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Abstract

Research in distributed AI has dealt with the interactions of agents, both cooperative and
self-interested. The Recursive Modeling Method (RMM) is one method used for modeling ratio-
nal self-interested agents. It assumes that knowledge is nested to a finite depth. An expansion
of RMM, using a sigmoid function, was proposed with the hope that the solution concept of the
new RMM would approximate the Nash EP in cases where RMMs knowledge approximated the
common knowledge that is assumed by game theory. In this paper, we present a mathematical
analysis of RMM with the sigmoid function and prove that it indeed tries to converge to the
Nash EP. However, we also show how and why it fails to do so for most cases. Using this anal-
ysis, we argue for abandoning the sigmoid function as an implicit representation of uncertainty
about the depth of knowledge, in favor of an explicit representation of the uncertainty. We also
suggest other avenues of research that might give us other more efficient solution concepts which
would also take into consideration the cost of computation and the expected gains.

1 Introduction

Research in distributed AI has dealt with the interactions of agents, especially rational agents. In
order to make a good decision, an agent must be able to anticipate the actions of others, which can

be accomplished using an internal model of the other agents. Typically, an agent can assume that
the other agents possess some degree of rationality. If so, the agent should also model the other
agents modeling him, and so on. This situation leads to a recursive nesting of models, which is the

basic architecture of the Recursive Modeling Method (RMM), see [4].
The recursive nesting can be infinite in some situations, as would happen if common knowledge

was assumed. Common knowledge is the case where all agents know that all agents know ...that
all agents know a fact p, where the phrase "all agents know" is repeated an infinite number of times.

Game theory has studied such cases extensively and has an agreed upon fixed point solution, the

Nash Equilibrium Point (EP), for them. Recently, some game theorists have questioned the common
knowledge assumption on the grounds that such an infinite nesting would be impossible to achieve
in reality[5]. There have also been some computational tractability concerns which have lead to

other solution concepts [1] which approximate the EP solution but only assume Ek knowledge1.

RMM has employed several different solution concepts through its history. Originally it would
simply recurse down until it reached a known finite level and then propagate a solution back up.
This method leads to a correct solution only when the agent knows that it is exhausting all the

possible levels of knowledge. If the final level is unknown or we are uncertain about it, the next

version of RMM would handle this by recursing down until it found some convergence or a cycle.

1Ek knowledge is recursive knowledge but only up to some finite k level of nesting
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This new method could conceivably recurse indefinitely using the same models at deeper levels,
as would happen if there was common knowledge. Durfee, Lee and Gmytrasiewicz [3] set about
understanding the relationship between RMM and Nash EP for this particular case and discovered
some differences. In an attempt to reconcile them, they considered a new solution concept, RMM
with the use of a sigmoid function which we will refer to as RMMs. The sigmoid method would at
times approximate the Nash EP, but suffered from stability problems and the authors gave some
thoughts as to why this was happening .

In this paper, we give a more complete analysis of the behavior of RMMs and answer questions
about whether it can be expected to always converge to the EP. We prove that it is trying to
converge on a Nash EP, after defining what we mean by this. We also address its stability problems
and explain why these problems arise, with the conclusion that it would be impossible to reliably use
this technique for all games. The paper starts by reviewing the aforementioned solution concepts.
Section 4 presents a differentiation method, used in [3], and proves that it sometimes finds a Nash
EP solution for some games. We will later prove, in Section 6, that this is the same solution that
RMMs attempts to converge to when it converges on a mixed strategy solution. In this section
we will also define what it means to attempt to converge on a solution. We then use this result to
prove that l~MMs always tries to converge to a Nash EP. Note, however, that we said that RMMs
tries to converge to a Nash EP. In fact, Section 5 will show, using nonlinear system theory, why
the sigmoid method actually fails to converge to the Nash EP. We also provide a better method for
understanding the behavior of RMMs. Our analysis is then expanded to non-symmetric games for
which we show that it is impossible for RMMs to converge on a mixed strategy Nash EP.

With this improved understanding of RMMs’s solution concept, we then return to the broader
question of recursive modeling in arbitrary domains. In its current and latest form, RMM explicitly
represents the probabilities for deeper nesting of knowledge and overcomes the limitations of the
previous versions of RMM. However, it is still sometimes time consuming or not practical to use all
the finite knowledge that is available. We end this paper with a look toward ways of expanding RMM
so that it can take into account computation and time costs versus possible payoffs, which would
facilitate the maximization of expected payoffs. We also look into the question of whether it is wise,
in certain circumstances, to assume common knowledge, and into the question of metareasoning.

2 The Recursive Modeling Method

In our discussion, we will be concentrating on a subset of the RMM theory. Specifically, we will
assume two agents of interest both of whom have accurate knowledge of each other’s payoff matrices,
to some certain finite level. We also assume that this level is sufficiently large. For these cases,
RMM builds a recursive hierarchy where each level is a payoff matrix that represents the payoff
the player expects.

For instance, if player A has payoff matrix M and player B has matrix N, player A will use its
matrix M to determine which move it should make. It determines its move by calculating which of
its options will give it the highest payoff. But, to do this, it needs to know what player B is playing.
It will then assume that player B will also try to maximize its payoff and so it will model player
B using its payoff matrix N. Player A will model player B, recursively, modeling A with its matrix
M, and so on. This hierarchy will continue to expand until we run out of knowledge. (Note that if
we had real common knowledge the levels will be extended to infinite depth.) The final level will
then be filled with the "zero knowledge" solution, where we simply represent our lack of knowledge
as the player playing each of its options with the same probability. Once we reach the final level,
we can propagate the values back up the hierarchy and determine which move is the best one for
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Figure 1: This is the hierarchy of a simple RMM game to four levels for two players A and B. The
bottom most element is the "zero knowledge" solution. After propagating values to the top the
solution we get tells us that the player A should pick choice b.

us to take. Propagation is done by, at each level, assuming that the strategy from the level below
is the one the other player will play and, with it and the game matrix, calculating what the best
strategy for this player is. An example can be seen in Figure 1.

The full version of RMM allows the game matrices to change for each level. That is, if my
payoff matrix is M, it is still possible that I think that my opponent thinks that my payoff matrix
is something other than M. In fact, every payoff matrix in the hierarchy could be different. We are
not concerned as much with these cases because these situations do not lead to Nash equilibriums.
In fact, if this knowledge really represents the true state of the world then it should be clear that
RMM does come up with the best strategy (since it considers all the knowledge available and tries
to maximize payoffs at each stage). However, we are concerned about the simpler case where both
agents are presented with a standard game-theoretic payoff matrix, of which they have complete
or almost complete common knowledge. For this case, game theory predicts an EP solution, which
is not the solution that the original RMM necessarily arrives at.

3 The different solution concepts.

3.1 Simple RMM solution

In its original specification, RMM’s solution would sometimes oscillate as we increased the number
of levels used. It would, for example, return one answer if we applied the algorithm to an odd



number of levels, and another answer if we applied it to an even number of levels. The ambiguity
was resolved, in some instances, by averaging out the different answers. The resulting solution
proved to be different than the EP solution.

3.2 Nash EP solution

The Nash EP solution states that, given an EP vector of strategies, no individual player, regarding
the others as committed to their choices, can improve his payoff by deviating from its strategy.
There is no standard way of finding the Nash EP for all games, although different methods and
tricks can be used in certain situations.

3.3 RMM solution using the sigmoid function.

It was hypothesized that the reason RMM failed to reach the EP solution was because it committed
to one conjecture or another too early (i.e. it was overeager). The problem was fixed by incorpo-
rating a sigmoid function whose role is to reduce the importance of the solutions close to the leaves
of the tree. Details on this function can be found in [3]. We will call this version RMMs. The
deeper levels of the hierarchy were multiplied by a sigmoid function with a very small exponent k.
A small exponent has the effect of transforming’ the old strategies into new ones with a reduced
difference in the probabilities for choosing any one option. At the extreme, for k = 0 all the options
receive the same probability. The higher levels of the hierarchy got bigger values of k, up to infinity.
With a value near infinity the sigmoid functions transforms the strategy such that the one option
with the higher probability than all the others will now have probability equal to 1, while all the
other options will have probability equal to 0. The function for the probability of option i, given
its expected payoff relative to the payoffs of all the options J, is:

= Payoff(/)k/ Payoff(j)k
jEJ

Implementation of the sigmoid function leads to some peculiar behavior where the algorithm
seemed to get closer and closer to the mixed EP solution only to then diverge away from it and
go back to the pure strategy solutions (1,0) and (0,1). Such behavior always appeared no matter
what rate of increase we chose for the exponent of the sigmoid function. Our goal for this paper is
to explain why this behavior occurs and what it means.

4 How to find an EP solution

A Nash EP solution is very well defined; however, there is no definitive method for finding it. The
differentiation method used to find the EP solution in [3] is not guaranteed to always work. It
might not find all the EPs. However, this method is fairly powerful and, as we shall see later, the
solution it returns corresponds to the one R.MMs sometimes tries to converge to. It will, therefore,
be useful for us to exactly define the solution that the differentiation method derives. The following
theorem can be proven using some algebraic manipulations. Its proof can be found in Appendix
A.1.

Theorem 1 The solution strategy arrived at by using the differentiation method is X such that:
given that our opponent’s payoff matrix is M, M ̄  X = N, where N is the vector matrix that has
all its values equal to 1/N (given that M is an N × N matrix).
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Given a specific game matrix

e d

we can use Theorem 1 to conclude the following:(Appendix A.2)

Corollary 1 For two players with two choices, the solution arrived at by using the differentiation
method is x:

b-d
x = (1)

c+b-d-a
Where x is the strategy for one of the players and the matrix is the payoff matrix for the other
player.

In other words, the differentiation method returns a strategy such that, if we play it, our
opponent will get the same payoffs no matter what he plays. This information is all we need in
order to come up with an equation for the solution in the 2 × 2 case. Please note that the solution
arrived at by the differentiation method does not take into account the player’s payoff matrix, only
his opponent’s. Since we know that our opponent’s strategy is such that no matter what we play
we get the same payoff we can prove the following:(Appendix A.3)

Theorem 2 For two players, the strategy x arrived at by the differentiation method (if any) 
always a weak Nash equilibrium point.

A weak Nash EP is one were we are not doing strictly better with our strategy but we are doing
as well as with any other strategy. It should be clear that the differentiation method might fail to
arrive at a legM answer (i.e. it might set the probabilities to be more than 1 or less than 0). For
such cases, the theorem does not hold. Also note that the converse of Theorem 2 is not true so we
can conclude that, while the differentiation method, when it works, will return an EP, we can not
rely on it to find any or all of the EPs. 2

5 Understanding the behavior of RMMs

It is easier to understand the behavior of RMMs by looking at a picture of a symmetric game where
both players have the same payoff matrix, with,only two possible choices for each player. Since
there are only two possible moves, we can assume that one of the moves is selected with probability
x and the other one with probability 1 - x. We represent the probability x on the x-axis. The
y-axis represents the normalized expected payoff to the other player, also known as the sigmoid
function. We then draw a different payoff curve for each value of the exponent. We also draw the
line y = x. Since both opponents have the same payoffs, and therefore the same sigmoid function,
we can map the behavior of the RMMs algorithm in much the same way as we would trace the
behavior of a non-linear system [7]. We start with the value x = 1/2, our initial guess, and trace
the progression of the solution, as seen in Figure 2.

As can be seen, as the exponent k increases the sigmoid curve gets steeper around x = 1/3, the
EP solution. If we trace the RMMs solution we see how it approaches, at the beginning, the EP
solution. However, when it gets too close, it starts diverging back the the pure strategy solutions.

~As a side note, we might mention that all the Nash EPs, of a 2 × 2 game, can be found by plotting both sigmoid
functions for k = c~. One of them is plotted in the standard way, and for the other one we switch the x and y axes.
These functions will cross at either one or three points. The intersection points will correspond to the EPs.
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Figure 2: Here we see the progression of the solution for the RMMs algorithm. The numbers on
the curves are the exponents (k) of their respective curve. The lower levels of the l~MMs hierarchy
have the smaller values of k, which keeps increasing as we go up in the hierarchy. The solution
starts at .5 (going up to meet the sigmoid, then left to meet y = x, and so on) and works its way
towards the pure strategy solutions.

Figure 2 gives us a good intuition as to why the EP solution, for this example, is not a stable
solution in the RMMs model. We can see that the sigmoid function gets steeper and steeper around
x = 1/3. We can also see that at each step of the algorithm, the solution line goes horizontally
to meet the curve y = x and vertically (down) to meet the sigmoid curve. It should be clear that
the moment the solution falls below y = 1/3 it will immediately spinout to the pure solutions. It
should also be clear that this can easily happen if we increase the exponent too fast because then the
sigmoid curve will be so steep that, when the solution tries to meet the curve it will fall below 1/3.
This is the reason why RMM5 needs to be careful when increasing the exponent. Unfortunately,
even being careful will not always work.

The reason the solution might still diverge is that the point of intersection might not be an
attractor. Nonlinear systems theory tells us that if the magnitude of the slope of the curve at the
point of intersection with y = x is greater than 1, then the point is not an attractor. Figure 3 shows
a plot of the slope at the intersection point as a function of x. Experimentally, we have determined
that, for this case, the point of intersection stops being an attractor when k gets bigger than 1.6976,



y 1

-1

Figure 3: Plot of the slope at the intersection point x, for the same game as in the previous figure.
Note that the point will stop becoming an attractor when the magnitude of the function is greater
than one, in this case when x = .4175. Also, slopes greater than zero correspond to negative values
of k so we will ignore them.

with x = .4175. We have derived an equation, for the general 2 x 2 case, that gives us the slope at
the point of intersection for arbitrary values of x. With it, we can determine the x value for which
the magnitude of the slope becomes greater than 1. Once we have the x value, we can determine
it’s corresponding k. These equations are quite complex, so we have included them in Appendix
A.4. Unfortunately, we have been unable to solve for k and find an equation for the value after
which the point of intersection will not be stable. This task seems especially daunting due to the
complexity of the equations. If we could find it, such an equation would tell us exactly after which
point RMMs should start being especially careful. Fortunately, with the equations given, we can
easily find k using simple numerical methods.

Looking at these numbers, we notice that the point x = .4175 at which the RMMs solution
becomes unstable is far removed from its desired solution point of x = .3333. The RMMs algorithm
would have to be responsible for keeping the solution from diverging as the sigmoid curve travels
through this area (i.e. from k = 1.6976 to k = c~). Especially since, as k gets bigger the intersection
point becomes more unstable. For k = ~ it is infinitely unstable.

These reasons seem to indicate that there is no easy way of modifying the I~MMs algorithm

J
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to always converge on the intersection point. If we try to slowly increase the exponent so that the
solution will not go down too far, we will find that the solution will still diverge because we are
no longer near an attractor. It is true that the solution might seem to get closer to the desired
EP solution even after passing the last attractor point, but this would simply be due to the fact
that we are changing the exponent. If at any moment we were to stop increasing the exponent, the
solution would diverge since the point is not an attractor. On the other hand, to keep increasing
the exponent in a such a way that the solution always stays close to the intersection point would
mean that we have prior knowledge of the value of the EP solution we are trying to reach.

Keeping the "best" solution (i.e. the one with the higher expected payoff) at each step will
result in a smoother approach since we will be ignoring the divergences that appear because we
are not near an attractor. But it will lead to a situation where we either stop moving or we jump
towards the pure solutions once one of the player’s sigmoid curves make it go below the EP.

Please note that although the previous reasoning dealt only with our one example it also applies
to all game matrices with a mixed strategy Nash EP. The reason is that the sigmoid curve for them
will have basically the same shape as the one we show. The only possible differences are that it
might have a different crossover point or it might have the values to the left of the crossover equal
to zero and the ones to the right equal to one. None of these differences is significant given our
reasoning.

6 RMMs desired solution concept

We established in the previous section that R1VIMs cannot reliably converge on the intersection
solution (i.e. on the intersection point, as explained in Section 5). In this section, we will provide
a method for arriving at the intersection solution and prove that it is a Nash EP. Our reasoning
will prove that RMMs is trying to converge towards a Nash EP. That is, the intersection point
presented in the previous section (i.e. the one RMMs was trying to converge to) is a Nash EP.
Furthermore, we show that in a 2 x 2 symmetric game RMMs will always try to converge to the
weak mixed Nash EP, if there is any. If none exists then it will converge to the pure Nash EP.3

For the general 2 by 2 symmetric game matrix, we can mathematically determine the solution
that RMMs will try to converge to. We start with the following game matrix:

(ab)c d

The sigmoid function for this matrix is f(x], where x is the probability that the player will
choose to play his first option, while playing the’ ’second option with probability 1 - x.

(ax + (1- x)b)f(x) = (ax (1- x)bk + (cx + (1- x)dk

To find the point where this function intersects the line y = x (i.e. the solution RMMs is trying to
converge to) we set x = f(x), and after some manipulations we get the following equation:

xl/k(x(c- d) + d) = (1 x)i/k(x(a- b) (3)

The solution that RMMs tries to approximate is the x as k ~ co such that Equation 3 is true.
We notice that as k ~ co the terms x1/k and (1 - x)1/k drop off to 1, assuming that 0 < x < 1.

3Game theory tell us that, for this case, we will have either one pure Nash EP, or one mixed EP and two pure
EPs.
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We can then solve for x, the solution point.

b-d
x = (4)

c+b-d-a

Please note that 0 < x < 1 must be true. The only other two possibilities RMMs allows are for
x = 0 or x = 1. So, if we use the previous equation for x and it returns a value that is not legal,
we can still find the value returned by RMMs by assuming that it is going to return either 0 or 1
and doing the calculations to confirm or deny this. In other words, if we assume that x = 0 then
it must be true that

bk
x = moo/(0) : moo + - (5)

b < d (6)

So if b < d then RMMs will return x = 0. Similarly it will return x = 1 if the following is true:

ak
lim f(1)= lim -1 (7)k--*oo k--.oo ak + Ck

c<a (8)
If both of these are true then we have the case where, b < d and c < a but if we look at our original
equation for x we can see that if this were the case then the value of x would have been legal (i.e.
x = (b - d)/(c + b - d - and0 < x < 1), so we are backto our o rigi nal case.The same logic
applies if b > d and a > c. The only possible case left over is if both b = d and c = a; then x = 1 if
a > b, x = 0 if a < b and x = 1/2 if a = b.

Cases where b < d and c < a are ones where all the values on the diagonal are good but the
agents cannot decide which one to pick. For example, in the matrix

RMMs would try to converge towards x = 1/3. This solution is a Nash EP but it has a payoff
for both players of 7/3. This payoff is much lower than the payoff of 5 they would get if they had
played the "common sense" strategy of x = 1 (which is also a Nash EP). The reason this solution
was picked is because RMMs gives preference to any mixed strategy EP, no matter what the payoff
is.

Another example would be the following matrix:

Here we can calculate the value of x to be

2-i 1
x= 1+2-1-5

3 (9)

so the value of x is illegal, but since 1 < 5 this implies that x = 1. So both players choose to play
their first option for an expected payoff of 5.

We should note that this analysis proves that, for symmetric games, RMMs tries to converge
to a Nash EP. The analysis was done for the 2 × 2 case since it is the one we are more concerned
with. However, it is our belief that the same manipulations can be applied to bigger matrices and
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will provide us with the same results. Notice that equation 4 is identical to equation 1. This tells
us that, when RMMs is trying to converge to a mixed strategy (i.e. 0 < x < 1), it is actually
trying to converge to the same solution as the differentiation method and we proved earlier that
this solution is always a weak Nash EP (if it exists). If RMMs instead is trying to return a pure
solution then we know that it is a Nash EP because it is the strategy that both players prefer.
That is, the strategy lZMMs will try to return in these cases will be the value of f(x) : 0 < x < 
when k = oo. That means that it is the strategy that maximizes our payoffs no matter what our
opponent plays. This strategy is also a Nash equilibrium since it implies the definition of a Nash
EP: given that our opponent played some 0 < z < 1 we can do no better than to play this strategy.

To summarize, our analysis showed that in cases where a mixed weak Nash EP exists, RMMs
will try to converge to it. If no mixed EP exists, then RMMs will converge to the pure Nash EP. The
mixed weak Nash EP solution might not be pareto-optimal and might therefore seem "wrong" to
us, but it is a Nash EP solution. Such a solution can be justified by considering the agents as "risk
averse". Such agents try to choose a strategy that minimizes their possible losses no matter what
the other agent does. The strategy that satisfies these constraints best is the weak EP strategy.
In this section, we also provided a direct mathematical method for finding the EP solution that
RMMs is trying to converge to.

6.1 Non-symmetric games

Non-symmetric games can be represented by using two curves, one for each payoff matrix. The
solution will then alternate between each curve. In such cases, we will see an initial (for small
k) unpredictable movement of the solution value as it shifts back and forth between the changing
curves. But as k increases, these curves take on a definite shape over the interval 0 < x _< 1.
Effectively, the final curves (k = o¢) can have oi/e of four shapes over this interval:

= o
f(x) = 1

= {

f(x) = 

0 if x < c for some 0 < c < 1
1/2 ifx=c
1 ifx>cforsome0<c< 1

1 ifx<cforsome0<c< 1
1/2 if x = c
0 ifx>cforsome0<c< 1

(lO)
(11)

(12)

(13)

The values RMMs is trying to converge to are those points where the two curves cross y = x.
If we examine the 16 possible combinations (i.e. 4 × 4) of final curves, we see that there are only
four types of behavior the final solution can show. It can be stable at either 0 or 1, it can cycle
between these two, or it can cycle repeating each number twice (e.g. 0,0,1,1,0,0...). We should
point out that all these behaviors were previously observed when doing experiments with RMMs.
Our reasoning provides an explanation for why RMMs always settled on one of these behaviors.
We show some of the possible combinations in Figure 4. As can be seen, for some combinations, the
final behavior might depend on the initial guess. For example, the initial guess might determine if
the solution stabilizes at 0 or at 1. Notice, however, that none of the possible final behaviors allows
for any other solution besides 0 or 1.4 We can then see that it is impossible for RMMs to converge

4Actually, this is not completely true, if both functions have the same c -- 1/2 then this point will be a trembling
hand equilibrium. The payoff matrix would also have to be symmetric. However, since this is not a stable equilibrium
we will ignore it.



0,0,1,1,0,0,1... Oorl 1,0,1,0...

Figure 4: We show some of the final configurations that might be arrived at by the curves in a
non-symmetric game. In each case the solution will go up to one curve then horizontally to the line
y = x then vertically to the other curve and back. We can see how this behavior of the solution
will lead only to the specifed behaviors. In the second example, the final behavior will depend on
the initial guess.

to a mixed solution when it is modeling two players with different payoffs.
Furthermore, since the shapes of the curves directly map to the existence and type of Nash EPs,

we can predict, given the number of Nash EP that exist, what the final behavior of RMMs will be.
We can do this because we know that if there is one mixed Nash EP then the curves will have a
step shape but one will go from 0 to 1 while the other one will go from 1 to 0 (i.e. the leftmost
case on Figure 4). If there are two pure and one mixed EP we have the middle case of Figure 4,
and if there is one one pure EP this means that both curves are either zero or one. Now that we
know this it is easy to deduce the following:

* If there is only one mixed EP, the RMMs solution will have each agent alternatively playing
0 and 1 (i.e. the 0,0,1,1 cycle).

¯ If there are 2 pure and 1 mixed EP, the RMMs solution will, depending on initial conditions,
converge on one of the pure solutions.

¯ If only one pure EP exists, then the RMMs solution will return this solution.

7 Summary

In the RMMs, paper it was argued that we should not let k = oo all the time (i.e. the original RMM
formulation) because then RMMs would be overeager and converge to a solution too quickly. By
letting k increase slowly, it was hoped that RMMs would converge on the mixed Nash EP, instead
of cycling among the pure equilibriums. As we have seen in the graphs of the sigmoid equations
when k ~ c~, the point RMMs is trying to converge to is 0 < x < 1 where the equation f(x) (i.e.
the payoff function with k = oo) falls from 0 to 1 or from 1 to 0. If point x does not lie in the
interval 0 < x < 1, then RMMs returns the value that f(x) had on the 0 to 1 interval. 5 We showed
that this value, the value RMMs is trying to return, is a Nash EP. We also determined that if more

5Please remember that when k -- co then function f(x) is 0 or 1 for all values except for the crossover point,
where it has a value of 1/2

- 351-



than one EP exists then the one returned will be a weak mixed Nash EP. The weak Nash EP might
have lower expected payoff than the other pure Nash EPs.

We have also shown that RMMs will find it very hard to converge on the EP solution for sym-
metric games because the intersection point will stop being an attractor for rather small exponent
values and the solution will not be reached until the exponent equals infinity.

For non-symmetric games, we showed that it will be impossible for I{MMs to converge on the
mixed strategy solution because, when the exponent reaches infinity (or approaches it) the only
possible behaviors for the solution are to either cycle or stay at one of the pure solutions.

Finally, we found that the same method used to characterize the solution that RMMs is trying
to reach can be used to determine it. That is, we can use the equations given before to find the
solution that RMMs is trying to converge to (for the 2 x 2 case), which eliminates the need to use
RMMs for this task.

7.1 Further work

This work makes clear the limitations of RMMs and argues for the abandonment of the sigmoid
function as a way to reconcile the solution concept of RMM with the Nash EP solution. We recognize
that the solution that RMM arrives at is correct when we have a finite amount of knowledge, all of
which is exploited by ttMM. In these cases, the depth of our knowledge, and therefore the depth of
the hierarchy, is finite and completely understood, ttMM can traverse this hierarchy and retrieve
the best strategy to play. However, when there is common knowledge present or when there is
not enough time to traverse the whole hierarchy, RMM will return a value that might not coincide
with, or even approximate, the Nash EP solution. The reason is that RMM in its original form,
has absolute certainty about which is the last level in the hierarchy. The sigmoid function was an
attempt at reducing this certainty but, as we have shown, it is not a stable solution.

The newest version of RMM [4] incorporates some of the lessons learned from this work. It does
not have a sigmoid function and, instead, it chooses to explicitly represent the uncertainty about
the depth of knowledge. This is accomplished with the use of probabilities. The resulting model
does not require the iterative deepening of RMM levels or the detection of convergence or cycles.
It derives a single solution using the explicit model of all knowledge and uncertainties.

This new model adds more information to the RMM hierarchy which makes it even more costly
and time consuming to compute a solution. The complexity is especially troublesome for cases, like
the ones we dealt with in this paper, where a cheap, game theoretic solution is a valid solution as
long as we are willing to assume common knowledge. It is arguably impossible to achieve common
knowledge[5]. However, we propose that there are cases where it might be of higher utility to
assume common knowledge and arrive at an answer quickly and cheaply using some simple EP
method, rather than use RMM. The question we are left with is: When is it appropriate to assume
common knowledge? How many levels of nesting are enough for us to justify the assumption of an
infinite level of nesting? :

These questions can only be answered if we also look at the expected payoffs versus the cost of
computation. This issue also arises when we try to implement I~MM for a real-time application.
The fact that RMM must always exhaustively search through all its knowledge base for a particular
situation is quite restrictive. Further complications arise by the fact that in some situations, the
payoffs will change as a function of time, so that the time spent thinking is valuable. What we really
want is for RMM to return the best answer it can get given a limited amount of time and processing
power. We are currently using some of the work done on limited rationality [6] to expand RMM so
that it will provide this functionality. The method involves the use of expectation functions which
calculate the value of expanding a node in the hierarchy. A node will only be expanded if its value
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