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Abstract

Many mode/s of reality are probabilistic. For example, not everyone orders crisps

with the/r beer, but a certain percentage does. Inferring such probabilistic knowl-
edge from databases is one of the major challenges for data mining.

Recently Agrawai et ai. [1] investigated a class of such problems. In this paper a
new class of such problems is investigated, viz., inferring risk-profiles. The proto-
typical example of this class is: "what is the probability that a given policy-holder
will file a da/m w/th the insurance company in the next year". A risk-profile is
then a description of a group ofinsurants that have the same probability for filing
a claim.

It is shown in this paper that homogeneous descriptions are the most plausible
risk-profiles. Moreover, under modest assumpt/ons it is shown that covers of
such homogeneous descriptions are essentially unique. A direct consequence of
this result is that it suff/ces to search for the homogeneous description with the
highest associated probability.

- The main result of this paper is thus that we show that the inference problem for
risk-profiles reduces to the well studied problem of maximising a quality function.

Ke~wo~s ~ Phrases: Data Mining, Probabilistic Knowledge, Probabilistic Search, Probabil-
ity Theory

1. INTRODUCTION
Many models of reality are probabilistic rather than deterministic, either by lack of current
understanding or by nature. For example, it is unrealistic to expect a model that will predict
accurately whether or not a customer will order crisps with his beer or not. It is, however,
very well possible to have a model that yields the probability that a customer orders crisps
with his beer. In fact, Agrawal et al. have recently shown that such a model can be inferred
efficiently from a database [i].

In this paper we introduce a new class of such models, called r/sk-profiles and show how to
infer them from a database. The proto-typical example of this class of problems is derived
from the insurance business.

Take, e.g., the insurance company Save or Sort’# (SOS), that handles car insurances. 
stay in business, SOS has to satisfy two almost contradictory requirements. First, the total
of premiums received in a given year should be at least as high as the total of costs caused by
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claims, i.e., the higher the premiums the better. Secondly, the premiums it charges should
not be higher than those of the competitors, i.e., the lower the premiums the better.

Hence, SOS should be able to predict the total claims of an insurant in a given year as
accurately as possible. Clearly, predicting this amount with a 100% accuracy for each and
every client is impossible. What insurance companies do, is identifying groups of clients with
the same e~eeted claim amount per year. Such groups are described by so-called risk-profiles.
In other words, by what is called a (set-)description in data mining.

Clearly, the sharper these descriptions are, the more competitive SOS can be. Since insur-
ance companies have large databases with insurance and client data, inferring risk-profiles
o~ers a major and profitable challenge to data mining.

Another example of the use of risk-profiles is in the analysis of medical data. Both doctors
and patients would like to know the chance that a patient dies given the symptoms she has.
It is reassuring to know that say only 0.1% of the patients with fiu will die, but perhaps less
so if one knows that the mortality rate for those with both the fiu and a heart-condition is
much higher.

In this paper we study a simple risk inference problem, viz., we only try to infer the
probability that a client will file a claim in a given year. More complicated cases are simple
extensions of the solution proposed in this paper.

This solution is reached as follows. After recapitulating some basic probability theory,
Section 2 presents the formal statement of this problem in terms of (set-)descriptions. This
formal problem is analysed in the third section, were we indicate that good descriptions are
homogeneous. Roughly, a description is called homogeneous if all extensions of this description
yield nothing surprising. The notions of homogeneity and surprises are formalised in Section 4.

In Section 5, it is shown that certain maximal homogeneous descriptions are in a certain
sen.’se unique. This uniqueness result indicates that these maximal descriptions are plausible
solutions for our problem. The next section Shows that finding these maximal descriptions
is an instantiation of the well-studied problem: maximise this function. It is then argued
that due to the nature of our problem, probabilistic maximisation heuristics are the most
adequate. In the final section, the conclusions are stated together with a brief description of
current research. Moreover, a brief comparison with related research is given.

Note, this paper is only an extended abstract. All definitions, results and proof-sketches
are given in the running text.

2. PRELIMINARIES
In the first subsection we recall some basic facts from probability theory. For a more detailed
treatment, the reader is referred to textbooks such as [3]. The second subsection presents
the formal statement of the problem. In the third and final subsection some notational
conventions are introduced.

~.I Bernouillz/ ezperiments
To determine the risk-profiles for SOS, it is assumed that its clients undertake a Bernouill~/
or 0/I experiment each year. Recall that a Bernouilly experiment is an experiment with two
possible outcomes, denoted by 0 and 1. The outcome 1 is often called a success. In our
example, a client succeeds in a trial of the experiment if he files a claim in that year.
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For a Bernouilly experiment, it is assumed that there is a constant probability, say p, of
success for each trial. The probability that we get exactly k success in n trials is then given
by the binomial distribution:

P(#Sfkln, P) ffi(n) k pk(1 _ p)(.-k)

If n trials result in k successes, the best estimation of p is given by k/n. However, it is
conceivable that p differs from k/n. The (100 - if)% confidence interval for p, given n and
k is the largest interval Cl(n, k,6) _ [0,1] such that P(p CI(n, k, 6)) <_6%,i.e. , the
probability that p ¢ CI(n, k, 6) is smaller then if%.

Cl(n, k, 6) can be computed using the binomial distribution. In fact, using the Chernoff
bounds:

P(lk/n - P[ > ~) - ~ n)k p~(1 - p)(n-k) <2e -dn/4pO-p)
k: Ik/n-pl>c

one sees that with c ffi ~ [k/n - c, k/n + c] is an easily computed conservative approx-

imation of Cl (n, k, ~).

~.~ Descriptions: the problem
If a client is insured for a long time with SOS, and if it is reasonable to assume that the client’s
probability of success has not changed over the years, the confidence intervals of the previous
subsection can be used to determine the chance of success for each client individually. Alas,
these assumptions are not very often met. If only because, e.g., changes in traffic density
ensure that the probability of success for each client will vary over the years.

With only one or two trials per client, the method sketched above will give [0, 1] as the
95% confidence interval for our individual clients, which is pretty useless. The assumption
we make is that there are a few groups of clients, such that clients in the same group have the
same probability of success. That is, we assume that there is a cover {G1,..., Gz) of disjoint
subsets of SOS’s clients, such that:

Veil, el2 : [p(cla) = p(cl2)] *’* [3!i E (1,..., l) : [ell E Gi A el2 E 

where p(cli) denotes the probability of success of client cli. The assumption that l is small
is made to ensure that each group has enough clients to allow for an accurate estimation of
the associated probability of success.

The second assumption is that membership of one of the Gi depends on only a few prop-
erties of the client. That is, we assume:

1. a set of attributes ~4 = {A1,..., An) with domains D1,..., Dn, where dom(Ai) ffi Di;

2. a function p : D1 x ... x Dn "* [0,1];

such that if Ai(t, el) denotes the Ai-value client el has at time t, p(Al(t, cl),... ,An(t, 
denotes c/’s probability of success at time t.
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For SOS, we can think of the attributes age, gender, and miles per year with their obvious
domains.

Using the second assumption, we can rephrase the first as saying, we assume that there
exists a cover, C- {CI,..., Cl}, of disjoint subsets of DI x ... x Dn such that:

vvl,v~ e DI x ... x D,: [p(vl) = p(v~)] .- [Vi e {i,...,l} : [vl ̄  C~ .~ v2 ̄  
The chance of success that all the v E Ci share is called the associated probability of Ci and
is denoted by Pc~.

The problem discussed in this paper can now be stated as: ’Trod the (7/and their associated
probability Pc,".

In dat_umining terminology this means that we try to find a (set-)description for ear3 
the Ci. That is, find logical formulae ¢i such that a value v ¯ DI x ... x D, satisfies ¢i,
denoted by ¢i(v), iff v ¯ C~. The formulae ~b are expressions in some description language 
over .4. Which description language @ is chosen is unimportant for this paper as long as one
can expect that the Ci can be described by @ and the following four assumptions are met:

I. ¯ is closed under negation, i.e., ~ ̄  @ ---, -,¢ ¯ @

2. @ is closed under conjunctions, i.e., ¢i,~b2 ¯ @-* Ca A ¢b2 ̄  @;

3. Implication is decidable for @.

4. ¯ is sparse with regard to P(DI x ... x Dn). That is, the number of subsets described
by @ is small compared to the number of all possible subsets.

The necessity of these requirements will become clear in the next sections.

For SOS, an example of such a sparse description language is given by the disjunctive and
conjunctive closure of the following set of elementary descriptions:

1. gender = female, gender = male;

2. age - young, age -- middle aged, age - old;

3. miles per year --" low, miles per year = average, miles per year = high.

Of course, the most important assumption on @ is that the Ci can be described in @. Hence,
choosing an appropriate @ is an important task in deriving the risk-profiles.

To Sate our problem in terms of descriptions, define a set {~i,..., Ck} of descriptions to
be a disjunctive cover, abbreviated to discovery, if:

1. ¥i,j ¯ {1,...,k}:i ~j.--* [¢iACk"-*-L]

2. kVi=1 ¢i ¯ @ and [V~=a ¢~i] "" T

Note that if@ contains 2, we assume that discoveries do not contain 2.. The set {gender -- female,
gender ffi male) is a discovery for SOS.

The problem can then be restated as: find a discovery {¢I,..., Ck} such that

Vvl,v2 ¯ D1 x ... x D,: [p(vl)= p(v2)] ~- [Vi ̄  {1,...,k} : [~(v~) ~. Cdv2)]].
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~.3 Notational conventions
The database is seen as a recording of trials of our experiment. Hence, it is a table R, with
schema .4 U {S}, where S has domain {0,1}. Each time t an object o E P takes experiment
E, we insert, regardless of duplicates, the tuple (Az(t,o), ... ,An(t,o), $(t,o)) in the table
where:

1. Ai(t, o) denotes the value vi E Di that o has for Ai at time 

2. $(t, o) - 1 if o succeeded in this experiment and S(t, o) -- 0 otherwise.

Three notations used for the elements of ¯ with respect to R are: (¢) to denote the subtable
of R of all tuples that satisfy ¢, (¢)s denotes the elements of (¢) that are successes, and II~[I
to denote all v E Di x ... x D,~ that satisfy ¢.

3. PROBLEM ANALYSIS

The problem as stated in the previous section consists of two parts. We have to find a
discovery {¢z,... ,¢k} and we have to prove that for this discovery Vvz,v2 E Dz x ... x On :
[p(vl) - p(v2)] *-* [Vie {1,...,k} : [¢,(vz) ~ ¢,(v2)]] 

Finding discoveries is easy, each sequence Cz,..., Cn ̄  ~ of descriptions generates the
potential discovery ~ -- {~z,’~¢z A ~2, ~I A ~(~2 A ~S,..., (~¢~1 A’’" A ~n)}. After removal
of duplicates (~ is a duplicate of ~ iff ¢ ,-. ¢) and J., ~ is a discovery.

So, we may expect that the discoveries are abundant. However, they are not all equally
good in that some will not satisfy the second requirement.

To discuss this requirement, we should first determine what probability should be associated
with a description ¢. If we assume that the database is a random selection of the potential
clients, this is simple, since for each C E ~, (¢) can be seen as the record of some Bernouilly
experiment E~. Hence, the probability p~ of success associated with ¢ is simply the fraction
of i~ccesses in (¢) and ¢ has the I00 - 6% confidence interval CI~ = CI(J(¢)J, J(¢)sJ, z.

If the database is not a random selection of the set of all potential clients, say the number
of young clients is far less than could be expected, the above observation is only true for the
"real" ¢i and the logical combinations thereof. This is however unimportant for the purposes
of this paper.

The second requirement in turn consists of two sub-requirements. The first is that two
values that satisfy different elements of the discovery have different chances of success. That
is, the different elements are distinct. The second states that two values that satisfy the
same element of the discovery have the same chance of success. That is the elements are
homogeneous.

Using the I00 - 6% confidence intervals, we can test distinction. For if Cl~z f~ CI~2 - 0
we know that Yv, w ̄  Dz x... x Dn : Cz(v) h ¢2(w) P(p(v) - p( w)) <_ 6, i f both
¢~ are homogeneous.

So, provided we can test homogeneity of descriptions, we can for some fixed 6 discard
all those discoveries that contain at least two elements that cannot be distinguished with a
confidence of at least 100 - 6%.

Zln this paper we assume that al] descriptions we consider are su/Bciently large, such that reasonably
accurate estimates of the p~ can be found. See also footnotes and remarks later in this paper.
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Can we test homogeneity of descriptions? If a description ¢ is not homogeneous, (¢)
contains elements r and w such that p(v) ~ p(w). More precisely, if ¢ is not homogeneous,
there exists a cover C ffi {CI,..., Cz}, of disjoint subsets of [¢[ such that:

But this is exactly the question we are trying to answer!

So, let us first try to answer the question when the empty description, i.e., T is homo-
geneous. Clearly, if every subset of the database has the same associated probability on
success, then the database is homogeneous. However, this is obviously impossible. In fact,
the database is the record of a weighted Bernouilly ezperiment.

Let gi denote the relative size of group Gi in the universe of potential clients. Under the
assumption that the actual clients are a random subset of the potential clients the database
is the recording of a Bernouilly experiment E with its probability on success PE given by:

i--1

Note that if JR) is large, then, as one would expect:

PE --- ~1 g,PG, ~ ~-1 ~7~’JP~, ~ ~-Z ~.J x ~ = the number oi~uccesses in R

Hence, if we consider all possible subsets of the database, the number of successes in the
subsets of a given size follow a binomial distribution. In other words, if we inspect all possible
subsets we can conclude nothing.

However, we are not interested in all possible subsets, but only in those subsets we can
describe. Since ¢ is sparse, one would expect that all descriptions have more or less the
same associated probability. If we think that T is homogeneous and it turns out that two
descriptions have distinct associated probabilities then we are surprised. We would not expect
this to happen. If female clients appear to drive much safer than male clients, we are no longer
sure that all clients have the same associated probability. That is, we are no longer convinced
that T is homogeneous.

In other words, it is plausible that a description is homogeneous if all its covers have the
same associated probability. This can be stated more succinctly in the slogan: Homogeneous
descriptions contain no surprises.

4. HOMOGENEOUS DISCOVERIES

To simplify the discussion, define a set ~¢1,..., Ck} of descriptions to be a discovery .for
description ¢, if:

1. Vi, j¯ {1,...,k} :i#j...-~ [¢i ^ Ck --* -L]

2. V~=1¢i ¯ @ and k

If we assume that T ¯ ~, the discoveries of the previous sections are discoveries for T; we
will continue to use this abbreviation.
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If @ is an homogeneous description, so is @ ̂ ~. In fact, then pc and p¢^~ should be,
almost, identical. In the previous section, we have seen that p~ and PCA~ are identical with
a probability 6 if CI~ andCI~^~ are disjoint. Therefore, we define a description ~ to be a
(100 - 6)% su~risin9 description for a description @, if CI~ and CI~^,~ are disjoint.

For example, if Cl~~ [0.19, 0.21] and s~- CI~e,~er=,,~,ae - [0.25, 0.27], then Sender = male is
a 95% surprise for T.

Since discoveries can contain many elements, it is not impossible that a discovery for a
homogeneous description @ contains some surprising descriptions for @. To quantify the
number of surprising descriptions in a discovery that is surprising, note that a description
has a chance 6 to be surprising for @. That is, being a surprise is a Bernouilly experiment,
with probability 6. We would be surprised if the number of successes in this experiment is
high.

For a Bernouilly experiment with probability p of success, define Lwb(n,p,6) to be the
lowest integer k such that P(#S ~_ k[n,p) _< 6. For a description @, define Lwb(@,6) 
Lwb([(@)[,p#,6).

Hence, we define a discovery {@1,. ̄  ̄ , ¢z} for a rule ~ to be a (100-6)% surprising discovery
/or if:

[{i E {1,...,/}l@i is a (100 - 6)% s.rp~sing description for ~ }[ _> Lwb(~, 6)

A description for which there are no (100 - 6)% surprising discoveries, is called a (100- 
homogeneous description 2.

One might wonder why we bother Bernouilly experiments for covers since ̄  is assumed to
be sparse. However, even if @ is sparse, it can still happen that ,I~ distinguishes all values
of an attribute with a large domain, say age. For such a dense cover, one can expect some
sunrises. However, only if such surprises are considerable, say all clients younger than 25, it
counts as a real surprise.

Note that if ,I~ is never dense, such as in our example, one surprise in a cover is enough to
make the cover surprising.

Let ~ be a description, a discovery {@1,..., @z} for ~ is (100 - 6)% homogeneous discovery
.for ~, iif all of the @~ are (100 - 6)% homogeneous descriptions.

5. SPLIT (100--6)% HOMOGENEOUS DISCOVERIES ARE UNIQUE
Clearly, the real discovery we are searching for will be (100 - 6)% homogeneous. But are
all (100 - 6)% homogeneous discoveries plausible candidate solutions? If there are many
(100- 6)% homogeneous discoveries, one might wonder which of these discoveries is the most
plausible answer. In this section, we show that all 8pHt discoveries are more or less the same.

A (100 - 6)% homogeneous discovery {@1,..., @z} is split iff

[i#j ^ 6V@e#Vi,j6{1,...,l}: (@iA@)>>0 A --*CI~,^,AnOI~#^¢=¢
(¢j >> 0

21f @ is a de,,cription for which I(V~)I is alre~y so small that for almost all non contradictory ¢, I(¢ ̂  
is to small for an accurate estimation of P@A~ are not considered to be homogeneous.
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In other words, a discovery is split if its descriptions are distinct on all but trivial subsets.

Let {~bl,..., ~k} and {~Pl,..., ~P~} be two split (100 - 6)% homogeneous discoveries. Then
since both/¢ and I are assumed to be small (since the number of groups is assumed to be
small) there is for each ~i, at least one ~pj such that (~biA~Pj) >> 0. But since both discoveries
are homogeneous and split, there can be at most one. So, (~i) ~ (~Pj) CI~ ~. CI~j .

Define a pre-order on the (100-6)% homogeneous discoveries by {~i,.. ¯, ~k} -< {~Pl,. ¯ ̄ , ~Pz}

iff there exists a injective mapping f : {i,..., k} -. j ¯ {I, ..., l} such that CI~ c Ci~/(o.6
Then, by the observation above, we can identify all split (100- 6)% homogeneous discoveries
and turn this relation into a partial order.

Clearly, the split (100 - 6)% homogeneous discoveries are minimal with regard to this
order. Note, however, they need not exist. Hence, we cannot identify the split (100 - 6)%
homogeneous discoveries with the minimal discoveries. Of-all the (100 - 6)% homogeneous
discoveries, the minimal discoveries are preferable, e.g., by the minimal description length
principle.

If a split discovery exists, this one is the most plausible of all minimal discoveries, since it
makes the sharpest distinction between its descriptions. In other words, it is the description
with the highest information-gain.

The fact that the split discoveries are not unique is simply caused by the fact that a set
of tuples can have more than one description. For example, it could happen that almost all
young clients are male and vice versa. In that case the descriptions age - young and gender
- male are equally good from a theoretical point of view. Not necessarily from a practical
point of view. For, it is very well possible that the description age = young makes sense to
a domain expert while gender = male does not. Hence, both options should be presented to
the domain expert.

6.’~FINDING MINIMAL HOMOGENEOUS DISCOVERIES

In the first subsection we show that finding minimal homogeneous discoveries reduces to
maximisation of a function. In the second we briefly discuss various maximisation algorithms.

6.1 Mo~misation
Define the partial order "<6 on the set of (I00 - 6)% homogeneous descriptions as follows:

¯ If for neither ¢~ "<6 ~P nor tp "<6 ~ holds, then we say that ~ ~6 ~P.

From the definition of (100-6)% homogeneous discoveries it is immediately clear that such
a discovery neccesarily contains a description ~b such that for all (100 - 6)% homogeneous
descriptions Ip either ~P "<6 ~b or ~b ~6 ~P.

Minimal (100- 6)% homogeneous discoveries differ from the ordinary ones in that their
"maximal" element ~ also has a maximal [(~)I Therefore, define the following pre-order 
the (100 - 6)% homogeneous descriptions: ~ r’_6 ~p if:

I. either if ~ "<6 ~;
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Then minimal (I00 - 6)% homogeneous discoveries contain an element @ such that for all
(100- 6)% homogeneous descriptions ~, ~ _-.6 

From this observation, we see that the following pseudo algorithm yields a minimal (100 
6)% homogeneous cover:

1. Make a list d (I00 - 6)% homogeneous descriptions as follows:

(a) find a (b that is maximal with regard to __.6 for 

(b) remove (~) from R and add ~ to the list.

(c) continue with this process until:

either T is homogeneous on the remainder of R;
or R is to small for further accuracy estimations of probabilities. In this case

make the list empty.

2. If the list is non-empty, turn it into a potential discovery as indicated at the beginning
of section 3. If the list is empty return nothing

If we are returned a potential discovery, it is a minimal (100 - 6)% homogeneous discovery
by virtue of our remarks above. If the algorithm falls, no solution exists in ~. Given such a
minimal description, it is straightforward to check whether it is split.

As an aside, note that the list returned by the pseudo-algorithm is similar to a decision-list
[10]

6.,e Finding mazimal descriptiona
To turn the pseudo-algorithm of the previous subsection into an algorithm, it is sufficient to
give a procedure that returns a maximal (100- 6)% homogeneous description (b. For, 
can check whether T is homogeneous by checking whether ~ and "I" have the same associated
chance.

But finding su~ a maximal (100 - 6)% homogeneous description @ is a simple application
of maximising a function. In the first phase of the search this function is the associated
probability of" a rule, and in the second phase it is the cover of the rule (while retaining the
maximal probability found).

This problem is well-documented in the machine learning literature. Older solutions are
ID3, AQ15 and CN2 [9, 6, 2]. More modern, non-deterministic approaches use genetic algo-
rithms or simulated annealing. See [4] for an overview of a some of these systems.

For our problem, a non-deterministic approach is best suited. For, there can be many
different (100 - 6)% homogeneous discoveries, that describe the same sets but with different
descriptions. Some of these descriptions will be pure coincidence, while others have a sensible
interpretation.

If we use a deterministic algorithm, the chance exists that we miss out the sensible descrip-
tions completely; this would render the result virtually useless.
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Of the two pro-dominant non-deterministic search methods, the genetic approach seems to
offer the best possibilities for our problem. Since, as described in [5], its genetic operators
can adapt the proven heuristics of the older deterministic algorithms.

In this particular case, we think in fact of two sets of operators. One for the first phase
and another for the second. In the first phase we search for a maximal probability so, one
can think of a hill-climber type of approach. In the second phase generalising a description
is far more important. Hence, we need a different set of operators.

Note that it is not our intention to turn genetic programming into something deterministic,
rather, it is an attempt to lift genetic programming to the level of symbolic inference.

7. CONCLUSIONS AND FUTURE RESEARCH
The main result of this paper is that we have shown that a new class of problems, viz., find
risk profiles, can be reduced to a well-known class of problems, viz., maximisation problems.
These results have been achieved by introducing the notions of a surprise and homogeneity.
In particular the slogan: "homogeneous discoveries contain no surprises", has proven to be
fruitful.

The important implication of these results is that we can built efficient algorithms to solve
this new class of real world problems. In fact, at the moment we are building and testing a
system based on the ideas presented in this paper for an insurance company that wants to
find such riskprofiles, for obvious commercial reasons.

Next to the choice for an adequate maximisation algorithm as discussed in Section 6, the
other main problem is the choice of a good description language. As we have seen in this
paper, this language should not be to rich. Obviously, it should neither be to poor if the
profiles are to be expressible in this language. The design of a language that meets these two
conflicting requirements is currently one of our main topics.

7. ~ Related work
As already indicated in the introduction, as far as the author is aware, inferring risk-profiles
is a new problem area in data mining research. It is probably most connected to diagnostic
problem solving as reported in [7, 8]. A diagnostic problem is a problem in which one is given
a set of symptoms and must explain why they are present.

The authors of [7, 8] introduce a solution that integrates symbolic causal inference with
numeric probabilistic inference. A crucial point in this integration is the use of a-priori
probabilities. The authors imply that these probabilities should be supplied by an expert.
However, using the technique presented in this paper, these a-priori probabilities can be
derived from a database.

ACKNOWLEDGEMENTS
Marcel Holsheimer has been the sparring partner in many stimulating discussions. Moreover,
he pointed out an error in a previous version of this paper. My heartfelt thanks.

Also thanks to the anonymous referee who pointed out many improvements, and brought
references [7] and [8] to my attention.

Page 106 AAAI.94 Workshop on Knowledge Discovery in Databases KDD-94



REFERENCES
I. Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Database mining: a performance

perspective. IEEE transactions on knowledge and data engineering, Vol. 5, No. 6, De-
cember:914 - 925, 1993.

2. Peter Clark and Tim Niblett. The CN2 induction algorithm. Machine Learning, 3:261 -
283, 1989.

3. William Feller. An introduction to probability theory and its applications, Vol 1. Wiley,
1950.

4. Marcel Holsheimer and Arno P.J.M. Siebes. Data mining: the search for knowledge in
databases. Technical Report CS-R9406, CWI, January 1994.

5. Zbigniew Michalewicz. Genetic Algorithms 4- Data Structures - Evolution Programs.
Artificial Intelligence. Spinger-Verlag, 1993.

6. Ryszard S. Michalski, Igor Mozetic, Jiarong Hong, and Nada Lavrac. The multi-purpose
incremental learning system AQ15 and its testing application to three medical domains.
In Proceedings of the 5th national conference on Artificial Intelligence, pages 1041 - 1045,
Philadelphia, 1986.

7. Yun Peng and James A. Reggia. A probabilistic causal model for diagnostic problem solv-
ing - part I: Integrating symbolic causal inference with numeric probabiUstic inference.
IEEE transactions on Systems, Man, and Cybernatics, Vol. 17, No. 2, March/Aprih146
- 162, 1987.

8. Yun Peng and James A. Reggia. A probabilistic causal model for diagnostic problem solv-
ing - part II: Diagnostic strategy. IEEE transactions on Systems, Man, and Cybernatics,
Vol. 17, No. 3, May/June:395 - 406, 1987.

9. J. Ross Quinlan. Induction of decision trees. Machine Learning, 1:81 - 106, 1986.

10:-.Ronald L. Rivest. Learning decision lists. Machine Learning, 2:229 - 246, 1987.

KDD-94 AAAI-94 Workshop on Knowledge Discovery in Databases Page 107



Page 108 AAAI.94 Workshop on Knowledge Discovery in Databases KDD-94




