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Abstract

In this paper we analyze relationships between different forms of knowledge that can be discov-
ered in the same data matrix (database): regularities, concept descriptions and conceptual clusters
(hierarchies). These relationships, very important for our understanding of knowledge, have not
received sufficient attention, neither in the domain of machine learning nor from the perspective of
knowledge based systems. We argue for the basic role of regularities (law-like knowledge) and 
show how a subset of the discovered regularities, made of regularities which approximate logical
equivalences, can be used to construct concept hierarchies. We show how each of those regularities
leads to an element of the conceptual hierarchy and how those elements are linked to form elements
of higher empirical contents. One-way implications can also contribute to the empirical contents
of hierarchy elements. Next we show how to combine hierarchy elements into concept hierarchy.
Different hierarchies are possible, leading to the question of choice between hierarchies, for which
we provide our optimality criteria. The algorithm is illustrated by a walk-through application on
the soybean database. We compare our results with results obtained earlier by the COBWEB
clustering approach.

1 Introduction: concepts and regularities discovered in data

Relational tables in databases (data matrices in statistics, collections of examples in the machine
learning research) have been used for a long time to seek different kinds of knowledge, for instance,
concepts, taxonomies, and regularities. The relationships between these forms of knowledge, how-
ever, did not receive sufficient attention.

We argue that concepts and taxonomies are a limited form of knowledge, compared to regular-
ities, which are also called law-like knowledge. We demonstrate that useful boolean concepts and
their hierarchies can be typically inferred from especially simple types of regularities discovered in
data. Other forms of knowledge are both important and non-reducible to concepts and taxonomies.

1.1 Concept learning and concept discovery

In technical terms of logic, concepts are predicates which include free variables. They name objects,
properties or patterns, but they are not statements, as they are neither true nor false. Truth values
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can be assigned to statements, which use concepts and which have all variables bound by quantifiers,
either in explicit or implicit way. Statements are claims about the world. With the exception of
tautologies, true and universally quantified statements are typically called laws or regularities.

A proven model of concept discovery comes from science. Concept discovery in science is not
an isolated activity, because concepts are justified by feedback from knowledge. Concepts can be
viewed as investments which produce payoff when they allow us to express regularities and laws.
Better investments, that is, better concepts can be recognized by analyzing regularities that they
permit to express. Among an unlimited number of concepts that can be proposed, science uses
a very limited number, choosing them based on the generality, predictive power, accuracy, and
number of laws in which they occur. In machine discovery we also use the same feedback (Langley,
Simon, Bradshaw, & Zytkow, 1987; Nordhausen & Langley, 1993; Shen, 1993). In our paper we use
predictive strength, the scope of applications, and the number of laws to guide concept formation.

Concept learning from examples can be viewed as a very limited search for regularities. Mem-
bership in the target class is described by the target attribute, which indicates for each record
in a relational table, whether it belongs to that class or not, that is, whether it is an example
or a counterexample. The learner seeks the best definition of the target class in terms of other
attributes. Such a definition has a truth value. If true, it shares many features of regularities,
for instance, it can be used to predict class membership. The target class is externally defined
and a learner searches only for a class definition. In contrast, a discoverer must explore various
target attributes, search for regularities for each, and evaluate the concepts based on the number of
discovered regularities, their predictive strength, and the range of data they cover. While a learner
may not understand the reasons why a concept has value, a discoverer would, because the focus on
regularities gives it a good foundation for the autonomous acceptance of concepts.

1.2 Clustering as limited discovery

Clustering is a step towards autonomy in concept learning. Here the task is more open, aimed at
the autonomous creation of classes. Given a data matrix, clustering seeks to divide all records into
classes and to find a description of each class. The concern for regularities in data has been notably
absent in early clustering systems, and resultant taxonomies have had little scientific value. A new
generation of clustering systems guides the clustering process by predictivity of clusters (Fisher,
1987). The resultant cluster hierarchies demonstrate predictive power when regularities are present
in the data. In addition to knowledge that is contained in concept definitions, additional knowledge
is implicit in cluster hierarchies when they are exhaustive and disjoint.

Knowledge included in a taxonomy falls into the category of monadic logic; membership criterion
for each class is represented by a unary predicate, while empirical contents of each class and
relations between classes are represented by equivalences and implications between such predicates.
Knowledge represented by monadic predicates is, of course, very limited.

Regularities for two-dimensional and many-dimensional relations, however, are poorly repre-
sented by clusters. A regularity does not separate existing objects into classes, but instead, it
specifies a pattern obeyed by all objects. Many classes may be needed to represent predictivity
of a simple pattern. For instance, a simple proportionality between attributes x and y must be
approximated by many clusters, rather than by a simple regularity y - ax. This applies also to
relationships between non-numerical attributes, when these attributes have many values. In con-
tradistinction to clustering, the main goal of many discovery systems is to find regularities in the
data, while new concept construction has merely instrumental role in the search for regularities.
So even if clustering is a limited form of discovery, the global regularities as such are overlooked,
while pieces of regularities are captured locally, in different combinations, by clusters.
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2 From regularities to useful concepts

Elsewhere (7,ytkow & Zembowicz, 1993) we argue that equations and contingency tables are two
basic forms of regularities. The generic form of regularity is "Pattern P holds in domain D".
A pattern that holds in a domain distinguishes records that are possible in that domain from
records that are impossible. Contingency tables, which express statistical regularities, distinguish
statistically probable combinations of records from those improbable. The majority of patterns do
not imply new concepts. Take an equation in the form y = f(x). It does not "naturally" lead
to conceptual distinctions among the values of x or y, because all values of both variables are
treated uniformly by the equation. The majority of contingency tables do not lead to "natural"
concepts, either, but we will demonstrate that there is a subcategory of contingency tables which
gives strong reasons for concept formation. Furthermore, when a number of contingency tables
in that category is inferred from data, and if these tables share some common attributes, we can
use these regularities to form a concept hierarchy. Such a concept hierarchy captures relationships
discovered between different tables.

2.1 Concepts inferred from contingency tables

Consider two types of tables, depicted in Figure 1, labelled with values of two-valued attributes,
A1 and A2. Non-zero numbers of occurences of particular value combinations are indicated by nl,
n2, and n3. Zeros in the cells indicate that the corresponding combinations of values do not occur
in data from which the table has been generated. The upper table in Figure 1, for instance, shows
that 0 objects are both A1 and non-A2 (labelled -A2 in the table), while n2 objects are neither
A1 nor A2. From the zero values we can infer inductively, with significance that increases as we
consider more data, that these value combinations do not occur in the population represented by
data.

The regularity expressed in this table is equivalence:
For all x, (Al(x) if and only if A2(x) 

2 classes can be defined: (1) A1 and A2, (2) non-A1 and non-A2

A1. 0 nl
-~A1 n2 0

-A2 A2

The regularity expressed in this table is implication:A1 0 nl
-~A1 n2 n3

-~A2 A2
For all x, ( if Al(x) then A2(x) ) or equivalently:
For all x, ( if non-A2(x) then non-Al(x) 

Figure 1. q ngency tables that lead to conclusions about concepts.

The upper table motivates the partition of all data into two classes: (1) of objects which are
both A1 and A2, and (2) of objects which are neither A1 nor A2. Each class has empirical contents.
We can test class membership by the values of one attribute~ and predict the value of the other
attribute.

The lower table in Figure 1 leads to weaker conclusions. Only the values A1 and non-A2 carry
predictive contents. For objects, which are A1, it enables the inference that they are also A2.
Equivalently, for objects which are non-A2, they are non-A1.

The interpretation of zeros, illustrated in Figure 1 can be generalized so that it applies to each
zero that occurs in any table, but for large tables the inferred concepts and their properties may
be too many and too weak.
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2.2 Approximate inference

In real-world situations, rarely we see regularities without exceptions. Instead of cells with zero
counts, we can expect cells with small numbers, that is, numbers small compared to those in other
cells. A robust method should be able to handle exceptions.

We could compare the numbers in different cells, to determine whether some are small in
comparison to others, but in our approach we use Cramer’s V, set at a threshold close to 1.0. The
Cramer’s V coefficient is a measure based on X2, which measures the distance between tables of
actual and expected counts. For a given Mrow × Moot contingency table, Cramer’s V is defined as

V =
N min(Mrow - 1, Moot - 1)’

where N is the number of records.
Cramer’s V can be treated as the measure of the predictive power of a regularity. The regularity

between z and y has a larger predictive power if for a given value of x the value of y can be predicted
more uniquelly. The strongest predictions are possible when for each value of one attribute there
is exactly one corresponding value of the other attribute. For ideal correlation, X2 is equal to
N min(Mrow - 1, Moot - 1), so Cramer’s V = 1. On the other extreme, when the actual distribution
is equal to expected, then X2 = 0 and V = 0. Cramer’s coefficient V does not depend on the size of
the contingency table nor on the number of records. Thus it can be used as a homogenous measure
on regularities found in different subsets and for different combinations of attributes. In addition
to Cramer’s V, we use significance to qualify regularities for further analysis.

3 From regularities to taxonomies

As a walk-through example that illustrates our method for taxonomy formation we selected the
small’soybean database of 47 records and 35 attributes, because it has been studied extensively,
for instance by Michalski and Chilausky (1980), by Stepp (1984) and Fisher (1987).

We used the 49er system (Zytkow ~z Zembowicz, 1993) to discover two-dimensional regularities
in soybean data, for all combinations of attributes and for a large number of subsets of records. Sys-
tems such as EXPLORA (Hoschka & Kloesgen, 1991, Kloesgen, 1992) and other systems developed
in the field of knowledge discovery in databases, described in collections edited by Piatetsky-Shapiro
& Frawley (1991), Piatetsky-Shapiro (1991, 1993) could be also applied.

In our walk-through example, Cramer’s V threshold of > 0.90 was used. All regularities in the
form of contingency tables, discovered by 49er, have been examined, and those with the V values
_> 0.90 were retained. For example, in Table 1 a regularity between the two attributes stem-cankers
and fruiting-bodies is reported, with the Cramer’s V rating of 1. Many such regularities have been
found, suggesting strongly that the database is conducive to taxonomy formation.

3.1 Hierarchy elements generated from equivalencies

Each regularity, for which Cramer’s V meets the threshold requirement, is used to build an ele-
mentary hierarchical unit, which is a simple tree, comprised of 3 classes: the root and two children.
The root is labeled with the description of the class of records, in which the regularity holds. Each
child is labeled with all the descriptors known to define that class. An example of a descriptor
is Stem-Cankers(0,1,2), which means the statement that the values of Stem-Canker are 0, 1, 
2. The two "children" classes are approximately disjoint and they exhaustively cover the range
of the regularity. Each class is assigned the corresponding property values of both attributes. In
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FRUITING-BODIES
1 0 0 0 I0

0 i0 18 9 0

0 1 2 3
STEM-CANKERS

Range: All records (47)
Cramer’s V = 1.0
Chi-square = 47.0

Table 1. A regularity found in the small soybean dataset by 49er’s search for regularities. The
numbers in the cells represent the numbers of records with combinations of values indicated at
the margins of the table. Note that the value of FRUITING-BODIES (0 or 1) can be uniquely
predicted for each value of STEM-CANKERS.

our example, the contingency table of Table 1 contains the knowledge that Fruiting-Bodies (the
vertical coordinate) has the value of 1, if and only if Stem-Cankers (the horizontal coordinate) 
the value 3. Knowing all the other values of both attributes, this is equivalent to "the value of
Fruiting-Bodies is 0 if and only if the value for Stem-Cankers falls in the range of 0,1,2". The
corresponding elementary hierarchy unit is depicted in the left part of Figure 2. Each class in that
element contains all the attribute/value combination from the corresponding contingency table.

ALL ALL
I I

I I I I
Stem-Cankers(O,1,2) Stem-Cankers(3) Plant-Stand(O) Plant-Stand(l)
Fruiting-Bodies(O) Frultlng-Bodles(1) Date(3,4,5,6) Date(O,l,2)

Class 1 Class 2 Class 3 Class 4

Figure 2. Hierarchical elements built from regularities. Classes 1 and 2 are formed from the regularity in Table 1.
Classes 3 and 4 are added from another regularity. Both regularities hold for all data, hence the root is ALL in both
cases. ~

As each further regularity is considered, a new hierarchical element is created. Another example
is depicted in the right side of Figure 2. Both regularities in Figure 2 hold over the entire dataset,
denoted by the ALL node at each root, but a regularity can hold over a subrange of all records.

3.2 Merging the hierarchy elements

If the same class can be obtained from different regularities, it can be characterized by many de-
scriptors, and can occur under different names in different hierarchy elements. To identify different
occurences, after each hierarchy element is created, it is compared to each other element over the
same range of records, in search for common descriptors. If they have a common descriptor (the
same attribute and equal value sets), the classes are identical (approximately identical, because 
exceptions; see above). Both hierarchy elements are collapsed into one and their descriptors are
merged (Figure 3).

Two other relations may hold between classes in two hierarchy elements which have an attribute
in common: subset and intersection. We will consider the case of subset on example from soybean
database provided in Figure 4. For a common attribute Stem-Cankers, the values of Stem-Cankers
in Class 2 are a subset of values of Stem-Cankers in Class 3. This means that Class 2 is a subset
of Class 3. The corresponding subset link is shown in the upper part of Figure 4 between classes 2
and 3.

Class 4, complementary to Class 3, is a subset of Class 1, complementary to Class 2. To keep
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ALL ALL

I I

I I I I
Plant-Stand(O) Plant-Stand(1) Plant-Stand(O) Plant-Stand(1)
Fzuait-Pods(O) Fruit-Pods(3) Date(3.4.5.6) Date(O,1.2)

Class 3A Class 4A Fruit-Pods(O) Fruit-Pods(3)
Class 3 Class 4

Figure 3. Classes 3 & 4 after the addition of a regularity found between the attributes Plant-Stand and Fruit-Pods,
represented by the hierarchy element on the left. As Classes 3 and 4 contained the attribute Plant-Stand and the
value ranges for Plant-Stand in Classes 3A & 3B are identical, the corresponding descriptors based on Fruit-Pods is
added to the existing Classes 3 & 4.

Figure 4 simple, this subset link is not shown in the top part of Figure 4. The bottom part of
Figure 4 describes the situation after the subset links are introduced. If the values of a common
attribute in Class 2 and Class 3 would intersect, none of Class 1, Class 2, Class 3, and Class 4
would be a subset of any other, and no construction step would be made.

ALL
I

I I
Stem-Cankers(O,1,2) Stem-Cankers(3) .......
Fruiting-Bodies(O) Fruiting-Bodies(I)

Class 1 Class 2

ALL

/ \
/ \

Class 1 Class 3
Iu Ju

Class 4 Class 2

ALL

I

l l
Plant-Stand(O) Plant-Stand(I)

I Date(3,4,5,6) Date(O,1,2)
[ Fruit-Pods(O) Fruit-Pods(3)
[ ...... Stem-Cankers(O,3) Stem-Cankers(I,2)

Class 3 Class 4

( [U denotes subset relation)

Figure 4. The effect of addition of a regularity between Plant-Stand and Stem-Cankers to Classes 3 & 4. Although
Stem-Cankers already described Classes 1 & 2, the value ranges in classes 1,2,3, and 4 are not identical, and no classes
could be merged. Special link is formed to indicate the subset relationship between the Classes 2 & 3, detected through
the values of the attribute Stem-Cankers. Class 4 is a subset of Class 1, but this link has not been shown in the
upper part of the Figure.

New regularities are used to build hierarchy elements, and to link them together, until all reg-
ularities found over the full dataset and meeting the Cramer’s V threshold are exhausted. The
search through the soybean database produced 15 regularities over the entire dataset, that initially
led to 30 new classes. After merging, 8 classes remained. In Figure 5 we record the subset rela-
tionship between these 8 classes, showing the attribute values of Stem-Cankers and Canker-Lesion.
The information about the number of equivalent descriptors for each class indicates the empirical
contents of that class.

The same algorithm applies recursively to regularities found in subsets of all data. For a
regularity in a subset described by condition C, the root of the hierarchy element is labelled by C
(example in Figure 6).
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All
data

Class 1 Class 2

stem-cankers(O,1,2)~,~ ~//stem-cankers(3)
+ 1 other descriptor ~~/ + 1 other descriptor

Class 3 ~ ~ Class 4
stu-c~ksrs~0,3) ~ /~ ~stem-c~ksrs~l,2)
+ 3 other dsscriptors~~/~ + 3 other descriptors

/~\
Class 5 // ~ Class 6
stem-cankers(I,2,3)~ ~stem-cankers(O)
canksr-lesion(O,l,2) ~/~ _ canker-lesion(3)
+ 4 other other descriptors~1~+ 4 other descriptors

Class 7 / ~ Class 8
canker-lesion(O,1,3)~ ~canker-lesion(2)
+ I other descriptor + I other descriptor

Figure 5. Eight classes generated by strong contingency tables for all data in the soybean database. Links show the
subset relation.

Fruit-Pods(O)
I

I I
Fruiting-Bodies(O) Fruiting-Bodies(l)
Canker-Lesion(3) Canker-Lesion(O,l)

Figure 6. A hierarchy element over a subrange of the soybean data defined by the descriptor Pruit-Pods(0).

3.3 Definitional and inferred properties.

The children classes in each hierarchy element are associated with a number of descriptors. In our
soybean example, for instance, after the merging of hierarchy dements has been completed, Classes
3 and 4 contain four descriptors (Figure 5), while Classes 5 and 6 contain six other descriptors
each. Each descriptor for class C can be used to define C. We call it a definitional descriptor. If a
definitional descriptor D is used to define membership in C, all other descriptors can be deduced,
leading to predictions of property values for members of C.

If a class C possesses many definitional descriptors, each can be used as a definition (recognition
procedure). Since we allow exceptions, a conjunction of two definitional descriptors may offer 
more rellabh recognition.

The choice available among definitional descriptors offers flexibility in selection of the recognition
procedure. Depending on the observable concepts available in various real life situations, one or
another definitional descriptor can be used. Since alternative recognition procedures can be applied,
missing values do not pose a problem in our approach in contrast to many machine learning systems,
until all recognition procedures fail to apply for the lack of data.

It must be noted that each definitional descriptor D is sufficient to determine whether a given
record belongs to a given class C only within the range of the hierarchy dement, to which it belongs.
To obtain a complete definition of C, we must use D in conjunction with the definition of the range
of the hierarchy element. Similarly, conjunctions of two or more descriptors must be used to define
the extent of a node at lower levels of taxonomy, each of the descriptors definitional for one node
on the path from the root. Of course, making a choice of a definitional descriptors at each level,
we can assemble the complete definition in a very fiexible way.

If every object in class C satisfies descriptor D, but not the other way, D can be used to infer
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properties of objects in C, but not to define membership in C. We will call such a descriptor D
an inferred property. Regularities in the form of contingency tables of the "implication" type (see
section 2.1) can be used to obtain inferred properties.

In taxonomy formation, definitional descriptors of concepts may lead to inferred descriptors for
the concepts above them in the taxonomy, as explained in the section on taxonomy formation and
in the comment (*) in the caption of Table 

In our approach, the knowledge about definitional and inferred descriptors guides taxonomy
formation, as we explain later.

3.4 Empirical contents of a concept

Each concept can be characterized by its extent and intent. The extent is the set of all objects
which are instances of the concept, while the intent is a set of property values (represented by
descriptors) possessed by all objects in the extent.

We postulate that the empirical contents, which can be also called predictive contents of a
concept, is proportional to the number of descriptors which can be deduced about a single object
in C, after the membership has been determined. We can further postulate that the empirical
contents is also proportional to the cardinality of the extent of the concept, because for each object
in the extent, once it is recognized as a member of C by testing one definitional property, other
descriptors can be deduced.

Empirical contents measures the significance of a concept. It can be used to decide on concept
acceptance, and to make choices between concepts. By totaling the empirical contents of individual
concepts we can also define the empirical contents of the whole taxonomy.

3.5 Taxonomy formation

We will now describe the process of transformation from the graph depicted in Figure 5 into a
multi-"level taxonomy, which is exhaustive and disjoint at each level. Arbitrarily, at the top of the
taxonomy we may place any hierarchical element, gradually connecting other elements to the leaves
of the nascent taxonomy. We position the classes with the greatest number of descriptors above
those with less descriptors, to minimize the number of times each descriptor must occur in the
taxonomy.

Based on the belief that the best concepts are those with highest empirical contents, we used a
greedy algorithm to build the hierarchy. The algorithm searches for the hierarchy element with the
largest number of shared attributes (In our example this is the element including Class 5 & 6), and
places it at the uppermost level in the taxonomy. Under each of Class 5 and Class 6 the algorithm
places the hierarchy element with the next greatest number of attributes (Class 3 & 4). Table 
illustrates the placements. The greedy algorithm continues placing class pairs as above until all are
exhausted. Some of the nodes, however, can be empty. Our algorithm examines this possibility as
soon as each level is formed. It computes intersection of the value sets for each common attributes
from each newly created node upward to the root of the taxonomy. If for a common attribute this
intersection is empty, we know that no objects in the dataset could possibly belong to the lower
class. This class is then eliminated. Class 6 contains the attribute Stem-Cankers with the value
range (0), and under it Class 4 contains the same attribute with the value range (1,2). No records
in the data can possibly be in both these classes simultaneously, therefore the intersection of Class
6 with Class 4 is eliminated (crossed off in Table 2).

All nodes an a given path must be compared, to detect empty intersections. For example in
Table 2, Class 5 holds Stem-Cankers with a value range (1,2,3). In the next level, in Class 3 are only
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Class 5 Class 6
Internal Discolor: 0
Precipitation: 1,2
Sclerotia: 0
Area Damaged: 0,1
Stem Cankers: 1,2,3
Canker Lesions: 0,1,2

Interal Discolor: 2
Precipitation: 0
Sclerotia: 1
Area Damaged: 2,3
Stem Cankers: 0
Canker Lesions: 3

/ %
Class 3 Class 4 Class 3

Stem Cankers: 0,3
Plant Stand: 0
Date: 3,4,5,6
Fruit Pods: 0

Stem Cankers: 1,2
Plant Stand: 1
Date: 0,1,2
Fruit Pods: 3

Stem Cankers: 0,3
Plant Stand: 0
Date: 3,4,5,6
Fruit Pods: 0

Class 4 J
Ste .qanke2 . 1,2
Plant S~: 1

,/ \ / \ / \
Class 1 ~lass ~/ Class 1 ~,Class 2//

FB:SC: 0,1,20 SF~ FB:cL:SC: 0,1,230~~s,~ 2 Class 2

~(~N SC: 
FB: 1
CL: 0,i

/ \

CL:
0,1,3
R: 0
D1

/ % / \
C7 C8 C7 \C8/
CL: CL: CL:

0,1,3 2 0,1,3
R: 0 R: 1 R: 0
D3 D4 D2

Table 2. The taxonomy generation process, depicted from the top (Classes 5 and 6) till the bottom
(Classes 7 and 8). Empty classes are crossed out. Abbreviations: FB = Fruiting-Bodies; R 
Root~; SC = Stem-Cankers; CL = Canker-Lesions
(*) The values of Canker-Lesion (CL-3 and CL-0,1) are added to Classes 1 and 2 under Class
3 due to a regularity found in the subset of data defined by the descriptor Fruit-Pods=0. That
regularity, depicted in Figure 6, links Canker-Lesion to Fruiting-Bodies. Since the same values
of Fruiting-Bodies define Class 1 and Class 2, the corresponding values of Canker-Lesion become
inferred descriptors in the subclasses of Class 1 and Class 2 within Class 3.

those records from Class 5 where Stem-Cankers value was (3), the only value in common between
the two classes. There can be no records in this part of Class 3 with Stem-Cankers(0), as none
were in the class above. Going down one level more, to Class 1 and Class 2, we find that Class 1
under Class 3 may be terminated, as Stem-Cankers does not contain (3). Similar situations hold
in several other paths, which also end with an empty set.

In Table 2 we have shown only the use of regularities found for all data, with one exception.
The values of Canker-Lesion, shown under Class 3, come from a regularity found in the subset of
data defined by the descriptor Fruit-Pods=0. That regularity, depicted in Figure 6, links Canker-
Lesion to Fruiting-Bodies. Since the same values of Fruiting-Bodies define Class 1 and Class 2, the
corresponding values of Canker-Lesion become inferred descriptors in the subclasses of Class ;1 and
Class 2 within Class 3.

When it is discovered that one of the classes in a class pair is empty and is eliminated, the
descriptors of the remaining class are added to the descriptor list of the parent class, expanding the
intent and the empirical contents of the parent node. The descriptors acquired from the lower class
become inferred properties in the parent class, because in this situation all objects in the parent
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class also belong to the remaining lower class. We see in Table 2 that Class 4 is eliminated under
Class 6, therefore any object with Class 6’s descriptors must also hold in Class 3. However, Class
3 also contains objects that belong in Class 5, so the merged properties from Class 3 to Class 6
cannot be definitional, but are inferred. We can similarly infer the descriptors of Class 7 :and Class
1 under Class 6 into the set of descriptors of Class 6. Table 3 includes all definitional and inferred
descriptors of Class 6, produced in our walk-through example.

ALL
I

Class 6/3/1/7

Class 7 Class 8

Figure 7. The finished taxonomy, after pruning empty nodes in Table 2 and merging the remaining classes upward.
While the leaves correspond to the natural diseases of the soybean data, internal nodes may describe ’superclasses’
of diseases.

After all the pruning, we are left with the four nodes at the bottom level in Table 2. These
nodes, along with three internal nodes (ALL, Class 5, Class 4&l under Class 5) form the taxonomy.
We can hypothesize that this taxonomy describes the natural divisions of the soybean database’s
diseases. It turns out that the extents of the four leaf concepts in our taxonomy are equal to the
four diseases, listed under each leaf concept in Table 2 as D1 through D4. The intents of each leaf
concept describes the properties common for that disease. We can hypothesize that the internal
nodes correspond to natural classes of diseases. Our approach leads to a claim about empirical
conte~ts for each node in the hierarchy.

Our algorithm places concepts with higher empirical contents at the top of the taxonomy the
narrower range attributes higher up in the taxonomy. This way the number of descriptors which
must be stored in the taxonomy is minimized. Our taxonomy, shown in Table 2 requires 33
descriptors, while a taxonomy which puts classes with the fewest attributes at the top (class 7&8,
followed by class l&2, class 3&4, and class 5&6 at the bottom, requires 44 descriptors.

4 Comparisons

Our method is based on the idea that regularities are of prominent importance among the types of
knowledge inherent in data. Concept taxonomies are secondary, as they can be formed from regu-
larities in the form of special contigency tables. Previous conceptual clustering systems use various
methods to find cluster taxonomies, but as they do not consider regularities, their approximation
methods may miss important knowledge useful in taxonomy formation.

Linear Clustering, introduced by Piatetsky-Shapiro & Matheus (1991), uses regularities, but 
another way. When several linear patterns are detected in the same domain, clusters are formed
that capture the subdomains in which each linear pattern is unique.

Several approaches combining Bayesian and expert knowledge in the form of domain heuristic
measures for classifying data (Wu, et al., 1991). In distinction to those approaches which require
expert domain knowledge to guide classification heuristics, our approach requires no prior domain
knowledge to determine meaningful classes in the data.
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OUR SYSTEM COBWEB

I Attribute Value I Role I[P(valuelD2
Value P(D21value)] Role

Precipitation 0 Definitional 0 [ 1.0 , 1.0] Definitional
Temperature 1,2 Inferred 2 [ 0.6,1.0 ] Partial Def.
Stem Cankers 0 Definitional 0 [ 1.0,1.0 ] Definitional
Fruit Pods 0 Inferred 0 [ 1.0,0.5 ] Weak
Canker Lesion 3 Definitional 3 [ 1.0,1.0 ] Definitional
External Decay 0 Inferred 0 [ 1.0,0.48] Weak
InternalDisclr 2 Definitional 2 [ 1.0,1.01 Definitional
Sclerotia 1 Definitional 1 [ 1.o, 1.o] Definitional
Area Damaged 2,3 Definitional Not included
Plant Stand 0 Inferred Not included
Date 3,4,5,6 Inferred Not included
Fruiting Body 0 Inferred Not included
Roots 0 Inferred Not included

Table 3. An example of one concept (Disease 2 - Charcoal Rot) found by building our regularity
hierarchy. The results of the COBWEB system are similar, but our method finds more inferred
descriptors, as well as one definitional descriptor, Area Damaged(2,3). The attributes Temperature
and External Decay were found as inferred attributes for this concept in a subrange of records
by our method, and were not included in Table 2 due to space restrictions. P(AIB) means the
probability of being in A for the objects in B.

In Table 3 we compare the results of our algorithm for clustering regularities found in the
soybean data set to the available results obtained by COBWEB (Fisher, 1987). The comparison
concerns Class 6, which corresponds to Disease 2, which is called Charcoal Rot. Notice a substantial
increase of empirical contents reached in our approach, which shows in the number of additional
predictions possible for five attributes of the inferred type, not included by COBWEB.

COBWEB employs a probabilistic approach to determine classes. Objects are incorporated
into classes based on normative values for attributes in a given class. Since objects are added
incrementally to the conceptual hierarchy, change operators are used to merge, split and delete
nodes from the hierarchy. This is in contrast to our algorithm, which is not incremental. Because
we are forming a hierarchy from regularties already discovered by a database mining system, we have
found that hierarchy change operators are unneccessary when forming a taxonomy of regularities.
Where empty classes are detected in the nascent taxonomy, a merge of descriptors occurs during
hierarchy formation. If none of a pair of classes added at each step is empty, a natural split occurs
in the hierarchy formation.

5 Summary

In this paper we have presented a theory of and an algorithm for conceptual hierarchy formation
from law-like knowledge presented in the form of contingency tables. We used the soybean database
in our walk-through example. It turned out that four diseases hidden in the soybean data coincide
with the four leaves in the taxonomy generated by our algorithm.

We argued that regularities are the basic form of knowledge and that knowledge contained in
concepts is secondary to knowledge contained in regularities. Empirical contents of regularities is
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typically greater than empirical concepts of concepts. Autonomous discoverer will see reasons to
claim empirical contents of some concepts when coexisting properties are revealed in the form of
regularities. We argued that better concepts are those with higher empirical contents and therefore
a knowledge discovery system which can notice that contents, can play central role in concept
formation.

In contrast to fixed rules which define concepts in many machine learning systems, in our
approach the choice available among definitional descriptors offers flexibility in selection of the
recognition procedure. The same taxonomy can be used in different ways in various applications.
Depending on the observable concepts available in a given situation, different definitional descriptors
can be used. Since alternative recognition procedures can be applied, missing values do not pose a
problem in our approach in contrast to many machine learning systems.
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