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Abstract

Many methods have been developed for inducing cause from statistical data. Those
employing linear regression have historically been discounted, due to their inability
to distinguish true from spurious cause. We present a regression-based statistic
that avoids this problem by separating direct and indirect influences. We use this
statistic in two causal induction algorithms, each taki=g a different approach to
constructing causal models. We demonstrate empirically the accuracy of these
algorithms.

1 Causal Modeling

.Causal modeling is a method for representing complex causal relationships within a
set’of variables. Often, these relationships axe presented in a directed~ acyclic graph.
Each node in the graph represents a variable in the set, while the links between nodes
represent direct, causal relationships that follow the direction of the link. Each link is
annotated with the attributes of the relationship; for example, a numeric weight value is
often used to indicate the strength of the (lineax) relationship between the two variables.
In addition, the annotations will indicate any relationships that axe non-lineax. An
example of a causal model is shown in figure 1.

X1 .75

i

Figure 1: A simple causal model
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This model shows direct causal influences between XI and .ks, X2 and Xa, X2 and Y,
and Xs and Y; as indicated by the coefficients of the links, these influences have strength
.9, .75, .3, and .5 respectively. We refer to the variable Y as the sink variable, in that it
has no outgoing links and thus "absorbs" all influences. Note that each predicted variable
has an additional influence, e~; these error terms account for unexplained variance in the
data, such as measurement error or unrecorded influences. We can also represent this
model as a set of structural equations:

Xs =
y -

Causal models are built in order to provide an explicit, understandable description
of the causal influences within some system of variables. In the past, causal models
were constructed manually and fine-tuned to reflect features found in the data. Recently,
considerable effort has been directed towards automatically deriving a causal model from
the probability distributions found in the data, a process called causal induction.J4,5]

The problem of inducing cause from data alone is notoriously difficult. Suppes [6]
established three reasonable criteria for a causal relationship: covariance, control, and
temporal precedence. The covariance, or similarity, between two variables, can be mea-
sured through simple statistical tests. In order to show control, we must ensure that no
other variables are responsible for this covariance; this feature can also be tested sta-
tistically, with one of many conditional independence tests. 1 Unfortunately, we meet a
coxtsiderable obstacle when trying to show temporal precedence; the occurrence of one
variable "before" another cannot be proven from post-hoc data alone. Thus, without
additional knowledge or experimentation, any so-called causal relationship will remain a
hypothesis.

Several methods have been developed for statistically hypothesizing temporal prece-
dence. Many of these utilize the distributions of the statistics expected for certain con-
figurations of variables in a model. For example, the IC algorithm (see [4]) uses features
of conditional independence to hypothesize the direction of a causal influence:

Let I(i,j [ z) denote the independence .of i and j given a variable z, and
let I(i,j [ .) denote the independence of i and j given some other variable.2

Then, for three variables a, b and c, when I(a, c I *) is true, and all of
I(a,b I *), I(c,b J ,) and I(a,c J b) fals e, we havethe confi guration
a.--~b+.-c.

In other words, we expect there are links between a and b and between c and b, but not
between a and c. In addition, we know that b does not separate, or render independent,

:Conditional independence tests cannot establish control when the covariance is caused by a variable
not included in the set.

2In truth, I(i, j I *) should denote the independence of i from j given on!/subset of the other variables.
In practice, we often use only the subsets of size 1.
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variables a and c. This fact excludes three configurations: a ---, b --, c, a *-- b ~ c, and
a ~ b ~ c, leaving a --* b ~ c as the only possible configuration. Thus, the statistic
is used to induce the direction of the links from this known property of conditional
independence.

The process of causal induction is complicated further by the introduction of latent
uariables into the model. A latent variable is one that is not included in the data, but
has causal influence on one or more variables that are included. Whenever the latent
variable influences two other variables, a causal induction algorithm may place a causal
link between them when, in reality, there is no causal influence. This behavior has been
cited as a major argument against the possibility of causal induction.

2 FBD and FTC

FBD and FTC are two causal induction algorithms we have recently implemented.
Both utilize a set of statistical filter conditions to remove links from the model being
constructed,s FBD constructs a model by applying the filter conditions to select a set of
predictors for each variable. FTC constructs a model directly from the set of filtered links
by sorting them according to a precedence function S(z~ --, z j). In the current implemen-
tation, both algorithms are deterministic; neither performs a search of the model space
defined by the filtered set of links. However, this avenue is open for future research.

2.1 Filter Conditions

Both FBD and FTC rely on a set of methods for filtering links from the set of possible
links. Each of these filters is based on some statistic F(z~ --* zj); when the value 
F(zi --* z j) falls outside of a specific range, the link z~ --, zj is removed from the set 
links that can be included in the model.

2.1.1 Linear Regression

The first set of filters verifies that the result of linear regression indicates a suffi-
ciently strong, linear relationship between variables z~ and zj. 4 For any predictee zj, zj
is regressed on {zl ... zj-1, zj+l ... z,~}, producing betas: {~lj... fl(j-1)j, ~(~+l)j.-. ~,~j}.
Whenever any of these ~j are close to 0, lower than a threshold Ta, the link zi --* zj is
discarded. In addition, the value of R~ --- ]~i#~ r~j~O must be sufficiently high for each
variable zj (r~j is the standardized correlation between z~ and zj). R~ measures the

3CLIP/CLASP [l] provides statistical support for FBD and I~Tc. In fact, each algorithm can be run
within CLASP’s Lisp-listener interface. FBD and FTC &re available as part of the CLIP/CLASP package. If
interested, please contact David Hart (dhart@cs.umass.edu).

4Causal relationships need not be linear; however, FTC and FBD assume they are. This drawback can
often be avoided by applying appropriate transformations to the data prior to running the algorithm.
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amount of variance in zj that is captured by the regression. When this is low, below
a threshold TR2, all links to zj are discarded. These filters enforce Suppes’ covariance
condition for a causal relationship.

2.1.2 The to Statistic

The primary contribution of the FBD and FTC algorithms is the introduction of the
to statistic:

r~j

The to filter discards a link z~ ~ zj whenever to~j is larger than a preset threshold T~.6

Because the regression coefficient, ~i~, is computed with respect to other variables, toll
measures the fraction of z~’s influence on zj that is not direct (i.e. goes through other
variables). Thus, to is also a means of enforcing Suppes’ control condition: if zi’s direct
influence on zj is a small percentage of its total influence, the relationship between zi
and zj is moderated by other variables.

It should be noted that the other ~ariables used in the regression can be any subset of
the potential predictors, and the value of toi~ may vary across subsets. In order to avoid
the (exponential) exhaustive search of these subsets, FBD and FTC start with the largest
subset (all potential predictors) for the initial regression. Whenever further regressions
are computed, z~ is regressed on all variables zl for which the link z~ ~ zj has not been
removed by the filters. Our empirical studies show that this approach provides excellent
res1~Its while the algorithms remain polynomial in complexity,s

9..1.3 Other filters

Many other measurements can be used to filter links. Currently, the only other filter
used by FBD and FTC is a test for simple conditional independence, similar to that used by
the IC algorithm. In this test, we compute the partial correlation coefficient of zl and zj
given some other variable zh (/¢ ~ i and/¢ ~ j). If zh renders z/and zj independent, the
partial correlation will be approximately 0, and we will discard the link between z~ and
zj. Like the to filter, the conditional independence filter enforces the control condition.
An experiment described below shows the difference between the effects of these control
conditions.

2.2 The FBD Algorithm
The FBD algorithm was our first attempt at building causal models utilizing these

filter conditions. FBD is told which variable is the sink variable, l/, and proceeds as

SWe want the direct influence, ~j/r~j, to be dose to 1; thus, w~j -I 1 - ~j/ri$ I should be near 0.
eThe complexity of these algorithms is O(n4), where n is the number of variables. Most of this 

attributed to the linear regressions, which have complexity O(nq) in out implementation.
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follows"

1. Enqueue 1/into an empty queue, Q.

2. Create M, an empty model (with n nodes and no links) to build on.

3. While Q is not empty, do:

(a) Dequeue a variable zj from 

(b) Find a set of predictors P -- {zl I zl ~ zj and zl --+ zj passes all filter
conditions and zi --+ zj will not cause a cycle}

(c) For each z~ E P, add the link zl --* zi into 

(d) For each zl E P, Enqueue zl into Q

Our pilot experiments indicated that good performance can be achieved with this
approach[B]; however, two significant drawbacks were noted. The first is that we must
provide FBD with knowledge not usually provided to causal induction algorithms: the
identity of the sink variable. Although one expects algorithms perform better with ad-
ditional knowledge, FBD does not work without it. The second problem is an effect of
the order in which variables are predicted, called premature commitment. This problem
surfaces in the following situation:

Suppose we decide that variable 11 has two predictors, zl and zj. After adding

: the links zl --* 11 and zj --, 11 to the model, we proceed to put zi and zj onto
the queue, in that order. Now, suppose the true state of the world is that
zl --+ z$. When we remove zl from the queue and select its predictors, zj
will be one of them/ Thus, FBD will insert the ]ink zj --, zl into the model,
which is incorrect.

These two drawbacks motivated the development of another causal induction algorithm,
FTC.

2.3 The FTC Algorithm

FTC deals with the problems of FBD by inserting links into the model in order of
precedence, rather than in order of selection. Precedence is determined by a sorting
function ..q(zl ~ zj). Although FTC does not completely resolve the premature commit-
ment problem, it does significantly reduce the number of reversed ]inks, while eliminating
the need for additional knowledge. The FTC algorithm is as follows:

7This is true becsuse the link from z~ and ~j guarantees the conditions of covariance and control, so
all fdters will be passed.
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I. Let L = {z~ ~ zj : i ~ j,l ___ i < n;l _< j _< n}; i.e. L is the set of all potential
links in a model with n variables.

2. For each link zl ~ z~ E L, test each filter condition for zl --, zj. If an1/condition
fails, remove zi ---* zj from L.

3. Sort the links remaining in L by some precedence function S(zl ---* zj).

4. Create M, an empty model (with ,z nodes and no links) to build on.

5. While L is not empty, do:

(a) Remove the link zl --* zj, of the highest precedence, from L.

(b) If zl -* zj does not cause a cycle in M, add zl --* zj to M. Otherwise, discard
Zl ~ zj.

The models constructed by this algorithm depend greatly on the statistic used as the
precedence function. For example, note that FBD is a special case of FTC, where the sort
function is: S(zl --* zj) =/~i + Order(j) ¯ n, where n is the number of variables, 

n when j is the sink variable
Order(j)-- max.,~...,.,(Order(k))- otherwise

So the links to the sink variable have the highest precedence (n2 +~ij), and the predictors
of the sink variable will be rated by their respective betas (n(n 1)+ ~). In t he next
section, we describe an experiment in which we tried several different sorting statistics
in order to determine which would be an appropriate precedence function.

3 Empirical Results

In spite of the simplicity of these algorithms, their empirical performance is very good.
We compared FBD and FTC with two other causal induction algorithms, Ic[41 and pc[5].
Both of these take a least-commitment approach to causal induction, conservatively as-
signing direction to very few links in order to avoid misinterpretation of potential latent
influences. FBD and FTC, on the other hand, commit to a direction in all cases.

3.1 Input to the Experiments

In these initial experiments, we worked with a set of 60 artificially generated data sets:
20 data sets for each of 6, 9, and 12 variables. These were generated from the structural
equations of 60 randomly selected target models. The advantage of this approach is that
the model constructed by each algorithm can be evaluated against a known target.
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The target models were constructed by randomly selecting m ]inks from the set of
potential ]inks L - {z~ ~ z# [ i ~ j}. For each model of n variables, m is chosen from
the range 1.0(n - 1)... 3.0(n - 1); thus the target models have average branching
factor between 1 and 3.

As each ]ink is selected, it is inserted into the target model. With probability 0.3,
the ]ink will be a correlation ]ink, indicating the presence of a latent variable,s Although
neither FBD or FTC call detect correlation links, their presence is critical if we are to
believe the artificial data are similar to real data.

Once the structure of each target model has been determined, the structural equations
are crested for each dependent variable z#. For directed ]inks z~ --~ z#, a path coefficient
is randomly selected from the range -1.0... 1.0. For correlation ]inks, a latent variable
l~# is created (these variables are not included in the final data set), and a path coefficient
is selected for the ]inks l~# ~ z~ and l~j ~ z#.

Finally, the data are generated from the structural equations. For each independent
and latent variable, a set of 50 data points are sa~npled from a Gaussian distribution
with mean of 0 and standard deviation of 1. Sample values for the dependent variables
are computed from the structural equations, and a Ganssian error term is added to each
(also with mean 0 and standard deviation 1). The resulting data set can now be used 
input to the causal induction algorithms.

3.2 Evaluating the Output

.To measure the performance of each causal induction algorithm, we use several types
of evaluation; each is intended to capture a different aspect of the causal model.

The R2 statistic measures the amount of variance that can be attributed to the
predictors of each variable. In theory, the best set of predictors for a variable will produce
the highest possible value of R2; thus, the strength of any predictor set can be evaluated
through its R~ value. ~/’hen evaluating model performance, the R2 value of the dependent
variable, called DependentR2, is of primary interest; however, we also want to consider
the other variables in the model. Specifically, we compute a AR2 score by computing
the mean of the absolute differences in R2 between the dependent variables in the target
model’ and the model being evaluated; ideally, this value will be 0. These measures
indicate how well the model accounts for variance in each variable.

We also compare models directly to the target models from which the data were
generated. We are concerned with the percentage of the ]inks (directed) in the target
model that were correctly identified (Correct%), the ratio of wrong links found for every
correct one (W~ong/Correct), the number of links that were identified but had the
wrong direction (WrortgReversed), and the number of links that were completely wrong
(WrongNotRev). These measures indicate how close the model is to the model that
generated the data.

sThis is called a correla~ionlink because the latent variable induces a correlation between the variables.
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3.3 Evaluation of Sort Heuristics

In the first experiment, we wanted to determine an appropriate precedence function,
S(zl --~ zj), for the third step of the FTC algorithm. We compared several statistical
measures, including wO, ~j, and RI. One additional set of trials used unrelated pseudo-
random numbers to establish a baseline for comparison. The results of this experiment
are shown in Table 1.

Measure Sort F un~
DependentR~ Random

Correct% Ran~m

Wrong~Correct Random
mq

Wrong Re~er aed P~nd~m

Wrong Not Rev. Random

6~ara 9vats
0.562 (0.330) 0.405 (0.336)
0.442 (0.364) 0.570(0.315)
0.366(0.302) 0.333 (0.363)
0.547 (0.350) 0.669 (0.194)
0.240 (0.101) 0.249 (0.072)
0.271 (0.085) 0.267 (0.085)
0,291 (0.111) 0.299 (0.085)
0.209 (0.112) 0.140 (0.102)
0.406 (0.170) 0.339 (0.125)

0.4011 0.229) 0.38510.146)0.268 o.179) 0.232 o.119)
o.584 (o.214)0.830 (0.223)
1.649(1.723) 2.505 (1.510)
2.124 (2.121) 2.058 (1.087)
3.529 (2.357) 5,537(4.923)
0.698 (0.54o)0.789 (0.577)
2.75o (1.446)5.150 (1.699)
2.850(1.461) 4.850 (1.899)
4.000 (1.376) 6.650 (1.954)
1.600 (1.501) 1.900 (1.683)
1.300 (1.031) 3.700 (2.105)
1.350 (0.988) 3.800 (2.093)
1.350 (0.988) 3.950 (2.235)
1.150 (0.988) 3.450 (2.114)

Table 1: Means and (Standard Deviations) of scores for several

12vats
0.566 (0.290)
0.472 (0.326)
0.305 (0.331)
0.640 (0.337)
0.238 (0.067)
0.257 (0.070)
o.281 (o.o71)
o.186 (0.066)
0.387 (0.138)
0.297 (0.141)
0.233 (0.131)
0.470 1 0.173)
1.626 0.658)
2.627 (1.219)
4.489 (4.361)
1.123 (0.608)
5.9oo (1.917)
8.000 (2.865)
9.450 (3.034)
3.900 (2.198)
6.350 (3.083)
6.250 (3.093)
6.200 (3.302)
5.950 (3.052)

precedence functions

Overall, the best results are obtained with the R2 statistic. In some sense, this is to
be expected: we would like to give precedence to the links that predict well predicted
variables. Although it seems as though more information about precedence could be
obtained from pairs of variables, it is possible to construct the correct model by ordering
the variables rather than the links.

In addition, notice the low variance in the Wrong Not Reversed category. This effect
has a logical explanation: since most of the wrong links are discarded by the filter
conditions, the differences between these scores indicate links that were removed to avoid
cycles.
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3.4 Comparative Performance

Next, we compared each algorithm with another causal induction algorithm. FBD
was compared with the PC algorithm [5], which has the ability to deal with external con-
stralnts, such as knowledge of the sink variable. FTC was compared to the IC algorithm,
since neither uses external knowledge about the data. The results follow:

C~rect~

~Correct

WrongReveraed

WrongJVot, Rev.

Algorithm
FBD.

FBD.
PC,
FBD.
PC.
FBD,
PC*
FBD*
PC,
FBD,

, PC*

0.734 . 0.187 0.787 . 0.146

0.1180.087 0.134 0.077
0.333 0.151 0.321 0.102)
0.653 o.zse 0.651 0.184
0.2840.181 0.2?3 0.172
0.685 0.542 0.932 0.391
0.458 0.534 0.617 ( 0.921
1.200 1.056 2.200 . 1.824

1.900 1.165 4.900 1.997
0.250 0.444 0.300 0.470

12vats

o.167(O.lO9)

1.276 ( 1.315)_
1.95o ( 1.146l

Table 2: Means and (Standard Deviations) of scores using additional knowledge.

MeQsure
DependentR=

AR=

Algorithm
FTC
IC
FTC
IC

CorTect% FTC
IC

Wrong~Correct FTC
IC

WrongReversed FTC
IC

WrongNotReu. FTC
IC

611ar~1
0.547 (0.350)
0.326 (0.369)
0.209 ! o.112)
0.347 (0.128)
0.564 (0.214)
0.293 (0.1,)
0.698 (0.549)
1.48 (0.944)
1.6oo (. 1.5oi)
1.55 (1.o5)
1.15~ (o98s)
1.2 1.o6)

91~Gr8

0.669 (0.194)
0.451 (0.336)
o.14o (O.lO2)
0.345 (- 0.137)
0.630 (0.223)
0.2?2 (0.19)
0.769 (0.5?7)
1.50 (1.11)
i.900 (1.683)
1.35 (1.27)
3.450 (2.114)
25 (2.09)

12rata
0.640(0.33?)
0.303 (0.363)
0.186 (0.066)
0.346 (0.095)
0.4?0 (o.173)
0.165(0.11)
1.123(0.608)
2.17 (2.10)
3.900(2.198)
2.0(1.30)
5.950(3.052)
2.9(1.8)

Table 3: Means and (Standard Deviations) of scores without additional knowledge.

These results show no unexpected differences between comparable algorithms. First,
since FBD and FTC are based on linear regression, better R~ scores are expected for these
algorithms. Second, pc and IC assign direction to very few links. Since only directed
links are included in the scores, the differences in the CorrectS, Wrong Reversed, and
Wrong Not Reversed are to be expected; FBD and FTC will find more correct links at the
cost of finding more incorrect links. Note that the ratio Wrong/Correct is slightly better
(lower) for FTC than for IC, although this ditference is not statistically significant.
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3.5 The Effects of the w Filter
We also wanted to determine if the w filter is the key to the success of these algorithms,

so we ran FBD and FTC without this filter condition. The results axe shown below:

Algorithm
F B Dwith
F B DwiZhout

A R3 F B Dtoi~h
F B Dwi~hout

Correct% F B Dwi~h
F B Dtoithout

Wrong~Correct F B Dwith
F B Dtoithout

WrongReversed FBDwith
F B Dwithout

Wrong N otRe~.

6vats 9vats 12vats
0.734( 0.187! 0.787(0.146) 0.728(0.278)
0.749(0.173) 0.811(0.117) 0.755 (0.225)
0.118(0.087) 0.134(0.077)0.179(0.130)
0.10110.067) 0.119(0.065)

0.157(0.069)
0~653 0.186) 0.651(0.184) 0.528(0.248)
0.696(0.168) 0.696(0.139) 0.573 (0.182)
0.685t0.5421 0.93210.391! 1.39611.082!
0.746(0.635) 1.009 0.438) 1.445 0.608)
1.200I 1.056I 2.200( 1.8241 4.10013.323!
1.350 1.089) 2,400 (1.847) 4.550 2.800)
1,900(1.165) 4.900(1.997) 9.100 (4.388)
2.200(1.673) 6.100(1.861) 11.300(3.404)

and without w filteringT~ble 4: Means and (Standaxd Devations) of scores for FBD with

Measure Algorithm 6vats 9vats 12vats
DependentRz FTCwiih .’ 0.734 (0.187) 0.787 (0.146) 0.728 (0.278)

FTCwithout 0.749 (0.173) 0.790 (0.148) 0.736 (0.270)
AR3 FTCwith 0.118 (0.087) 0.107 (0.087) 0.147 (0.086)

FTCuli$hou~ ’0.124 (0.087) 0.116 (0.091) 0.146 (0.086)
Cor,ect% FTCw~h 0.658 (0.203) 0.682 (0.223) 0.566 (0.211)

FTCwithout 0.675 (0.204) 0.690 (0.208) 0.569 (0.214)
rt~rom2/Correct FTCuJith 0.467 (0.627) 0.696 (0.496) 0.809 (0.288)

FTCuJithout 0.738 ( 0.618~ 0.833 (0.402) 1.037 I 0.417)
WrongReeersed FTCu:ith 0.600 0.681) 1.450(1.849) 2.650(1.981)

FTCtoithout 1.000 1.124) 1.950I 2.350) 3.350I 2.739!
WrongNotRev. FTCwith 1.350 0.988) 3.500 1.821) 6.400 2.798)

$’rCwitho~ 2.400 1.465) 4.700 (1.976) 8.150 (3.150)

Table 5: Means and (Standaxd Devations) of scores for FTC with and without w filtering

Again, there are no statistically significant differences, so we cannot say that w is
wholly responsible for the performance of FBD and FTC. There is, however, a definite
effect on the models that axe constructed; notably, the number of wrong ]inks decreases
quite a bit while the number of correct links decreases a little when w is used. Thus, we
can say that w occasionally discards a correct link, but more often it discards an incorrect
link.
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4 Conclusions

Our empirical results show that w does remarkably well as a heuristic for selecting
predictors. In fact, it performs so well that very simple model construction algorithms
achieve compaxable quality to models constructed by very sophisticated algorithms.

Admittedly, neither FBD nor PTC infers the presence of latent variables, which may
be a significant drawback for some applications. However, other experiments have shown
that both FBD and FTC will often avoid predictors that axe connected to the vaxiables
they predict via a common but latent cause (see [2]).

Finally, FBD and FTC axe simple, polynomial-time algorithms that construct models
without searching the entire space of models. We believe it possible to obtain even better
results while maintaining this level of complexity by integrating these techniques with
others.

References

[I]

[2]

[3]

[4]

[5]

Scott D. Anderson, Adam Carlson, David L. Westbrook, David M. Hart, and Paul R.
Cohen. Clip/clasp: Common lisp analytical statistics package/common lisp instru-
mentation package. Technical Report 93-55, Department of Computer Science, Uni-
versity of Massachusetts, Amherst, MA, 1993.

Lisa Ballesteros. Regression-based causal induction with latent variable models. In
-Proceedings of the Twelvth National Conference on Artificial Intelligence. Morgan
Kanflnann, 1994.

Paul R. Cohen, Lisa Ballesteros, Dawn Gregory, mad Robert St. Amant. Regres-
sion can build predictive causal models. Technical Report 94-15, Dept. of Computer
Science, University of Massachusetts, Amherst, 1994.

Judea Pearl and T.S. Verma. A theory of inferred causation. In J. Allen, R. Fikes,
and E. Smadewall, editors, Principles of Knowledge Representation and Reasoning:
Proceedings of the Second International Conference., pages 441-452. Morgan Kauf-
man, 1991.

Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and
Search. Springer-Verlag, 1993.

[6] P.C. Suppes. A Probabilistic Theory of Causality. North Holland, Amsterdam, 1970.

KDD-94 AAAI-94 Workshop on Knowledge Discovery in Databases Page 83



Page 84 AAA1-94 Workshop on Knowledge Discovery in Databases KDD-94




