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Abstract "

We describe algorithms for learning Bayesian
networks from a combination of user knowl-
edge and statistical data. The algorithms
have two components: a scoring metric and
a search procedure. The scoring metric takes
a network structure, statistical data, and a
user’s prior knowledge, and returns a score
proportional to the posterior probability of
the network structure given the data. The
search procedure generates networks for eval-
uation by the scoring metric. Our contribu-
tions are threefold. First, we identify two
important properties of metrics, which we
call score equivalence and parameter modu.
iarity. These properties have been mostly
ignored, but when combined, greatly sim-
plify the encoding of a user’s prior knowl-
edge. In particular, a user can express his
knowledge--for the most part--as a single
prior Bayesian network for the domain. Sec-
ond, we describe greedy hill-climbing and an-
nealing search algorithms to be used in con-
junction with scoring metrics. In the spe-
c.is] case where each node has at most one
parent, we show that heuristic search can
be replaced with a polynomial algorithm to
identify the networks with the highest score.
Third, we describe a methodology for evalu-
ating Bayesian-network learning algorithms.
We apply this approach to a comparison of
our metrics and search procedures.

1 Introduction

The fields of Artificial Intelligence and Statistics share
a common goal of modeling res]-world phenomena.
Whereas AI researchers have emphasized a knowledge-
based approach to achieving this goal, statisticians
have traditionally emphasized a data-based approach.

"Author’s primary affiliation: Computer Science De-
partment, Technion, Haifa 32000, lsrasl.

In this paper, we present s unification of these two ap-
PrOaches. In particular, we develop algorithms based
on Bayesian principles that take as input (1) a user’s
prior knowledge expressed--for the most part---as a
prior Bayesian network and (2) statistical data, and
returns an improvedBayesian network.

Severs] researchers have examined methods for learn-
ing Bayesian networks from data, including Cooper
and Herskovits (1991) and Cooper and Herskovits
(1992) (herein referred to as CH), Buntine (1991)
(herein referred to as Buntine), and Spiegelhaiter 
al. (1993) (herein referred to as SDLC). (Each of 
references contain an excellent review of additional re-
lated approaches.) These methods all have the same
basic components: a scoring metric and a search pro-
cedure. The metric computes a score that is propor-
tional to the posterior probability of a network struc-
ture, given data and a user’s prior knowledge. The
search procedure generates networks for evaluation by
the scoring metric. These methods use these two com-
ponents to identify a network or set of networks with
high posterior probabilities, and these networks are
then used to predict future events.

In this paper, we concentrate on identifying a single
Bayesian network with a high posterior probability.
Our methods are generalized easily to multiple net-
works using techniques described in CH and in Madi-
gsn and Raferty (1994). In Section 2, we develop scor-
ing metrics. Although we restrict ourselves to domains
containing only discrete variables, as we show in Geiger
and Heckerman (1994), our metrics can be generalized
to domains containing both discrete and continuous
variables. A major contribution of this paper is that
we develop our metrics from a set of consistent proper-
ties and assumptions. Two of these, called parameter
modularity and score equivalence, have been ignored
for the most part, and their combined ramifications
have not been explored. The assumption of param.
eter modularity, which has been-made implicitly by
CH, Buntine, ~nd SDLC, addresses the relationship
among prior distributions of parameters for different
Bayesian-network structures. The property of score
equivalence says that two Bayesian-network structures
that represent the same set of independence and de-
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pendence assertions should receive the same score. We
provide justifications for these assumptions, and show
that when combined with other reasonable assump-
tions about learning Bayesian networks, these assump-
tions provide a straightforward method for combining
user knowledge and statistical data that makes use of a
prior network. Our approach is to be contrasted with
those of CH and Buntine who do not make use of a
prior network, and to those of CH and SDLC who do
not satisfy the property of score equivalence.

Our identification of the principle of score equivalence
arises from a subtle distinction between two types of
Bayesian networks. The first type, called belief net-
works, represents only assertions of independence and
dependence. The second type, called causa/networks,
represents assertions of cause and effect as well as as-
sertions of independence and dependence. In this pa-
per, we argue that metrics for belief networks should
satisfy score equivalence, whereas metrics for causal
networks need not.

Our score-equivalent metric for belief networks is sim-
ilar to metrics described by Dawid and Lauritzen
(1993) and Madigan and Raferty (1994), except 
our metric scores directed networks, whereas their
metrics score undirected networks. In this paper, we
concentrate on directed models rather than on undi-
rected models, because we believe that users find the
former easier to build and interpret.

In Section 3, we examine methods for finding networks
with high scores. We describe polynomial algorithms
for finding the highest-scoring networks in the special
case where every node has at most one parent. In
addiffon, we describe a greedy hill-climbing algorithm
and an annealing algorithm for the general case.

Finally, in Section 4, we describe a methodology for
evaluating learning algorithms. We apply this method-
ology to a comparison of our metrics and search meth-
ods.

distribution over U is the probability distribution over
the joint space of U.

A belief network represents a joint probability distri-
bution over U by encoding assertions of conditional in-
dependence and dependence as well as probability dis-
tributions for variables. From the chain rule of proba-
bility, we know

n

p(xl .... = ..... (1)
i=1

For each variable zi, let II, C (zl,..., z~-x) be a min-
imal set of variables that renders z~ and {z 1,..., zi-x }
conditionally independent. That is,

p(z, lzx, ̄  ̄ ., z,_ 1, 4) = p(z, In,, 4)
(2)v O c : p(z, #

A belief network is a pair (Bs, Be), where Bs is a
belief-network structure that encodes the assertions
of conditional independence and dependence in Equa~
tions 2, and Be is a set of probability distributions
corresponding to that structure. In particular, Bs is
a directed acyclic graph such that (1) each variable 
U corresponds to a node in Bs, and (2) the parents
of the node corresponding to zi are the nodes corre-
sponding to the variables in n~. (In the remainder of
this paper, we use zl to refer to both the variable and
its corresponding node in a graph, unless otherwise
stated.) Associated with node z~ in Bs are the prob-
ability distributions p(zdIIi,~). Be is the union 
these distributions. Combining Equations 1 and 2, we
see that any belief network for U uniquely determines
a joint probability distribution for U. That is,

N

p( l, ¯ ̄ ., 14) = H p(z, ln,, (3)
i----1

2.2 Metrics for Belief Networks

2 Scoring Metrics

2.1 Belief Networks and Notation

Consider a domain U of n discrete variables zl,..., zn.
We use lower-case letters to refer to variables and
upper-case letters to refer to sets of variables. We
write z~ -- /~ when we observe that variable z~ b in
state k. When we observe the state for every variable
in set X, we call this set of observations an instance of
X; and we write z "- kx as a shorthand for the obser-
vations z, -- &i, zt E X. We use p(z - ~ [y -/~, 4)
to denote the probability of a person with background
knowledge ~ for the observation z .= kx, given the
observation I/- k~,. We use p(XIY,~) to denote the
set of probabilities for all possible observations of X,
given all possible observations of Y. The joint space of
U is the set of all instances of U. The joint probability

We are interested in computing a score for a belief-
network structure, given a sequence of instances of U.
We call a single instance of some or all of the variables
in U a case. We call a sequence of cases C1,..., Cm
a database. If all variables in a case are observed, we
say that the case is complete. If all cases in a database
are complete, we say that the database is complete.

Our scoring metrics are based on six assumptions, the
first of which is the following:

Assumption 1 All variables in U are discrete.

Our next assumption involves the concept of exchange-
ability. We say that a database is exchangeable if any
database obtained by a permutation of case numbers
of the original database has the same probability as the
original database. Essentially, the assumption that a
database is exchangeable is an assertion that the pro-
ceases generating the data do not change in time.
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Ass-mption 2 All complete databases for U are ex.
changeable.

Under Assumptions 1 and 2, De Finetti (1937) showed
that say complete database has a multinomial dis-
tribution. That is, the probability of any complete
database may be computed aa if it were a multino-
mial sample from the joint space of U. We use ~ to
denote the multinomial parameter for the event U - k,
sad @ - tJ/;~ to denote the collection of all param-
stets. We can think of ~ as the long-run fraction of
cues where U - k was observed. Howard presents an
alternative interpretation [Howard, 1988].

We shall find it convenient to define parameters for
subsets sad conditional subsets Of variables. In partic-
ular, for say two disjoint sets of variables X,Y g. U,we use OX=k~ly=k-r to denote the long-run fraction

of cases where X - kx among those cases in which
Y = kTr. When Y is empty, we omit the condition-
ing event in the notation. Furthermore, we use OxlYto denote the collection of parameters OX=k-xly=h-~

for all instances of X and Y. Thus, for example,
0=I,...~, - @. In addition, we omit state assign-
ments from our notation, when the meaning of a term
is clear from context. For example, when we write
0melmz ~ 0,,, we mean that the inequality holds for a
least one state of zl sad one state of z2.

A Bayesian measure of the goodness of a network
structure is its posterior probability given a database:

p(BslD, 0 = c p(BslG P(DIBs,G

where.e ffi I/p(DI0 = 1/EBsP(BsI~) pCD[Bs,O
is a normalization constant. For even small domains,
however, there are too many network structures to sum
over in order to determine the constant. Therefore we
use P(BsI() p(DJSs,() = p(D, Bsl() ourscore.

More problematic is our use of the term Bs as an ar-
gument of a probability. In particular, Bs is a belief-
network structure, not an event. Thus, we need a def-
inition of an event B~ that corresponds to structure
Bs (the superscript "e" stands for event). We propose
the following definition.

Definition The event B~ corresponding to a belief-
network structure Bs holds true iff

0,,’,1-~ .....=,-I = Oz,ln, (4)
V O c 1/~ : s.,i. , ..... .,_, ~ o.,iQ

In words, we say that the event B} holds true if and
only ifBs is a belief-network structure for the multino-
mial parameters (i.e., long-run fractions) for U--that
is, if and only if these parameters satisfy the indepen-
dence and dependence assertions of Bs. For example,
the event B} for the belief network zl -~ z2 --~ zs
corresponds to the assertions

o=,,,,,,, = o,,,,, o,,,=1 o,, #

The definition seems reasonable enough. In particu-
lar, as learning network structure involves the repeated
observation of cases, we are interested in learning the
conditional independencies and dependencies that ap-
ply to the long-run fractions of U. CH, Buntine, and
SDLC apparently all use this definition implicitly. To
our knowledge, however, we are the first researchers to
make this assumption explicit.

We can now define belief-network metrics.

Definition A belief.network metric produces the score
p(D’ B~ ]~); the user’s posterior probability of database
D and the event B~, given background knowledge ~.

Our definition of the event B~ places an important
restriction on the scores produced by a belief-network
metric. When two belief-network structures represent
the same assertions of conditional independence and
dependence, we say that they are isomorphic. For ex-
ample, consider the domain consisting of only variables
m and y. If we reverse the arc in the belief network for
this domain where z points to y, we obtain a network
that represents the same assertion as the original net-
work: z and y are dependent. Given the definition of
B~, it follows that the events B,~1 and B~ are equiv-
alent if and only if the structures Bs~ and Bs2 are
isomorphic. That is, the relation of isomorphism in-
duces an equivalence class on the set of events B~. We
call this property event equivalence.

Proposition I (Event Equivalence)
Belief-network structures Bsl and Bs~ are isomorphic
if and only if S~1 -- B~2.

As a consequence, if a belief-network metric is to be
consistent with the rules of probability, then it must
satisfy the property of score equivalence.

Proposition 2 (Score Equivalence) The scores of
two isomorphic belief.network structures must be equal.

Technically then, we should score each belief-network-
structure equivalence class, rather than each belief-
network structure. Nonetheless, users find it intuitive
to work with (i.e., construct and interpret) belief net-
works. Consequently, we continue our presentation
in terms of belief networks, keeping Proposition 2 in
mind.

Given, a belief-network structure Bs, we need the fol-
lowing notation} Let r~ be the number of states of
variable z~. Let q~ = I’[z,~rl~ r~ be the number of in-
stances of II~. We use the integer j to index these in-
stances. Thus, we write p(zi = k[IIi = j,~) to denote
the probability that z~ = k, given the jth instance of
the parents of z,. Let

~Whenever possible we use CH’s notation.
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The set @Bs corresponds to the parameter set Bp for
belief-network structure Bs, as defined in Section 2.1.
Here, however, these parameters are long-run frac-
tions, not (subjective) probabilities.

The following assumptions-also made by CH, Bun-
tine, and SDLC--allow us to derive simple closed-form
formulas for metrics.

Assumption 3 All databases are complete.

Spiegelhalter et al. (1993) provide an excellent survey
of approximations that circumvent this assumption.

Assumption 4 (ParAmeter Independence) For
all belief.network structures Bs,

P(OBslB~,~) = ]-Ir~ p(O,jlB~,~)

This assumption, called parameter independence, says
that the long-run conditional fractions associated with
a given belief-network structure are independent, ex-
cept for the obvious dependence among the parameters
for a given variable (which must sum to one). Given
Assumption 3, it follows that the parameters remain
independent when cases are observed.

A general metric now follows. Applying the chain rule,
we obtain

m

p(DIBs,~) = I"~p(CzICI,...,C,-,,B},~) (5)
i----1

wher~C~ is the ith case in the database. Conditioning
on the parameters of the belief-network structure Bs,
and using the fact that parameters remain indepen-
dent, given cases, we have

p(C, IC,,..., C,_,, B}, = fOBs {p(C, lOBs, B},

Ī~, l’I# p(e,j Ic~,..., c,_,, B~, ~)}
(6)

Because each case in D is complete, we have

P(c’IeBs,BL ) = e,i k°’’" (7)
.f k

where ~UJk is I if and only if z~ = k and H, = j in
ease Cg, and 0 otherwise. Plugging Equation 7 into
Equation 6 and the result into Equation 5 yields

p(D, B}I~) = p(B}I~) 
¯ 1-[r[ l-[ < o,,,ic,,...,c,_,, >°,,,,

j k l

where <> denotes expectation with respect to OO.
One difficulty in applying Equation 8 is that, in gen-
eral, a user must provide prior distributions for every
parameter set O~j associated with every structure Bs.
To reduce the number of prior distributions, we make
the following assumption.

Assumption 5 (ParRmeter Modularity)
If zi has the same parents in any two belief-network
structures Bsx and Bs2, then for j = 1,...,q~,

We call this property parameter modularity, because it
says that the densities for parameters (30 depend only
on thestructure of the belief network that is local to
variable z~--namely, OO only depends on the parents
of z,. For example, consider two belief networks for
binary nodes z and y. Let Bsl be the network with
an arc pointing from z to y, and Bs2 be the network
with no arc between z and y. Then p(OzlB~:,~) -
p(O, JB~,~) because z has the same parents (namely,
none) in both belief networks. In contrast, the assump-
tion does not hold for the parameters for y. That is,
in Bsx, we can have p(Ovl= IBm1, ~) p(O~le IBm1, ~)
In Bs2, however, z and 1/ are independent. Con-
sequently, p(O~l=[Bs2,~) = p(O~l~[Bs~,~,). Thus, ei-
ther p(0~l= IBex, ~) ~ p(O~l= IBm2, ~) or p(O~l~ [B~x, ~)
p(0~lzlB~2,~) The failure of this assumption for the
parameters of y is consistent with the fact that y has
different parents in Bsx and Bs~.

We note that CH, Buntine, and SDLC implicitly make
the assumption of parameter modularity (Cooper and
Herskovits, 1992, Equation A6, p. 340; Buntine, 1991,
p. 55; Spiegelhalter et al., 1993, pp. 243-244). Also,
in the context of causal networks, the assumption has
a compelling justification (see Section 2.5).

Given Assumption 3, parameter modularity holds,
even when previous cases have been observed. Con-
sequently, we can rewrite Equation 8 as

p(D, B~ IO = p(B~ I0 (9)

. i]-irlri < >°,,,.
j k

We call Equation 9 the Bd metric, which stands for
Bayesian metric for discrete variables.

In making the assumptions of parameter indepen-
dence and parameter modularity, we have in effect--
specified the prior densities for the multinomial pa-
rameters in terms of the structure of a belief network.
Consequently, there is the possibility that this spec-
ification violates the property of score equivalence.
In Heckerman et al. (1994), however, we show that
our assumptions and score equivalence are consistent.
In particular, we show that the conditional densities
P(OOk ICx,..., C~_~, ~) constructed from our assump-
tions and the property of event equivalence always
guarantee score equivalence.

In Heckerman et al. (1994), we provide greater de-
tail about this general metric. Here, we concentrate
on a special case where each parameter set O~ has a
Dirichlet distribution.

A complete belief-network is one with no missing
edges--that is, one containing no conditional indepen-
dence assertions of the form given in Equation 4. From
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our definition of the event B~, we know that the event
amociated with any complete belief-network structure
is the same; and we use B~c to denote this event.

Assnmption 6 For every complete belie/.network
structure Bso, and/or all 00 C_ OBsc , p(Oo]B~c,~)
has a Dirichlet distribution. Namely, there exists ex-
ponents N[j~ such that

p(oolB , ) = c. I’I °’J
k

where c is a normalization constant.

Prom this assumption and our assumption of parame-
ter modularity, it, follows that for every belief-network
structure 135, and for all eij c_ eBs, p(e,jlS$,0 has
a Dirichlet distribution. When every such parameter
set of Bs has this distribution, we simply say that
P(OBs [B~,~) is Dirichlet.

Combining our previous assumptions with this conee-
quence of Assumption 6, we obtain

p(O, ID, B ,0 = c."+N’j’ (10)

where NOi is the number of cases in D where :~ -- k
and II~ : j, and e is some other normalization con-
stant. Thus, if the prior distribution for Off has a
Dirichlet distribution, then so does the posterior dis-
tribution for Otj. We say that the Dirichlet distribu-
tion is closed under multinomiai sampling, or that the
Dirichlet distribution is a conjugate family of distribu-
tions 1or multinomiai sampling. Given this family,

N/~k + N, jk + 1
(11)< OokID, >= + N,j + r,

where NOk : Y~fh~1 Nff, and NOb : Y~1 N~j. Sub-
stituting Equation-11 into each term of-~luation 9,
and performing the sum over l, we obtain

p(D,B~IO = p(B~[~) . I’I~ffia H~ffi~
r(N~#~ +N~, + I)

"I’I~’_-1 r(N:#.+i)
(12)

where r is the Gamma function, which satisfies r(= 
1) = zr(=). We call Equation 12 the BD metric ("D"
stands for Dirichlet).

In the following section, we show that the property of
event equivalence imposes the following constraints on
the exponents/v’~jk:

N’#k + I = K.p(z, = I~,II, = jIB~,~ ) (13)

where K is s constant to be described, and Bsc is
the event associated with any complete belief-network
structure. Substituting this restriction into Equa-
tion 12, we obtain the following metric for belief net-
works.

Theorem 1 Given Assumptions 1 through 6,
p(D, B~ 10 = p(B~ [~)

¯ I’~=~ I’~’-~ r(No+Kn(n,=jli#s¢ ,0) (14)

r ( N~#k + K p(= ,fk,n,ffi~B~ ,O ¯ l’I~’=~ r(K~(f,fk,n,=#iBsc,O)

where B$~ is any complete belief.network structure.

We call Equation 14 the BDe metric (%" stands for
score equivalence). We show that this metric satisfies
score equivalence in Heckerman et ai. (1994). We note
that Buntine presented without derivation the special
Cue of Equation 14 obtained by letting p(U[B~¢, ~) be
uniform, and noted the property of score equivalence.

¯ Also, Equation 12 is the general metric developed by
Cooper and Herskovits (1992) with the exception that
they require the exponents N~js to be integers. CH
also present a special case of BD wherein each N’~s is
set to zero, yielding a uniform Dirichlet distribution
on each density p(Oo[B~,~). This special case does
not exhibit the property of score equivalence.

2.3 The Combination of Knowledge and
Statistical Data: The Prior Belief
Network

In this section, we show how the property of event
equivalence and our mmumptions lead to a straightfor-
ward method for generating the exponents N/js from a
user’s prior knowledge. We thereby provide a method-
ology for the combination of user knowledge and sta-
tistical data.

In Heckerman et ai. (1994) (Theorem 7), we that ifp(OBs~ I~) is Dirichlet for every complete belief-

network structure Bs¢, then the density of the param-
eters for the joint space---p(@l~)--aiso has a Dirichlet
distribution. In the previous section, we assumed thatP(OBsc [B~¢, ~) is Dirichlet for every complete belief-

network structure Bsc. Furthermore, by the definition
of the event B~, we know that events B~c~ and B~c2
for two complete belief-network structures Bsc~ and
Bsc2, are identical. Consequently, we can apply this
theorem to conclude that p(@lB~c,~) has a Dirichlet
distribution. That is,

p(~’IB~¢,~) = p(O.~ ..... ..IB}~,~) 
(I~)

c. IL, .....,.[o,, .....,.],., .......
Also in Heckerman et ai. (1994) (Theorem 5), we 
that the converse is true. Namely, that if Equation 15holds, then the density P(OBsc [B~c, ~) is Dirichlet for

every complete network structure Bsc. Furthermore,
we show that

e,,l, , ..... .,_,-I-1= E (elf ..... ..-I-1) (16)

where e=d=~,...,=,_~ is the exponent of 0=d=~,...,=~_~ inthe Dirichlet distributions for P(OBsc IB~,~). The
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term N[jh, however, is just er,=hln,ffij. Thus, using a
complete belief-network structure wherein Hi are the
parents of zt, we obtain the constraint

N[jh+1= ~ (e,, .....=.+1) (17)
te=l .....=.l=~=k,r/~fj}

where the sum ranges over all instances of U that are
consistent with z~ ffi k and H~ - j. Therefore, if we
can assess the exponents in the Dirichlet distribution
for 0, then we obtain all terms N~k.

Winkler (!967) describes several methods for assess-
ing a Bets distribution, which is the Dirichlet distri-
bution for s binary variable. These methods include
the direct assessment of the probability density using
quc~ions regardingrelative densities and relative ar-
eas, ~ent of the cumulative distribution function
using fractiles, asse~ing the posterior means of the dis-
tribution given hypothetical evidence, and assessment
in the form of an equivalent sample size.

We find the last method to be particularly well suited
to the assessment of the exponents e=1 ..... =.. The
method in based on the fact that the mean of 0=~ ..... r.
with respect to the density P(0zs ..... =’[B~c,4) is equal
to the user’s prior probability for zz,..., zn. Conse-
quently, we have

ecl~...,z, + 1

E., ..... ..(e., ..... .. + 1)
from which we obtain

e,1 .....=. + I = K p(zz,...,zn[B~c,~) (18)

where
¯ K = ..... .. + I) (19)

Thus, a user can assess the exponents e=~ ..... =. by as-
sessing the joint probability distribution for U and the
constant K. From Equations 17 and 18, we obtain the
constraint given in the previous section (Equation 13):

lv/jh + 1 = K p(z, = k,n, =/}BL,4)

A user can assess the joint probability distribution
p(zl,..,, zn[B~,4) by constructing a belief network
for U, given B~¢. We call this network the user’s
prior belief network. At first glance, there seems to
be a contradiction in asking the user to construct
such a belief network--which may contain assertions of
independenc~ under the assertion that B~¢ is true.
The assertions of independence in the prior network,
however, refer to independencies in the next case. In
contrast, the assertion of full dependence BJ_ refers to

¯ , G .
long-run fractzons. For example, conmder the domain
containing only binary vaxiables z and p. By defini-
tion, if B~¢ is true, then 0~lu ~ 0~i., U. Nonetheless, it
may be the case that

< Ofi, IB~,~ >=/Offi,, p(Offil, lB~,0

ffi< O,,..,,[BJ,¢ >=/O,l~v p(O,,l-,vlBJ,~)
J

As we have mentioned, how-
ever, the terms < OzlulB~,~ > and < Oxl..,u[B~.,~ >
are just the user’s probabilities for z given y and z
given "~y, respectively, in the next case. Hence, the
user’s prior network would contain no arc between z
and y.

In any given problem, it is likely that p(UIBesc, 4) will
not be equal to p(UI~), because the latter represents
an average over all conditioning events B~. In prin-
ciple, this makes the assessment of the prior network
problematic, because a user is likely to prefer to as-
sere the network without having to condition on the
event B~c. In practice, it remains to be seen if this
difference poses a significant problem¯

To see how a user can assess /t’, consider the fol-
lowing observation. Suppose a user was initially
ignorant about a domain~that is, his distribution
p(@[B~¢, 4) was given by Equation 15 with each expo-
nent e=~ ..... =. - -1.~ Then, from Equation 19, K must
be the number of cases he has seen since he was igno-
rant. Sometimes, however, the user may have obtained
knowledge about a domain through word of mouth,
through common sense reasoning, or by reading texts.
To handle such cases, we note that K is related to the
user’s confidence in his assessment of the prior belief
network for U~the higher the value of K, the greater
the user’s confidence¯ Therefore, the user can assess
K by judging the number of cases he would have had
to have seen, starting from ignorance, to obtain his
actual degree of confidence in the prior belief network.
These judgments can be difficult, but can be made
accurate by calibrating the user against other, more
tedious methods for assessing Dirichlet distributions
[Winkler, 1967].

The constant K is often called an equivalent sam-
ple size. It acts as a gain control for learning--the
smaller the value of/f, the more quickly BDe will fa-
vor network structures that differ from the prior belief-
network structure¯ The constraints on the parame-
ters N~j~ (Equation 13) have a simple interpretation
in terms of equivalent sample sizes. Namely, by an ar-
gnment similar to that in the previous paragraph, we
can think of the term

rl

=_- + 1)= + r, (20)
h---Z

as the equivalent sample size for the parameter set
O0--the multinomial parameters for z~, given that
we have observed the jth instance of H~. From Equa-
tion 13, we see that

= g.p(H, 4) (21)
~Thls prior distribution cannot be normalized, and is

sometimes called an improper prior. To be more precise,
we should say that each exponent is equal to -1 plus some
number close to zero. Also note that many researchers con-
sider ignorance to be the situation described by a constant
density function~that is, all exponents e~z ..... ~, ffi 0. This
difference is not important for our discussion.
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That is, the equivalent sample size for Oq is just the
overall equivalent sample size K times the probability
that we see Hi = j. We note for future discussion that

+ I = Kq = kln, (22)
which follows from the fact that (N[jk + 1)/Kq is the
expectation of 0qk given B~c.

SDLC describe an ad hoc approach for combining user
knowledge with data that is closely related to ours.
First, as we do, they asses a prior belief network
(although they do not ask the user to condition on
B}~). Then, for each variable zl sad each instance
j o7 Hi in the prior network, they allow the user to
specify m equivalent sample size Kij. From these
~ents, SDLC compute equivalent sample sizes
Kq for other network structures. The description of
this step requires some new notation. Let HI(P) and
HI(B$) denote the parents of zl in the prior belief net-
work sad a given belief network Bs, respectively. Let
/i = ndP)nni(Bs), o, = ndP)\/,, N, = ndBs)\&,
indicating the Intersecting, Old, and New parents of
z~. Note that O~ U Ii -- HI(P) and Ni U It -- Hi(Bs).
With respect to the prior belief network, let Ko(o).ql)denote the equivalent sample size for zi, given the
j(O)th instance of Oi sad the j(l)th instance of 
First, SDLC eapand this given equivalent sample size
to include the parents Ni yielding

Kq(o)j(n)~(N) Ko(o)j(O (23)p̄(N, = ./(N)IOi j(o),;, = j(z),0
Then, they contract out the old parent nodes 01 that
are not in Bs to give

" KO(I)j0v ) = ~ KO(O)j(I)j(N) (24)
j(o)

where KO(Oj(N) corresponds to an equivalent sample
size Kij for some j in the belief network Bs. Finally,
they use Equation 22 (without conditioning on B~c)
to obtain the exponents N[jk.
Their approach has two theoretical problems. One,
they overlook the need to condition the assessment of
the prior network on B~_. As mentioned, however,

g~o . ¯ .this problem may not be mgmficant m practice. Two,
their procedure will generate exponents that satisfy
score equivalence if sad only if the assessments of K0
satisfy Equation 21, in which case, their approach is
identical to our BDe metric. That is, their method al-
lows the user too much freedom. Nonetheless, in some
situations, one may want to sacrifice score equivalence
for this greater latitude.

To complete the information needed to compute the
BDe metric, the user must assess the prior probabili-
ties on the network structures, p(B~ [~). These assess-
merits are logically independent of the assessment of
the prior belief network, except in the limit as K ap-
proaches infinity, when the prior belief-network struc-
ture must receive a prior probability of one. Nonethe-
less, structures that closely resemble the prior belief
network tend to have higher prior probabilities.

Here, we propose the following parametric formula for
p(Bes]~) that makes use of the prior belief network.
Let 6~ denote the number of nodes in the symmetric
difference of HdBs) and H,(P): (H~(Bs) U Hi(P)) 
(!Ii(Bs) 13 Hi(P)). Bs andtheprior belief n et-
work differ by 6 = ~-t~, 6i arcs; and we penalize Bs
by a constant factor 0 < 0¢ < 1 for each such arc. That
is, we set

p(B~ I~) = c ~6 (25)
where ¢ is s normalization constant.

We choose this parametric form, because it facilitates
efficient search. Applied as is, the formula destroys the
property of score equivalence. In principle, however,
we can recover the property by identifying within each
equivalence class the belief-network structure with the
highest prior probability, and then applying this prior
probability to each belief-network structure in that
equivalence class. When we use these metrics in con-
junction with search, this solution is not necessary, be-
cause the search procedure will automatically favor the
belief-network structure in an equivalence class with
the highest prior probability (although the search pro-
cedure may not find this network structure).

2.4 Simple Example

Consider a domain U consisting of binary variables
z and y. Let Bz-,u and Bv_,z denote the belief-
network structures where = points to V and I/points
to z, respectively. Suppose that K = 12 and
that the user’s prior network gives the joint dis-
tribution p(z,tt[B*~..v,~) = 1/4,p(z,f/]B~tt,~ ) =
1/4,p(~, y[B~.,tl,~) ---- 1/6, and p(~, ~]B~_~,~) = 1/3.
According to Equation 14, if we observe database D
containing a single case with both z sad y true, we
obatin

11!6!5!3!
p(D, Bg..,,IO = p(BL,,,10, z2! 5! o! 2!

, 11! 5! 4! 3!
p(D, Bv_,=,k¢) = p(B;..,=¢k¢) 12! 4!5! 2!

Thus, as required, the BDe metric exhibits the prop-
erty of score equivalence.

2.5 Causal Networks and Scoring Metrics

People often have knowledge about the causal relation-
ships among variables in addition to knowledge about

. conditional independence. Such causal knowledge is
stronger than is conditionai-independence knowledge,
because it allows us to derive beliefs about a domain
after we intervene. For example, most of us believe
that smoking causes lung cancer. Prom this belief, we
infer that if we stop smoking, then we decrease our
chances of getting lung cancer. In contrast, if we were
to believe that there is only a statistical correlation be-
tween smoking and lung cancer, perhaps because there
is a gene that causes both our desire to smoke and lung
cancer, then we would infer that giving up cigarettes
would not decrease our chances of getting lung cancer.
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Causal networks, described by Pearl and Verma
(1991), Spirtes et al. (1993), Druzdel and Simon
(1993), and Heckerman and Shachter (1994) represent
such causal relationships among variables. In partic-
ular, a causal network for U is a belief network for
U, wherein it is asserted that each nonroot node z is
caused by its parents. The precise meaning of cause
and effect is not important for our discussion. The in-
terested reader should consult the previous references.

Formally~ we define a causal network to be a pair
(C$, Cp), where Cs is a causal-network structure and
Cp is a set of probability distributions corresponding
to that structure. In addition, we define C~ to be the
event corresponding to Cs, and a metric for a causal
network to be p(D, C~]~). In contrast to the case of be-
lid networks, it is not appropriate to require the prop-
erties of event equivalence or score equivalence. For
example, consider a domain containing two variables z
and y. Both the causal network Csl where z points to
y and the causal network Cs2 where y points to z rep-
resent the assertion that z and y are dependent. The
network Csl, however, in addition represents the as-
sertion that z causes y, whereas the network Cs~ rep-
resents the assertion that y causes z. Thus, the events
C~t are C~ are not equal. Indeed, it is reasonable to
assume that these events--and the events associated
with any two different causal-network structures--are
mutually exclusive.

In principle, then, a user may assign a different prior
distribution to the parameters OC£ to every com-
plete causal-network structure, in effect choosing ar-
bitrary values for the exponents N[j k. This approach
leads’to the Bd and BD metrics. For practical rea-
sons, however, the assessment process should be con-
strained. SDLC’s expansion-contraction method de-
scribed in Section 2.3 is one approach, but is computa-
tionally expensive. CH’s specialization of the BD met-

ric, wherein they set each N~jk to zero is efficient, but
ignores the prior network. We have explored a simple
approach, wherein each Kij is equal to K, a constant,
and where the exponents N~jk are determined from a
prior network using Equation 22. We call this met-
ric the BDu metric ("u" stands for uniform equivalent
sample sizes). Of course, the BDe metric may also be
used to score causal networks.

Note that, in the context of causal networks, the as-
sumption of parameter modularity (Assumption 5) has
an appealing justification. Namely, we can imagine
that a causal mechanism is responsible for the inter-
action between each node and its parents. The ss-
sumption of parameter modularity then follows from
the assumption that each such causal mechanism is
independent.

3 Methods for Finding Network
Structures with High Scores

/

For a given database D and background knowledge ~,
Equation 12 with prior probabilities given by Equa-
tion 25 can be written

n

p(D, = ,(=,In,) (26)
i=1

where s(zi[II~) is a function only of zl and its parents.
Therefore, we can compare the score for two network
structures that differ by the addition or deletion of
one arc pointing to z,, by computing only the term
s(zt[l’lt) for both structures. The algorithms that 
examine make use of this property, which we call score
locality. This property is due to the assumption that
cases are complete and the assumption of parameter
modularity.

3.1 Special Case Polynomial Algorithms

¯ We first consider the special case of finding a network
structure with the highest score among all structures in
which every node has at most one parent. For each arc
zj --+ z~ (including cases where zj is null), we associate
a weight w(zi,zj) - logs(z~[zj) - logs(z,10 ). From
Equation 26, we have

n

logp(D,B~[~) = ~logs(zd~r~) (27)
i=1

=  logs( ,l 
i=I i=l

where z’i is the (possibly null) parent of zi. The last
term in the second line of Equation 27 is the same
for all network structures. Thus, among the network
structures in which each node has at most one parent,
the one with the highest score is the one for which

E~=, w(zi, =i) is a maximum.
Finding this network structure is a special case of a
well-known problem of finding maximum branchings.
A tree-like network is a directed acyclic graph in which

¯ no two edges are directed into the same node. The
root of a tree-like network is a unique node that has
no edges directed into it. A branching is a directed for-
est that consists of disjoint tree-like networks. A span-
ning branching is any branching that includes all nodes
in the graph. A maximum branching is any spanning
branching which maximizes 5"~.~"ffit w(z~, lr~). An ef-
ficie, t polynomial algorithm for finding a maximum
branching was first described by Edmonds (1967).

Edmonds’ algorithm can be used to find the maximum
branching regardless of the score we use, as long as one
can associate a weight with every edge. Therefore, this
algorithm is appropriate for any metric. When scoring
belief networks, however, due to the property of score
equivalence, we have

s(=, 10) = s(=j I=,)s(=, 
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Thus for any two edges z~ -4 zj and z~ 4- ~, the
weights w(z,,z~) and w(zj,z,) are equal, t~ouse-
quently, the directionality of the arcs plays no role,
and the problem reduces to finding an undirected for-
eat for which ~ w.(z~, z j) isa maximum. Therefore, 

¯ can apply a maximum spanning tree algorithm (with
arc weights w(zl,zj)) to identify an undirected for-
cat F having the highest score. The set of network
structures that are formed from F by adding any di-
rectionality to the arcs of F such that the resulting
network is a branching, yields a collection of isomor-
phic belief-network structures each having the same

maximal score. This algorithm is identical to the tree
learning algorithm described by Chow and Lin (1968),
except that we use a score-equivalent Bayesian metric
rather than the mutual:information metric.

3.2 Heuristic Search

A generalization of the problem described in the previ-
ous section is to find the best network structure from
the set of all structures in which each node has no
more than k parents. Because networks with large par-
ent sets are not very useful in practice, one might be
tempted to generalize the previous algorithm to some
small k > I. Unfortunately, we conjecture that find-
ing an optimal network structure is NP-hard for k > 1.
Thus, we use heuristic search.

The search algorithms we consider make successive
arc changes to the network structure, and employ the
property of score locality to evaluate the merit of each
change. The possible changes that can be made are
easy to identify. For any pair of variables, if there
is an arc connecting them, then this arc can either
be reversed or removed. If there is no arc connecting
them, then an arc can be added in either direction. All
changes are subject to the constraint that the result-
ing network contain no directed cycles. We use E to
denote the set of eligible changes to a. network struc-
ture, and £(e) to denote the change in log score of the
network resulting from the modification e E E. From
the property of score locality, if an arc to z~ is added
or deleted, only s(z,[II~) need be evaluated to deter-
mine A(e). If an arc between z, and zj is reversed,
then only s(zdH,) and 8(zjlII~) need be evaluated.

One method for search is a variant of the greedy hill-
climbing algorithm described by Lain and Bacchus
(1993). First, we choose a network structure (de-
scribed in the following paragraph). Then, we eval-
uate ~(e) for all e E E, and make the change e for
which A(e) is a maximum, provided it is positive. 
terminate search when there is no ̄  with s positive
value for A(e). Using score locality, we can avoid re-
computing all terms A(e) after every change. In par-
ticular, with an exception to be noted, if neither z~,
zj, nor their parents are changed, then A(e) remains
valid for all changes e involving these nodes. The ex-
ception occurs because some changes become possible
and some become impossible due to the noncyclicity

condition; the terms A(e) for these changes must 
scored or invalidated, respectively. Candidates for the
initial network structure include the empty graph, a
random graph, a graph determined by one of the poly-
nomial algorithms described in the previous section, a
graph determined by Singh’s method of initialization
[Singh and Valtorta, 1993], and the prior network.

Another search method suited to our task is a vari-
ant of simulated annealing, described by Metropolis et
al. (1953). In this method, we initialize the system
at some temperature To. Then, we pick some eligi-
ble chan[~e ̄ at random, and evaluate the expression
p ="~e 0 . Ifp > 1, thenwe make the change e; oth-
erwise, we make the change with probability p. We
repeat this selection and evaluation process, n times
or until we make m changes. If we make no changes in
n repetitions, we stop searching. Otherwise, we lower
the temperature by multiplying the current tempera-
ture To by a decay factor 0 < ~ < 1, and continue
the search process. We stop searching if we have low-
ered the temperature more than l times. Thus, this
algorithm is controlled by five parameters: To, n, m, l
and ~. To initialize this algorithm, we can start with
the empty graph, and make To large enough so that
almost every eligible change is made, thus creating a
random graph. Alternatively, we may start with a
lower temperature, and use one of the initialization
methods described previously.

4 Experimental Results

We have implemented the BDe and BDu metrics as
well as the search algorithms described in this paper.
Our implementation is in the C++ programming lan-

TMguage, and runs under Windows NT with a 486-
66Mz processor. We have tested our algorithms on
small networks (n _< 5) as well as the 36-node Alarm
network for the domain of ICU ventilator management
[Beinlich et al., 1989]. Here, we describe some of the
more interesting results that we obtained using the
Alarm network. We note that the comparison of the
BDe and BDu metrics may be viewed as a comparison
of two exact metrics in the context of causal networks,
or the comparison of an exact and approximate (i.e.,
non-score equivalent) metric in the context of belief
networks.

In our evaluations we start with a given network, which
we call the gold-standord network. Next, we generate a
database from the given network, using a Monte-Carlo
technique. Then, we use a scoring metric and search
procedure to identify a high-scoring network structure,
and use the database and prior knowledge to populate
the probabilities in the new network, called the learned
network. In particular, we set each probability p(z, 
klIIi = j) to be the posterior mean of 0ffk, given the
database.

A principled candidate for our accuracy measure is ex-
pected utility. Namely, given a utility function, a series
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of decisions to be made under uncertainty, and a model
of that uncertainty (i.e., a network for U), we eval-
uate the expected utility¯ of these decisions using the
gold- standard and learned networks, and note the dif-
ference [Heckerman and Nathwani, 1992]. This utility
function may include not only domain utility, but the
coats of probabilistic inference as well [Horvitz, 1987].
Unfortunately, it is difficult to construct utility func-
tions and decision scenarioe in practice. Consequently,
researchers have used surrogates for differences in util-
ity, such ss the mean square error and cross entropy.

In this paper, we use the cross-entropy measure. In
particular, let q(z~,..., z,) and p(z~,..., zn) denote
the probability of an instance of U obtained from
the gold-standard and learned networks, respectively..
Then we measure the accurScy of a learning algorithm
using the cross entropy H(q,p), given by

H(q,p) log
p(z~, ,z,)

M|t...~gt

(2g)
The lower the value of the cross entropy, the more ac-
curate the algorithm. In Heckerman et al. (1994), 
describe a method for computing the cross entropy of
two networks that makes use of the network structures.

¯ Other researchers have used a structural comparison of
the gold-standard and learned networks--essentially,
counting arc differences-as a surrogate for utility dif-
ference [Singh and Valtorta, 1993]. We have not found
this measure to be as useful as cross entropy, because
the former measure fails to quantify the strength of
an arc. For example, although there may be an arc
from’bode z to node 1/, the conditional probability of
y given z may be almost the same for different val-
ues of z. In effect, the arc is a very weak one. The
cross-entropy measure takes this effect into account,
whereas a structural comparison does not. It can be
argued that the presence of many weak arcs is undesir-
able, because it increases inference time significantly.
We believe that such concerns should be expressed ex-
plicitly, by including cost of inference in the measure
of network utility. Such information not only enhances
evaluation, but it can be used in the scoring metrics
themselves.

In our experiments, we construct prior networks by
adding noise to the gold-standard network. We control
the amount of noise with a parameter */. When 17 - 0,
the prior network is identical to the gold-standard net-
work~ and as 11 increases, the prior network diverges
from the gold-standard network. When 17 is large
enough, the prior network and gold-standard networks
are unrelated. To generate the prior network, we first
add 2*/arcs to the gold-standard network, creating net-
work structure Bsl. When we add an arc, we copy the
probabilities in B/,1 so as to maintain the same joint
probability distribution for U. Next, we perturb each
conditional probability in BpI with noise. In particu-
lar, we convert each probability to log odds, add to it
s ssmple from a normal distribution with mean zero

Figure I: Cross entropy of learned networks with re-
spect to the Alarm network (inverse learning accuracy)
as a function the deviation of the prior-network from
the Alarm network (*/) and the user’s equivalent sam-
ple size (K) for the BDe metric with prior parameter

set to (1/(K + 1))1°. Greedy search initialized with
the prior network was applied to databases of size 500.
Each data point represents an average over four learn-
ing instances.

and standard deviation */, convert the result back to a
probability, and renormalize the probabilities. Then,
we create another network structure Bs2 by deleting
*/ arcs and reversing up to 2,/ arcs (a reversal may
create a directed cycle, in which case, the reversal
is not done). Next, we perform inference using the
joint distribution determined by network (Bsl, BI’I)
to populate the conditional probabilities for network

"(Bs2,B~,2). For example, if z has parents Y in Bsl,
but z is a root node in BS2, then we compute the
marginal probability for z in Bsl, and store it with
node x in Bs2. Finally, we return (Bs2,Bp2) as the
prior network.

Figure 1 shows the cross entropy of learned networks
with respect to the Alarm network (inverse learning
accuracy) as a function of the deviation of the prior-
network from the gold- standard network (*/) and the
user’s equivalent sample size (K) for the BDe metric.
In this experiment, we used our greedy hill- climbing
algorithm initialized with the prior network, and 500-
case databases generated from the Alarm network. For
each value of */and K, the cross-entropy values shown
in the figure represent an average over four learning
instances, where in each instance we used a different
database and prior network. The databases and prior
networks generated for a given value of 17 were used
for all values of K. We made the prior parameter t¢
a function of K--namely, K -- (1/(K 1))1°---so th
it would take on reasonable values at the extremes of
K. (When K = 0, reflecting complete ignorance, all
network structures receive the same prior probability.
Whereas, in the limit as K approaches infinity, reflect-
ing complete confidence, the prior network structure
receives a prior probability of one.)

The qualitative behavior of the curve is reasonable.
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Namely, when q = 0-that is, when the prior net-
work was identical to the Alarm network--learning
accuracy increased as the equivalent sample size K
increased. Also, learning accuracy decreased as the
prior network deviated further fromthe gold-standard
network, demonstrating the expected result that prior
knowledge is useful. In addition, when q ~ 0, there
was a value of K associated with optimal accuracy.
This ~sult is not surprising. If K is too large, then
the deviation between the true values of the psrarn-
eters sad their priors degrade performance. On the
other hand, if K is too small, the metric is ignoring
useful prior knowledge. We speculate that results of
this kind can be used to calibrate users in the assess-
merit of K.

The results for the BDu metric were almost identical.
At 27 of the 30 data points in Figure 3, the average
cross entropies for the two metrics differed by less than
0.3. To provide a scale for cross entropy in the Alarm
domain, note that the cross entropy of the Alarm net-
work with an empty network for the domain (i.e., 
network where all variables are independent) whose
marginal probabilities are determined from the Alarm
network is 13.6.

Learning times for the two metrics differed consider-
ably. Table I shows average run times for the BDe
sad BDu metrics as a function of U. For both met-
rics, search times increased as U increased, and learn-
ing times for the BDe metric were greater than those
for the BDu metric. These behaviors are due to the
fact that inference-that is the computation of N[~k
(Equations 21 sad 22)---dominate learning times. In-
deed,~’when we did not use a prior network, but in-
stead assumed all probabilities p(U]B~c,~) were uni-
form and used a maximum spanning tree to initialize
greedy search, learning times for the Alarm network
dropped to approximately 45 seconds. Thus, when
prior networks were used, run times increased when

increased, because the prior networks became more
complex. Also, the run times associated with BDe
were greater, because the computation of the metric
included determinations of p(z~ -- k,H~ -jlB~c,~),
whereas the computation of the BDu metric involved
determinations of p(z~ = k[IIi = j, B~, ~). The for-
mer computations are more complex using the Jensen
inference algorithm [Jeusen et al., 1990], which we em-
ployed in our initial implementation. In subsequent
implementations, we plan to use a query-based infer-
ence method, such as Symbolic Probabilistic Inference
[D’Ambwsio, 1991]. We expect that both the BDe
and BDu learning times, as well as their differences,
will decrease substantially.

We found our greedy hill-climbing algorithm to be the
best of our algorithms for learning network structures
in the Alarm domain. Table 2 shows cross entropy
sad learning times for each search algorithm. In this
comparison, we used the BDe metric with K = 8 and

= i (uniform priors p(B~[~)), uniform probabili-
ties p(U[B~¢,~), and a database size of 8000. The

Table I: Average learning times for the Alarm domain
using greedy search initialized with a prior network
and databases of size 500.

BDe BDu
0 17 rain 7 rain
1 46min 15min
2 70min 20min

Table 2: Cross entropy and learning times for various
search algorithms.

I
cross entropy

CH opt 0.036
CH rev 0.223

greedy search 0.035
annealing 0.098

~old standard 0.027

learning time
3 min

4.5 rain
5.5 min
150 min

na

algorithms CH opt is the greedy algorithm described
by CH initialized with an ordering that is consistent
with the Alarm network. The algorithm CH rev is the
same algorithm initialized with the reversed ordering.
We included this algorithm to gauge the sensitivity
of the CH algorithm to ordering. Our greedy algo-
rithm was initialized with a maximum spanning tree,
as described in Section 3.1. The annealing algorithm
used parameters To - 100, l - 70, m - 500, n -- 1000,
and ~ - 0.9, which we determined to yield reasonable
accuracy after some experimentation. For compari-
son, we computed the cross entropy of the Alarm net-
work and a network whose structure was identical to
the Alarm network, and whose probabilities were de-
termined from the posterior means of its parameters,
given the database (see row labeled "gold standard").
Our greedy algorithm obtained the lowest cross en-
tropy of all algorithms, and was only slightly slower
than was the CH algorithm. Also, the learning ac-
curacy and execution time for the CH algorithm was
sensitive to the variable ordering provided to the algo-
rithm, whereas our greedy algorithm required no ad-
ditional information for initialization. Our annealing
algorithm did poorly both with respect to cross en-
tropy and learning time.
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