterations. The order of the
performance of the different strategy combinations for this case is LE (Good) better than
H better than LE (best).

Case 3: This case corresponds to the second set of DPCs in Figure 1. The host has a
varying density schedule without any simple pattern inherent in it, one invitee has a front-
loaded calendar (as would be produced by using a linear early type of search bias) and
the other has an evenly loaded calendar (as would be produced by a hierarchical type of
search bias). The maximum number of iterations taken by the LE search bias with best

- 308 -

and good announcement strategies are 20 and 7 respectively, while the maximum number of
iterations taken by the H search bias is 11. The order of the performance of the different
strategy combinations for this case is H better than LE (Good) better than LE (best). In
this scenario, the LE search biases waste iterations by proposing intervals open in the host
on the first two blocks. The hierarchical search bias starts negotiation at the most empty
part of the joint search space (corresponding to block number 9), and thus has a very high
likelihood of scheduling the meeting in the second iteration (the first iteration is spent at
the internal nodes of the abstraction hierarchy).

The expected number of iterations taken by the search biases for each of the cases dis-
cussed above are listed in Table 3. The probability of failure to schedule the above meetings
using any of the search biases is 0.009 for the first and second cases, and 0.004 for the third
case. The probability mass functions conditioned upon successful scheduling and associated
probability distribution functions for Cases 1, 2, and 3 are given in Figures 2, 3, and 4
respectively.

Let us now briefly discuss the qualitative characteristics of the DPCs of the host and
invitees that makes it useful to use one search bias over the other. The hierarchical trades
off iterations spent at inner nodes of the hierarchy with savings obtained by focusing on
the relatively empty part of the joint search space. When compared to any other search
bias on the metric of iterations required to schedule a meeting, the deciding factor becomes
whether the savings obtained by focusing search to “greener pastures” can offset the initial
cost incurred. When compared to the LE search bias, this means whether the host will
spend sufficient unsuccessful iterations at the start of the calendar. This would happen if
the host has a number of intervals free early in the calendar to propose that cannot be used
because one or more invitees has its calendar relatively full in this part (as in Case 2). But
the savings obtained by focusing search was not enough when compared to the LE search
bias with the good announcement strategy. That finally happened in Case 3. More often
than not, the hierarchical search bias will produce fewer expected iterations for cases where
the densities of agent calendars vary and the different agent calendars look different (we
believe these cases are more frequent in real life). Our analysis shows that it is better to
choose search bias on a case by case basis rather than using a fixed option.

4.4 Interaction between strategies

The different strategy dimensions are not mutually independent. In order to use the hi-
erarchical search bias, the corresponding informed negotiation mechanism has to be used
by all meeting attendees. The different announcement and bidding strategy options can be
used only with the linear early search bias. Different commitment strategies can be used
with the hierarchical negotiation mechanism only when agents are exchanging information
about the ground space of the calendar. As such, the sequence of strategy decisions to be
made by meeting scheduling agents consist of choice of search bias followed by choices of
announcement/bidding strategies, and ultimately the appropriate commitment strategy.

In order to develop the relative merits of different strategy combinations under differ-
ent environments, we define the following characteristics of the environment and the agent
schedules. In this paper, we will assume boolean values of high (H) and low (L) for these
environmental factors (see Table 4).

-309 -

Success probability: The probability that a proposed interval will be accepted by all
attendees to a meeting will largely decide the options for various heuristic strategies. This
probability can be calculated from the DPCs of attendees.

Window of acceptance: When a new meeting arrives, this factor is measured by the
number of possible starting times for the meeting requested. As more and more intervals
are unsuccessfully negotiated, the remaining,window of acceptance reduces. We will use the
dynamic window of acceptance measure to choose appropriate strategy options.

Negotiation Density: The number of meetings being currently negotiated in a given
portion of the calendar impacts the likelihood of conflicts between processing of these meet-
ings. This feature will be used to choose between different conflict avoidance options.

4.5 Announcement & Bidding Strategies

In this section, we assume that the scheduler has adopted the linear early search bias, and
discuss the choice of the announcement and bidding strategies. If the number of iterations
were the only metric we are interested in, we should almost always use the good announce-
ment strategy. In practice, however, other performance metrics will be of importance as
well, and we need to consider the effects of other environmental factors to decide on the
most appropriate announcement strategy. After having chosen the linear early search bias,
the scheduler knows the likelihood of success of scheduling using one iteration. Generally
speaking, it is better to use the good announcement strategy whenever the negotiation den-
sity is low. The only exception is when the success probability and acceptance window are
low as well. For this case, it is advisable to use best or good option depending on the
relative priority of this meeting compared with other meetings being negotiated in the same
region of the calendar.

The choice between alternative bidding strategies can be made based on the same factors
as those used for making an informed announcement strategy choice. The scheduling agents
should use an alternatives bidding strategy for conditions leading to a choice of good
announcement strategy. Alternatively, the scheduling agents should use a yes_no bidding
strategy for conditions leading to a choice of best announcement strategy. Another factor
that determines expected iterations to convergence when an LE search bias is used, is the
relative availability of the host with respect’ to the invitees at the front end of the window
of acceptance of a given meeting. If the availability of the host is considerably higher than
the most busy invitee, a large savings in iterations can be obtained when the corresponding
invitee uses an alternatives announcement strategy compared to a yes_no announcement
strategy. This helps the host to remove intervals from consideration, which it would have
announced unsuccessfully otherwise.

4.6 Commitment Strategy

A scheduler decides on the appropriate commitment strategy after it has made the choice
for search bias and announcement/bidding strategies. Table 4 shows that the deciding factor
in the choice of commitment strategy is the success probability of scheduling the meeting
using one proposal. An agent should commit to a proposed interval when the likelihood of
scheduling the meeting with that proposal is high. The only exceptions are when

-310-

Successprob. | H|{H|H|H|(L|L|L|{L
Acc.window |H|{H|L|L{H|H|L{L
Neg. density |H|L | H|L | H|L | |H|L
Announcement | B|G|B|[G|B |G |G |G
Commitment | N|C|C|C|N|N|N|C

Table 4: Matrix to choose the most appropriate announcement (G for good, B for best) and
commitment strategy option (C for committed, N for non-committed) strategy options.

1. both window of acceptance and negotiation density are high (other meetings vying for
the same spot, and there are enough other possibilities to schedule the current meeting)

2. both window of acceptance and negotiation density are low (not many possibilities
remaining for this meeting, and few other meetings being considered for this part of
the calendar).

5 Conclusion

In order to be useful and efficient, a surrogate agent must be adaptive both to the demands
of the environment and the needs of its associated user. In this paper, we have argued
in general terms for developing surrogate agents that make decisions based on carefully-
constructed models of the application domain. From a practical standpoint, this means
that, in applications like distributed meeting scheduling, a human user that is tailoring his
or her process should at least be aware of the impacts of alternative choices of heuristic
strategies, and should have the option of allowing the scheduling system to adapt its own
strategies as circumstances change.

We have demonstrated the benefits of adaptive choice of heuristic strategy combinations
by automated meeting scheduling agents. Our proposed design for an adaptive meeting
scheduling agent is based on expected performance of strategy combinations, developed
using precise probabilistic analysis. The use of probabilistic analysis to develop quantitative
estimates of the performance of alternative heuristic strategies is novel within the field of
distributed AI (DAI). As such, our work proposes a new methodology to develop and evaluate
future DAI systems.

Most distributed scheduling scenarios can be mapped into the distributed meeting schedul-
ing framework. As such, our techniques can be used on a broader class of problems if the
multi-stage negotiation protocol is applied to solve those problems. In particular, we have
showed that our proposed system of distributed contract-based negotiation can be effectively
used in a manufacturing environment [9].

We have not addressed the problems of constructing efficient user interface, calendar
browsing software, encoding all possible user requirements, etc. These concerns need to be
adequately resolved before a working application can be implemented. We plan to investigate

-311-

the incorporation of user preferences within heuristic strategies as the next step towards the
development of a functional meeting scheduling system.

References

[1] K. Bogart. Introductory Combinatorics. Pitman, Boston, MA, 1983.

[2] S. E. Conry, R. A. Meyer, and V. R. Lesser. Multistage negotiation in distributed
planning. In A. H. Bond and L. Gasser, editors, Readings in Distributed Artificial
Intelligence, pages 367-384. Morgan Kaufman, 1988.

[3] J. Galegher, R. E. Kraut, and C. Egido. Intellectual Teamwork: Soctal and Technological
Foundations of Cooperative Work. Lawrence Erlbaum Associates, Hillsdale, NJ, 1990.

[4] R. Johansen. Groupware: Computer Support for Business Teams. Free Press, New

York, NY, 1988.

[5] T. W. Malone, K. R. Grant, F. A. Turbak, S. A. Brobst, and M. D. Cohen. Intelligent
information-sharing systems. Communications of the ACM, 30(5):390-402, 1987.

[6] S. Sen. Predicting Tradeoffs in Contract-Based Distributed Scheduling. PhD thesis,
University of Michigan, October 1993.

[7] S. Sen and E. H. Durfee. A formal study of distributed meeting scheduling: Preliminary
results. In Proceedings of the ACM Conference on Organizational Computing Systems
’91, pages 55—68, November 1991.

[8] S. Sen and E. H. Durfee. A formal analysis of communication and commitment in
distributed meeting scheduling. In Working Papers of the 11th International Workshop
on Distributed Artificial Intelligence, pages 333-342, February 1992.

[9] S. Sen and E. H. Durfee. Dependent subtask processing in a contract-net for manufac-
turing. In Proc. of AAAI-98 Workshop on Intelligent Manufacturing Technology, pages
7-13, July 1993.

X

[10] S. Sen and E. H. Durfee. The role of commitment in cooperative negotiation. Interna-
tional Journal of Intelligent and Cooperative Information Systems, 1994. (to appear).

(11] R. G. Smith. The contract net protocol: High-level communication and control in
a distributed problem solver. IEEE Transactions on Computers, C-29(12):1104-1113,
Dec. 1980.

[12] E. Taub. Sharing schedules. MacUser, pages 155-162, July 1993.

-312-

Probability distribution functions of iterations

Normalized probability mass functions of iterations
04 T T T T T 1 P S
+ m /*»
H LE(Best) <— | 1
035 |1 LE(Good) -+~
i H -0 08 :
0.3 -'.{' .
0.25 "'*m . 0.6 i
¥ ; LE(Best) ~—
04 b4 LE(Good) =
0.2 .
R om :A: :‘: R ===l 0 L L 1 L L 1
5 10 15 20 25 30 5 10 15 20 25 30
Number of iterations Number of iterations

Figure 3: Normalized probability mass function and probability distribution function with

different search biases for the second example.

Normalized probability mass functions of iterations
0-9 @) 1 I)] 1 1 1 1
08 B ".: LE(BeSt) - d
' LE(Good) -+
0.6]
05 | | 0.6
P : LE(Best) ——
04 1 T Pt LE(Good) -+
oy 041 H-o-]
0.3 "f :(,\\\\ 9 : "’
N /"; \4'\ H I’
02 /i ™% T 02 f]
0.1 ,"./'{ EJ i -'/*I
0 #—4—o ." bt it 0 I, 4—0—4 L 1 L 1 1
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Number of iterations Number of iterations

Figure 4: Normalized probability mass function and probability distribution function with

different search biases for the third example.

-313-

