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Abstract: This paper presents a method to discover logical propositions in
numerical data. The method is based on the space of multi-linear functions, which

is made into a Euclidean space. A function obtained by multiple regression analysis
in which data are normalized to [0,1] belongs to this Euclidean space. Therefore, the
function represents a non-classical logical proposition and it can be approximated by
a Boolean function representing a classical logical proposition. We prove that this
approximation method is a pseudo maximum likelihood method using the principle

of indifference. We also experimentally confirm that correct logical propositions can
be obtained by this method. This method will be applied to the d.iscovery of logical

propositions in numerical data.

1 Introduction

Statisticians deal with numerical data, but they do not discover logical propositions

in the numerical data. In the AI field, several researchers have studied the discov-
ery of scientific laws[Langley 81]. This paper presents a method to discover logical
propositions in numerical data. The method is based on the space of multi-linear
functions, which is made into a Euclidean space. A function obtained by multiple
regression analysis in which data are normalized to [0,1] belongs to this Euclidean

space. Therefore, the function represents a non-classical logical proposition and it
can be approximated by a Boolean ~unction representing a classical logical propo-
sition. We prove that this approximation method is a pseudo maximum likelihood

method using the principle of indifference [Keynes 21]. The algorithm is as follows.

1. The numerical data are normalized to [0,1].

2. Multiple regression analysis is performed.

3. The linear function obtained by multiple regression analysis is approximated
by a Boolean function.

4. The Boolean function is reduced to the minimum one.
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We experimentally confirm that correct logical propositions can be obtained by

this method. This method will be applied to the discovery of logical propositions in
numerical data. Section 2 explains the space of multi-linear functions as an extended

model for logics. Section 3 explains the discovery of logical propositions in numerical
data.

Some readers may think that the problem in this paper is a classification problem
with continuous classes and the problem can be dealt with by some other algorithms
such as C4.5. However, C4.5 does not work well for the classification problem with

continuous classes [Quinlan 93].

2 Multi-linear functions A model for logics

Due to the space limitation, we briefly explain an extended model for logics, where
logical functions including non-classical logical functions are represented as points
(vectors) in a Euclidean space. More detailed explanation including proofs can 

found in [Tsukimoto 94a]. Hereinafter, let F, G, ... stand for propositions, f, g, ...
stand for functions, X, Y, ... stand for propositional variables and x, y, ... stand for

variables.

2.1 Intuitive explanation

We explain why a logical function is represented as a vector. It is worth noticing
a

" that classical logic has properties similar to a vector space. These properties are

seen in Boolean algebra with atoms which is a model for classical logic. Atoms in
Boolean algebra have the following properties:

1. ai.ai = ai (unitarity).

2. ai . aj - 0 (i # j) (orthogonality).

3. Eai = 1 (completeness).

For example, for the proposition 7;[ V Y = XY V ~;CY V ~’~, "X v Y is represented

(1,0,1,1), where XY = (1,0,0,0), XY = (0,1,0,0), XY = (0,0,1,0), 
(0, 0, 0,1). Atoms in Boolean algebra correspond to unit vectors. In other words,
atoms in Boolean algebra are similar to the orthonormal functions in a Euclidean
space.

This paper shows that the space of logical functions actually becomes a Euclidean
space. The process from Boolean algebra to Euclidean space is divided into three

stages.
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1. Represent Boolean algebra by elementary algebra. In other words, present an

elementary algebra model for classical logic.

2. Expand the domain from {0,1} to [0,1] and the model to the space of multi-
linear functions.

3. Introduce an inner product to the above space and construct a Euclidean space

where logical functions are represented as vectors.

2.2 An elementary algebra model for classical logic

2.2.1 Definitions

(1) Definition of 
Let f(x) be a real polynomial function. Consider the following formula:

f(x) = p(z)(x - z~) + 

where f : {0, 1} ---, R and q(x) = ax -+ b, where a and b are real. rz is defined as
follows:

r~: f(x) ~ q(x).

The above definition implies the following property:

= x.

In the case of n variables, r is defined as follows:
n

i=1

For example, r(x2y3 + y + 1) = xy + y q- 1.

(2) Definition of 
Let L be the set of all functions satisfying r(f) = f. Then L = {f: r(f) = 

In the case of two variables, L = { azy -1- bx q- cy -{- d[a, b, c, d E R}.

(3) Definition of 
L1 is inductively defined as follows:

1. Variables are in L1.

2. If f and g are in L1, then r(f.g), r(f g-/.g) and r( 1 - f) arein L1. (We
call these three calculations r calculation.)

3. L1 consists of all functions finitely generated by the (repeated) use of 1. and
2.

KDD-94 AAAI-94 Workshop on Knowledge Discovery in Databases Page 207



2.2.2 A new model for classical logic

Let the correspondence between Boolean algebra and r calculation be as follows:

1. F A G ~ r(f g) 

2. F v G c~ r(f + g- f g).

3. ]~ ¢~ r(1- f).

Then (LI, r calculation) is a model for classical logic; that is, L1 and r calculation
satisfy the axioms for Boolean algebra. The proof is omitted due to space limitations.

We give a simple example. (X V Y) A (X V Y) = X V Y is calculated as follows:

_ r(X2 + y2 .q_ x2y: + 2xy -- 2x2y -- 2xy2)

= x+y+xy+2xy--2xy--2xy

= x+y--xy.

2.3 Extension of the model

First, the domain is extended to [0,1]. f : [0, 1]n --* R. By this extension, we have
continuously-valued logic functions, which satisfy all axioms of classical logic. The
proof can be found in [Tsukimoto 94b]. Hereinafter, not only in the case of {0, 1},

: but also in the case of [0,1], the functions satis~,ing all axioms of classical logic are
called Boolean functions.

The model is extended from L1 to L which was defined in 2.2.1. f : {0, 1}n ~ R
or f : [0, 1]’~ ~ R. L obviously includes Boolean functions and Linear functions. L
is called the space of multi-linear functions. In the case of {0, 1}, the space is the
same as in [Linial 93]. Hereinafter, L will be made into a Euclidean space (a finite

dimensional inner product space).

2.4 Euclidean space

2.4.1 Definition of inner product and norm

In the case of [0,1], an inner product is defined as follows:

< f, g >= 2n r(fg)dx,

where f and g are in L, and the integral is generally a multiple integral.
In the case of {0,1}, an inner product is defined as
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< f,g >= ~’r(fg).

where this sum spans the whole domain. For example, in the case of two variables,

let f = f(x,y) and g = g(x,y), then f, g >=(r( fg))(1,1)+ (r( /g))(1,O)+
(r(fg))(O, + (r(fg))(O, 0),where (r(fg))(1, 1) ithevalue of r(fg ) at x = 1 a
y-1.

A norm is defined as

N(f) = ~/< f,f 

L becomes an inner product space with the above norm. The dimension of this
space is finite, because L consists of the multi-linear functions of n variables, where

n is finite. Therefore, L becomes a finite dimensional inner product space, namely
a Euclidean space.

2.4.2 Orthonormal system

The orthonormal system is as follows:
n

¢~ = II e(xj) (i = 1,...,2~,j = 1,...,n),
j=l

where e(xj) = 1 - xj or xj.
It is easily understood that these orthonormal functions are the expansion of atoms

: in Boolean algebra. In addition, it can easily be verified that the orthonormal system
satisfies the following properties:

0(i # j),
<¢i,¢j>= l(i=j),

2rl

f "- ~’~ < f,¢i > ¢i.
i=1

For example, the representation by orthonormal functions of x + y - zy of two

variables (dimension 4) is as follows:

f = 1 .zy + 1.x(1 - y) + 1. (1- x)y +0. (1- x)(1 - 

and the vector representation is (1, 1,1,0), where the bases are xy = (1, 0, 0, 0), z(1 
y) = (0,1,0,0),(1 x)y = (0,0, 1, 0) and (1- x )( 1 - y ) = ( 0,0,0, 1). The 
the functions of n variables is 2"-dimensional. The vector representation of Boolean
functions is the same as the representation expanded by atoms in Boolean algebra.
This vector representation is called a logical vector.
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3 Acquiring logical propositions from the func-

tions obtained by multipleregression analysis

3.1 The outline of the method
The method is to approximate the (multi-)linear functions by Boolean functions.

Approximating a linear function by a Boolean function means obtaining the nearest
Boolean function with respect to the Euclidean norm. Let (a/) be the logical vector

which represents the linear function obtained by multiple regression analysis. Let
(b~)(b~ = 0,1) be the logical vector which represents the nearest Boolean function.

The nearest Boolean function minimizes E(ai - bi) 2. Each term can be minimized
independently and bl = 1 or 0. Therefore, the approx~imation method is as follows:

If a/_> 0.5, then b/= 1, otherwise b~ = 0.

For example, let z = 0.6x-1.1y+0.3 be obtained by multiple regression analysis.

The function is transformed to
z = -0.2xy + 0.9x(1 - y) - 0.8(1 x)y + 0.3(1 - x)(1 - 

that is, the logical vector is (-0.2, 0.9, -0.8, 0.3). By the above method, the logical
vector is approximated to (0,1,0, 0), which represents .r(1 -y). Thus, 0.6x- 1.1 y+0.3

is approximated to x(1 - y), that is, X A 

: 3.2 Pseudo maximum likelihood method

The approximation can be regarded as a pseudo ma.’dmum likelihood method using
the principle of indifference [Keynes 21]. Ma~mum likelihood method is explained
in many books, for example, [Wilks 62]. The principle of indifference says that a
probability distribution is uniform when we have no information.

3.2.1 A relation between logic and probability

The above approximation method is based on the norm of logical vectors, while
maximum likelihood method is based on probability. The relation between the norm

of logical vectors mad probability must be studied. First, the amount of information
of a logical function H is defined as follows:

H(f) = n- log2(N(f))2,

where n is the number of variables. It can be verified that H is equal to I, which is

the amount of information of probability using the principle of indifference [Keynes
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21] in the case of classical logic, where I = n- H~,(He = -E~"pilog2pi)[Shannon

49]. The proof is omitted due to the space limitation. We also use this formula
in non-classical logics. The above formula is transformed to the one below, which
is used to prove that the approximation method is a pseudo maximum likelihood

method.

N(]) = 9.’/2

The proof is as follows:

H(f) = 

log2(N(f)) 2 = H,

(N(f)) 2 = 2H,

N(f) = H’/2.

3.2.2 Pseudo maximum likelihood method

Assume that a logical vector f be near to a Boolean vector g, that is.

fi ~ gl, (i = 1,..., n)

The approximation is

[f - g[ ~ rain,

since fi " gi, (i = 1, ...,n), the above formula is transformed to

Ilfl- Igll rain.

Since If[ and [g[ are 2H*/2 and 2H’/2 respectively from the discussion in the preceding
subsubsection, the formula is transformed to

[2H’/2 - 2H’/2[ ~ rain,

[H~- H~I ~ rain.

Assume H’. > H~, then the formula is

H’~ - He ~ min.
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t 2"Since He = - F_,~"(pdog~pl) and H" = - ~1 (qJog2qi), the formula is

2a 2n

~_,(pitog:pi ) ~-’~.( qilog2qi ) -~rain.
1 1

Since fi ~- gi, (i = 1, ..., n), that is, pi ~- qi, (i -- 1, ..., n), and a logarithmic function
is rapidly descending in the domain [0,1], the formula is transformed to

2n 2"

 (pdog,p,)- (pdog q,) -, rain.
I I

This value is K-L(Kullback-Leib!er) information. Thus, the approximation method
has been proved to be a pseudo maximum likelihood method.

3.3 Procedures

Hereinafter, multi-linear functions are limited to linear functions for simplification.
The procedures are as follows.

1. Normalize data to [0,1].

There are a few methods for normalization. In this paper, we use the following
method:

Let a stand for the maximum data and let b stand for the minimum data.

y=(x-b)/(a-b),

where x is a given data and y is the normalized data.

2. Execute multiple regression analysis.

A linear function is obtained by the usual multiple regression analysis.

3. Orthonormal expansion

The linear function is expanded by the orthonormal functions.

4. Approximate it by a Boolean function.

A Boolean function is obtained by the approximation using the method in the

preceding subsection.

5. Transform it to a logical proposition.

The Boolean function is transformed to a logical proposition.

6. Reduce it to the minimum one.

The proposition is reduced to the minimum one.
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3.4 An example

Table 1 shows how a property of a metal depends on time and temperature.

1. Normalization

Table 1 is normalized to Table 2.

Table 1: A property of a metal
Sample number Temperature(Xi Time(Y) Property(Z)

1 1700 30 36

2 1800 25 39

3 1800 20 44

4 1850 30 44

5 1900 10 59

6 1930 10 51

Table 2: A property of a metal (normalized)
Sample number Temperature(X) Time(Y Property(Z)

1 0.000 1.00 0.000

2 0.435 0.75 0.130

3 0.435 0.50 0.348

4 0.652 1.00 0.348
5 0.87 0.00 1.000

6 1.000 0.00 0.652

2. Multiple regression analysis

z = 0.46x - 0.41y + 0.38 is obtained by multiple regression analysis.

3. Orthonormal expansion

The orthonormal expansion of the above function is

z = 0.46x-0.41y+0.38 = 0.43xy+O.S4x(1-y)-O.O3(1-x)y+O.38(1-x)(1-y).
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4. Approximation

The following Boolean function is obtained by the approximation.

O.Oxy + 1.0.r(1 - y) - 0.0(1 - x)y + 0.0(1 - x)(1 

5. Logical proposition

A logical proposition X A Y is obtained.

6. Reduction

Reduction is not necessary in this case.

As a result, a proposition X A ~ has been obtained. If the domain is [0,1], this

proposition can be interpreted as " If temperature gets higher and time gets shorter,
the property gets higher." If the domain is {0, 1}, the proposition can be interpreted
as "If temperature is high and time is short, the property is high."

3.5 An experiment

Neural networks and some electrical circuits consisting of nonlinear elements are the
examples whose structure is logical or qualitative and only numerical data of which

are observed. Consider the following function:

w(z,y.z) = P((f(x) V ~(y)) h(z)),

where f(x),g(y) and h(z) are as follows:

f(x) l(x _>0.5), = o(x< 0.
g(u) = l(u > 0.6), = o(u < 0.6),
h(z) = l(z > 0.4), = O(z < 0.4).

P(t) is a probabilistic function such that if t = 1, then P(t) is a value in [0.5, 1] and
if t - 0, then P(t) is a value in [0,0.5], where 0 < x, y, z, w < 1. Notice that the
threshold values of f, 9 and h are different.

The purpose of the experiment is to check if we can obtain the correct logical
proposition W = (X V ~) A Z) from some appropriate data. Let the data in 
table below be given.

w = 0.2x - 0.2y + 0.4z + 0.2 is obtained by multiple regression analysis and the
orthononnal expansion is

0.6xyz + 0.2xy( 1 - z) + 0.8z( 1 - y)z + 0.4z( 1 - y)( 1 - z) + 0.4( 1 - x)y z 
x)y(1 - z) + 0.6(1 - x)(1 y)z + 0.2(1 - x)(1 - y)(1 - 

The nearest Boolean function is
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table 3: Ex )eriment
X Y Z W

0.9 0.6 0.6 0..5
0.7 0.9 0.1 0.2
1.0 0.5 1.0 0.7
0.6 0.5 0.2 0.3

1.Oxyz + O.Oxy(1 - z) + 1.0x(1 y)z + O.Ox(1 - y)(1 - z)+ 0.0(1 - x)yz + 0.0(1 -

x)y(1 - z) + 1.0(1 - x)(1 y)z + 0.0(1 - x)(1 - y)(1 - 
The following proposition is obtained.

XYZ V X~Z V XYZ = (X v T) ^ 
Now we have the correct logical proposition, which cannot be seen in the given

numerical data and the linear function obtained by multiple regression analysis.

Whether the correct logical proposition can be obtained or not depends on the data
and the logical proposition. That is, if the correct logical proposition is "compli-

cated", it cannot be obtained due to the roughness of multiple regression analysis

using linear functions and if the given numerical data are "wrong", the correct logi-
cal proposition cannot be obtained. If more correct results are desired, multi-linear
functions of a higher order ( For example, in the case of two variables, a second
order multi-linear function can be represented as axy + bx + cy + d.) should be used

for multiple regression analysis.

3.6 Error analysis

In the case of the domain {0, 1}, Linial showed the following result [Linial 93]:

Assume that the probability distribution is the uniform distribution. Let f be a

Boolean function, there exists a k-multi-linear function g such that II f - g t1< e,
where k is at most O(tog(n/e)2), where n is the number of variables.

This theorem means that Boolean functions can be well approximated by a multi-
linear function of low order. We can conjecture that this property also holds in the

domain [0,1], which will be included in future work.
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4 Conclusions

This paper has presented a method to discover logical propositions in numerical
data. The method is based on the space of multi-linear functions, which is made

into a Euclidean space. A function obtained by multiple regression analysis in
which data are normalized to [0,1] belongs to this Euclidean space. Therefore. the
function represents a non-classical logical proposition and it can be approximated
by a Boolean function representing a classical logical proposition. We have proved

that this approximation method is a pseudo maximum likelihood method using the
principle of indifference. We also have experimentally confirmed that correct logical
propositions can be obtained by this method. This method will be applied to the
discovery of logical propositions in numerical data.
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