
Applications of a logical discovery engine

Wire Van Laer, Luc Dehaspe and Luc De Raedt

April 25, 1994

Department of Computer: Science, Katholieke Universiteit Leuven

i Celestijneulaan 200A, B-3001 Heverlee, Belgium
email :~Wim.VanLaer,Luc.Dehaspe,Luc.Dellaedt }Ocs.kuleuven.ac.be

fax : q-+ 32 16 20 53 08; telephone : ++ 32 16 20 10 15

Abstract

The clausal discovery engine CLAUDIEN is presented. CLAUDIEN discovers regu-
larities in data and is s representative :of the inductive logic programming paradigm.
As such, it represents data and regu!aritles by means of first order clausal theories.
Because the search space of c~ausal theories is larger-than that of attribute value rep-
resentation, CLAUDIEN alSO accepts as input a declarative specification of the langu~sge
bias, which determines the Rt of syntactically well-formed regularities.

Whereas other papers on CLAUDIEN fOCUSS on the semantics or logical problem
specification of CLAUDIEN, on the discovery algorithm, Or the PAC-learning aspects,
this paper wants to illustrate the power of the resulting technique. In order to
achieve this aim, we show how CL^UmEN can be used to learn I) integrity con-
attaints in data.bases, 2) functional dependencies ~nd determinations, 3) properties
of sequences, 4) mixed quantitative and qualitative laws, S) reverse engineering, and
6) classification rules.

Keytoord~: inductive logic programming, knowledge discovery in databases, deductive
databases, first order logic, machine learning.

I Introduction

In the literature, a wide range of discovery systems are described (see e.g. [23, 24]).

Although many of these systems are based 0n the same search principles (i.e. general

to specific, possibly guided by heuristics), they often focuss on finding particular forms
of regularities expressible in an attribute value representation. When analysing these
discovery systems and the new trend of inductive logic programming (cf. [20, 21]), two

important questions arise:

I. Can (some of) these techniques be abstracted into a more general technique?
can we build a generic discovery algorithm?

2. Can the representation of these discovery systems be upgraded towards the use of

the more expressive first order logic framework (as in inductive logic programming)?

KDD-94 AAAI-94 Workshop on Knowledge Discovery in Databases Page 25:3

From: AAAI Technical Report WS-94-03. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved.

It is our firm belief that the answer to both questions is ~yes’. Throughout the paper,
we will provide evidence to support this claim. The argumentation will start with a
specificat|on of discovery in a first order logical setting and the presentation of a generic
discovery algorith m (implemented in the 0I, AUDIEN system)operating under this setting.
In our setting, knowledge (represented in the formalism of logic programming) can
incorporated very easily in the discovery process. We will then continue to show the
generality of our approach by demonstrating it on a wlde variety, of different discovery
tasks. This .will include the discovery of 11 integrity constraints in databases, 2) functional
dependencies and determinations, 3) properties of sequences, 4) mixed quantitative and
qualitative .laws,..5) reverse engin~rlng, and 61 classification rules. It wUl turn out that the
language bias (which will be used to determine the syntax of the regularities of interest)
will be crucial to achieve our aim. Throughout the paper, we wUl focuss on the mentioned
applications, as the problem setting and the CLAUDIEN system were already presented
elsewhere (see [5, 6, 7, 21]).

The paper is structured as follows: in section 2, we introduce the CI, AUDH~N setting
sad algorithm, sad in section 3, we focuss on the mentioned applications. Finally, in
section 4, we conclude.

2 The discovery framework

2.1 Some logic programming concepts ..

We briefly review some standard logic programming concepts (see [19] for more details).
A clause is a formula of the form At, ..., Am*- BI, ..., Bn where the Ai and Bi axe positive
literais (atomic formulae). The above clause can be read as AI or ... or Am if BI and ...
and Bn. All variables in clauses are universally quantified, although this is not explicitly
written. Extending the usual convention for definite clauses (where m - 1), we call

At, ..., An, the head of the clause and BI, ..., Bn the body of the clause. A fact is a definite
clause with empty body, (m = 1, n - 0). Throughout the paper, we shall assume that
all clauses are range resfricted, which means that all vaxiables occurring in the head of a
clause also occur in its body. A knowledge base KB is a set of definite clauses.

The least Herbrand model M(KD) of a knowledge base KB is the set of all ground
facts (constructed using the predicate, constant and functor symbols in KB) that are
logically entailed by KB. A clause c is true in a model M if and only if for all substitutions
0 for which body(c)0 C M, we have that head(c)0 n M ~ ¢. Roughly speaking, the truth
of a clause c in knowledge base KB can be determined by running the query

? - body(c), not head(c)

on KB using a theorem prover (such as PROLOG). If the query succeeds, the clause
false in M. If it finitely fails, it is true.

Let us illustrate this on a small example. Suppose the KB consists of
human(X) ,- male(X) male(luc) *--
human(X) *-- female(X) female(soetkin)

In this knowledge base, the least model would be

Page 264 AAAI-94 Workshop on Knowledge Discovery in Databases KDD-94

The clause 4- female(X),male(X)is true in this model, and the clause male(X) 4.-
female(X) is false.

2.2 Formalizing discovery in logic

As we wKl often be interested in regularities of a specific type, we introduce the notion of
language bias. The language bias £ will contain the set of all syntactically well-formed
clauses (or regularities). The hypotheses space contains all subsets of £. By now, we are
able to formally define our notion of discovery:

Given

¯ a knowledge base KB

¯ a language £

Find a maximal hypothesis H C £ such that H C {c E £ I c is true in M(KB)} and
does not contain logically redundant clauses, i.e. there is no c E H such that H- {c} ~ H.

Often additional restrictions are imposed on clauses in H, clauses should be maximally
general, the body of the clauses in H should cover st least a pzespecified number of
substitutions, etc. When desired, these can be used as further restrictions on H.

Our problem setting differs from the norms] inductive logic programming paradigm,
see [21], where one learns concepts or predicates from positive and negative examples.
The differences between the two settings are elaborated in [7, 21]. Prom a computational
point of view, the most important difference is that in our framework all clauses may be
cot]sidered independent of each other, which is not trueinthe normal setting of inductive
logic programming. Two important consequences of this are that the PAC-learning results
for our setting are much better than those for the normal setting (see [6, 11, 16]) and
that there are problems in the normal setting when learning multiple predicates (see for
instance [8]).

One of the main contributions of this paper will be to show that a variety of different
discovery tasks fit in this logical paradigm. In particular, we will show how apparently
different discovery tasks can be obtained by varying the set of well-formed clauses in £.
As our aim is to design a general algorithm to solve these different discovery tasks, we
need an elegant mechanism to specify the language bias.

2.3 Specifying well-formed formulae

Several formalisms to specify the bias exist in inductive logic programming, see for in-
stance [1, 2, 3, 4, 15, 21]. It is generally agreed that among these competing formaiJsms
that of Cohen is the most powerful but also the least declarative. On the other hand,
the formalisms by Kietz and Wrobel and by Bergsdsno are very declarative and also
complementary in the sense that languages that are easy to represent in one formalism
are hard to represent in the other formalism. This motivated our group [1] to integrate
these two formalisms in a straightforward manner. The resulting formalism approaches
the expressive power of Cohen’s formalism while retaining the same declarative spirit of
the Bergadano and Kietz and Wrobel representations. We briefly present our language
bias formalism here.

KDD-94 AAAI-94 Workshop on Knoi~ledge Discovery in Databases Page 265

A language is specified as a set of clausemodels. A clausemodeJ is an expression of
the form HeadSet, Head .-- Body, BodySet where

¯ HeadSet and BodySet denote sets of the form {A1, ..., An}, where the Ai are logical
atoms;

¯ Head and Body are of the form Ax, ..., An where the Ai are either logical atoms or
variabilized atoms;

¯ a logical atom is of the form p(tl, ...,tn) where p is a predicate and the tl are terms;

¯ a variabllized atom is of the form P(tl,...,t~) where P is a predicate variable and
the t~ are terms;

The language £ specified by a clausemodel HeadSet, Head 4.- Body, BodySet is

£ = {HeadOUH 4-- Body®UB [0 is a second order substitution that substitutes all pred-

icate variables in Head ~ Body with predicate names; H C HeadSet and B C BodySet}

The notation using sets is inspired on Bergadano’s work whereas the variabmzed atoms
are according to Kietz a~d Wrobel. If a language is defined by several clausemodels, the
global language is the union of the local languages (consisting of the language for each
individual clausemodel). ."

We illustrate the use of clausemodels on a simple example. Suppose the aim is to
discover whether the first argument of any predicate of arity 4 is functionally dependent
on its other arguments. Then an adequate clausemodel would be (with P a predicate
variable):

X = Y .- P(X,A,B,C),P(Y,D,E,F),iA= D,B = E,C

If train is the only predicate of arity 4, the resulting language is

= ix = Y ~- train(X,.4, B,C),train(Y,D,E,F);
X = Y *- train(X,.4,B,C),train(Y,D,E,F),A
x = Y ,-. trai,~(x,.4, B, C), ~rain(Y, D, E, F), B
X = Y ~- train(X,.4,B,C),t~ain(r,D,~,F),C
X = Y ,-- train(X,A,B,C),train(Y,D,E,F),A = D,B
X = Y .-- (rain(X,A,B,C),train(Y,D,E,F),A = D,C
x = Y ,-- train(x,.4, B, C), train(Y, D, E, F), B = E, C
X = Y ,-- train(X, A, B, C), train(Y, D, E, F), A = D, B = E, C

Following Bergadano, further syntactic sugar can be added to this language including
term-sets, lists of alternatives, etc. A full discussion of these further extensions is outside
the scope of this paper.

2.4 The CLAUDIEN algorithm

We briefly sketch the CLAU DIEN algorithm that efficiently implements the above discovery
paradigm. For a full discussion of CLAUDIEN and its severaJ optimizations, we refer to [5].

Page 266 AAAI-94 Workshop on Knowledge Discoveryin Databases KDD-94

A key observation underlying CLAUDIEN iS that clauses c that are false in the least model
¯ model of the knowledge base KB are overly general, i.e. that there exist substitutions 0
for which body(c)O is true and head(c)0 is false in the model. As they are overly general
they should be specialized. Applying standard ILP principles, we can use a refinement
operator p (under 8-subsumption)for this (cf.[21, 28]). Combining this with artificial
intelligence search techniques results in the following basic algorithm:

O := {raise}; H := ¢;
while Q ~ 0 do

delete c from Q
if c is true in the minimal model of KB
then add c to H
else add all refinements p(c) of c to Q
endlf

endwhile

Figure 1: The simplified CLAUDIEN algorithm

First, we want to stress that we have made ,several important optimizations of this
algorithm, in particulax, we employ an optimal refinement operator (which generates all
clauses in £ st most once), we use advanced search strategies, we test whether clanses
are logically redundant with regard to H, and we apply the balance principle to prune
away useless clauses, see [5] for more information On this. Secondly, it is important
to regard CLAUDI~N as an any.time algorithm. By this we mean that the algorithm
cs9 be interupted at any time. The longer CLAUDIEN Will run, the more clauses the
hylSothesis will contain, and the more interesting the results will be. Using partial results
has proven to be sufficient for many interesting tasks. Moreover, searching the whole

¯ space of solutions may not be possible because the space of possible clauses could be
infinite. This any-time approach to discovery contrasts with the classical covering and
classification oriented approach, where the aim is to distinguish between positive and
negative examples of given concept. Here, we are more interested in finding interesting
regularities of s certain form, and this without a priori restricting the use of the hypotheses
to classification or prediction. Whereas an any-time algorithm is acceptable for discovery
tasks, it probably is not for classification (but cf. also our experiments).

3 Experiments

3.1 Databases

The first experiments shows C/,AUDIEN at work in a database setting containing facts
about family relations, including human, male, female. Upon running CLAUDIBS with
the clsusemodel
{ human(X), male(X), female(X) } ~ { huraan(X), male(X), female(
CLAUDIEN discovers the following non-redundant hypothesis:
¯ - female(X),male(X) h man(X) ,-- female(X)
human(X) ~ male(X) male(X),female(X) ,..- human(X)

KDD-94 AAAI-94 Workshop on Knowledge Discovery in Databases Page 267

This simple example shows that CLAUDIEN could contribute to databasedesign, where
one would stazt with a set of facts (a model) and where CLAUDIEN could help to derive
the definitions of view predicates ~d integrity constraints. In this example, the first and
last clauses would typically be integrity constraints and the second and third one would
define the view predicate human.

3.2 Functional dependencies and determinations

One of the important topics in knowledge discovery in databases addresses how to effi-
ciently discover specific types of regularities , such ~s functional a~d multivalued depen-
dencles (see e.g. [13, 14, 26])~d determinations (see [27, 29]). We ran CLAUDI~.N on
the following data from Finch (the term train(~om, Hour, Min, To} denotes that there is
s train from From to To at time Hour, Min):
train(um,cht, 8, 8, den.~sch}
t~in(ma~t.cht, S, I O, wee~}
train(utrecht, 9 , 8,den-bosch)
train(maastricht, g, 10, weert)
train(utrecht, 8 , Z 8 , eindhoven- ~tn
train (Utrecht, 8, 4 3, eindhoven- bkln}
train(utrecht, 9,18, eindhoven- bkln)
train(utrecht, g,4 3, eindhoven-bkln}
train(utrecht, 8, 31,utrecht)

using the following clsusemodels:
X=Y*-
X==Y *--
X=Y*--
X=Y*--

train(tilburg, 8,10, tilburg}
train (utrecht, 8, £5, den- bosch}
train(tilburg, 9,10, tilburg}
train(utrecht, 9,25, den-bosch}
train(tilburg, 8,17, eindAoven-bkln}
train(tilbu~g, 8,4 7,eindhoven-bkln}
train(tilburg, 9,17, eindhoven-bkln}
train (t ilburg , 9,4 7, ein dhoven- b kln

P(X,A,B,C),P(Y,D,E,F),{A= D,B = E,C
P(A,X,B,C),P(D,Y,E,F),{A= D,B = E,C
P(A,B,X,C),P(D,E,Y,F),{A= D,B = E,C= F}
P(A,B,C,X),P(D,E,F,Y),{A D, B = Z, C = F}

CLAUDIP, N

X=Y~
X=Y*-

found (as Flach’s INDEX) the following two dependencies:
train(X, A, B, C), train(Y, D, E, F), C = F, B
train(a, B, C, X), train(D, E, F, Y), C = F, a = O.

It is easy to write clausemodels that would find determinations P(X, Y) ~ Q(X, g), x(g, Y)
(as [29]), determinations as [27] and multive/ued dependencies as [13].

3.3 Non deterministic sequence prediction

Dietterich and Micha/ski [9] describe an approach to non deterministic sequence pre-
diction, The problem of non deterministic sequence prediction is that of determining
Constraints on the k-th event in a sequence given the k - 1 previous events. They illus.
trate their system SPAItC/~ on the card game of Eleusis, which involves two players, of
which one has to guess the secret non deterministic sequence prediction rule the other
player has in mind. Since then, the game of Eleusis has been employed in the context
of inductive logic programming by Quinlan [25] and Lavrac and Dzeroski [18]. We show
how the task was addressed by CLAUDIEN.

Given were the following sequences of cards (taken from [25]):

Page 268 AAA/-94 Workshop on Kno~vledge Discovery in Databases KDD-94

These sequences were translated into facts of the form:
can f ollmo(4, 8, J, 8), can follow(Q, ~, 4, 8), ...

Notice that in contrast to the other approaches, CLAUDIEN only uses the positive ex-
amples. The backgroundknowledge in these experiments contained the definitions of red,
black, samecolor, number, face, precedesrank, lowerrank, precedessuit. The bias consisted
of the following models:

P(R2) 4.-- can follow(R2, S2, R1, S1), {red(S1),.black(S1), number(R1), face(R1),
aamecolor(S1, $2), precedesuit(,5’!, $2), precedesuit($2, S 1), lowerrank (R 1, R2
lowerrank(R2, R1), precedesrank(R1, R2), pr¢cedesrank(R2, R1)}

and similar ones where the variabilized atom in the head was replaced by P(S2), P(R2, R1),
P(R1,R2), P(S2,S1), P(S1,S2).

The results for the first experiment were (where CLAUDIEN WaS run till depth 4 and
rules whose condition part did not cover 3 substitutions were pruned):
number(R2) can fo llow(R2, $2, R1, $1), face(R1)
number(R2) ,,-- can follow(R2, $2, R1, S1), lowerrank(R2, R1)
face(R2) 4-- can fottow(R2, $2, R1, S1), number(R1)
face(R2) 4- can f oUow(R2, S2, R1,S1), lowerrank(R1, R2)

The first and third rule correspond to the target concept as in the other experiments.
CLO, UDIEN however also discovered two other regularities, which indeed also hold on the
data.

The results for the second one were (where CLAUDI~.N was run till depth 4, and rules
whose condition part did not cover 2 substitutions were pruned):
lvwerrank(R1, R2) ,,-- can follow(R2, 52, R1, S1),precedessuit($2)
precedessuit(S1, $2) ,-- can follow(R2, $2, R1, $1), lowerrank(R1, R2)

An important difference between CLAUDIEN and both SPAI~C/~. and the other inductive
logic programming techniques, is that CLAUDIEN learns from positive examples only.
Furthermore, a comparison with the other inductive logic programming dearly shows
that our representation (i.e. that of the learned .rules) is more natural and corresponds
more closely to the original representation of SPAItC/IL

3.4 Merging quantitative and qualitative discovery

To illustrate the potential of merging a first order logic framework and abilities to handle
numbers, we will provide a simple example in analysing card sequences. First however,
we need to explain how numbers are handled by CLAUDI~.N (see also [30]). To handle
numbers the refinement operator has to be adapted. The reason is that a standard
refinement operator can only enumerate the refinements of a given clause. Since numeric
data handling requires constants, and since the number of possible constants is always too
large (if not infinite), an alternative mechanism is needed. In CLAUDIZN, the alternative

KDD-94 AAAI-94 Workshop on Knowledge Discovery in Databases Page 269

refinement operator not only employs the given clause but also the substitutions that
are and are not covered by the clause. The covered substitions 0 are those for which
both the body and the head are true in the least model. The uncovered subsitutions
are those for which the body is true but the head is not. Based on these substitutions
one can easily determine more relevant refinements. The refinement procedure employed
in the example below, takes 2 covered substitions and 2 numeric variables X, Y. Then
it determines the coefficients a and b such that aX + Y -- b for the two substitutions.
If the resulting coefficients also hold for all covered substitutions and for none of the
uncovered substitutions, the refinement is passed on to the queue of candidate clauses in
the algorithm. Otherwise, it is discarded. Although the procedure illustrated is simple,
it is quite general and could be extended towards more interesting forms of regularities
(e.g. employing statistical regression techniques as in Dzeroski’s LAGRANGE [12]), and
towards more a~i~vaaced techniques (e.g. the BACON strategy [17]).

We Klustrste the quantitative technique on discovering non deterministic sequence
prediction in Eleusis. The sequence employed was:

The induced rules were:
number(R2) ,-- canfollo~(R2, $2, R1, $1)
lmoef’rank(R1, R2) *-- canfolloto(.R2, ,5’2, R1, $1), samecolor(S2, $1)
8amecolor(S1, S2) ,-- can f oUow(R2, $2, Rt, S1), lowerrank(R1, R2)
R2 = R1 + 2 ~ canfollotv(R2,.S2, R1, $1), samecolor(S1, $2)
R2 = R1 - 1 ,-- canfoUow(R2, $2, R1, S1),precedesrank(R2, R1)

3.5 Reverse Engineering

The Minesweeper learning problem is based on a computer board game that comes with
MIc]tOSOF¢ WINDOWS (~) Version 3.1.

When playing Minesweeper you are presented with a mine field, simulated by s grid of
covered squares, and your objective is to locate all the mines. To do this, you uncover the
squares that do not contain mines, and you mark the squares that do contain mines. If
you uncover s square that contains a mine, you lose the game. If the square is not s mine,
a number sppears that represents the number’of mines in the surrounding squares. With
this contextual information you can cautiously proceed, marking the squares that must
be mines anduncovering those that cannot be mines. Thus for instance, an uncovered
"0" will allow you to clear all the surrounding squares. "The learning task presently
addressed is finding also the less̄ trivial rules of this kind. Only one-row game boards will
be considered.

In this experiment the learner is given s prolog program that contains a definite clause
grammar with context sensitive rules. The grammar produces legal game boards up to
s certain length, set to 9. CI, AUDI~.N was run with a language model allowing one of the
following two literals in the he~d of the clause: mine(Square) for learning when to mark
a square, and no_mine(Squa~’e) for finding situations where it is safe to uncover a square.
The resulting rules are ("," is a mine, "~/" is a safe square)

Page 270 AAAI.94 Workshop on Knowledge Discovery in Databases KDD-94

Rules for mine(Square) l~ules for no_mine(Square)

I 1"121 I~-I I 17121 l
l 121"1 I J’--~

I I*lXlJl"-I I l~l:lJI

I I*111 101’-’[I~lXl 101

101 IXl*l I*--101 I Xl?l I

I,I IJlOl I-

I IO1~1 I I-
! I IJIXl*l~
I*lll~! I I~

I#111 I~l"~i~
IJIll II1~1~

I I I:1°1 I
I IO171 I I

I’1 I?111"1
I*111~1 I I
I?111 IXlJI

I,/111 I1171

I.ill [l[*l,--[~[x[II1.,I I I~lXl 121,.-I IZlll .121

I*111 II1"1’-I*,111 111:1121 Illv’l 1"-1211 IXl:l I
This application indicates that CLAUDII~.N Can address a reverse engineering task.

Indeed, in the Minesweeper task, CI, AUDIEN starts from any program that generates legal
sequences~ Such programs contain ~ information about the legal sequences in an implicit
form. CLAU DIES is able to discover some relevant properties of interest in ezplicit symbolic
form. Analogously, CI,~UDI~N could be run on programs such as for instance quicksort
and discover properties as sorted(Y) ~ quicksort(X,

3.6 Classification

One standard benchmark for inductive logic programming systems operating under the
no~mal setting (i.e. that where positive as well as negative examples are supplied of a tar-
get predicate), is that of learning finite element mesh-design (see e.g. [10, 18]). Here
will address the same learning task. However, whereas the other approaches require pos-
itive as well as negative examples, CLAUDIES needs only the positive. Secondly, the other
approaches employ Michalski’s covering algorithm, where the aim is to find hypotheses
that cover each positive example once. ¢LAUDI~.S follows an alternative approach, as it
merely looks for valid rules. There is therefore no guarantee that hypotheses found by
CLXUDXEN will cover all positives and also a hypothesis may cover a positive example
Several times. We believe - and our experiments in mesh-design show - that when the
data are sparse, the CLAUDX~.S is to be preferred.

The original mesh.application contains data about 5 different structures (a-e), with
the number of edges per structure wrying between 28 and 96. There are 278 positive ex-
amples (and 2840 negative ones) and the original backgroundtheory contains 1872 facts.
The original bsckgroundtheory was made determinate (because the ¢~OLr.M system of
[22] cannot work with indeterminate clauses). As CLAUDIP.N does not suffer from this
restriction, we could compact the database to 639 (equivalent facts). An example of
positive example is mesh(b11,6) meaning that edge 11 of structure b should be divided
in 6 subedges. Backgroundknowledge contains information about "edge types, boundary
conditions, loading, and the geometry of the structure. Some of the facts are shown below:

Edge types: long(big), short(blO), notimportant(b2), short f orhole(b28), hal f circuit(b3),

KDD-94 AAAI-94 Workshop on Knowledge Discovery in Databases Page 271

Structure incorrect correct . novalue, percentage correct
A 17 31 7 56
B 30 9 3 21
C 16 5 7 18
D 37 19 1 33
B 37 15 44 16

Totals 137 79 62 28

Tttble 1: Results of CLAUDIEN on the mesh-data.

Structure FOIL MFOIL GOLEM cLAUDIEN

A 17 22 17 31

B 5 12 9 9
C 7 9 5 5

D 0 6 11 19
E 5 I0 I0 15

Total 34 59 52 79
Percentage 12 21 19 28

T~ble 2: Comparing CLAUDIEN to FOIL, MFOIL a~ld GOLEM.

hal f circuitho!e(b l) .
Boundary conditiona: l ized(b l), tu~oside f ized(b6
Loading: notloaded(b l), contloaded(b22
Geometry: neighbor(b1, b2), opposite(b1, b3), oame(bl, b3)

We ran CLAUDIEN on this data-set using a slightly different but equivalent represents-
tion for examples, using the leave-one-out strategy, using (complete unpruned) best-first
search, with a time-limit of 1000 cpu-seconds on a SPARC. The heuristic employed was to
prefer those clauses c which maximized the number of substitutions 0 for which body(c)O
and head(c)8 hold. The discovered rules were then tested against the structure left out.
The result are summarized in table 1.

The results of CLAUDIEN are compared with those of GOLZU, FOIL and t~FOIL in table
2, these results were taken from [18].

We believe the results of these tests are very encouraging because the rules learned
by CLAUVI~S l~ave by far the best classification accuracy and also because the cpu-
requirements of CLAUD1EN are of the same order as those by the other systems. The
high classification accuracy can be explained by the sparseness of the data and the non-
covering approach. About the time requirements, COLSU ran for 1 hour on this data,
FOIL for 5 minutes, and uFOIL for 2 hours. FOIL and GIOLBM are implemented in C,
u FOXL and CLAUDISS in Prolog. The experiment clearly shows that an anytime algorithm
(implemented in Prolog) is not necessarily slower than a covering approach. (Part
a possible explanation for this may be that CLAUDIBS is the only system that does not

Page 272 AAAI.94 Workshop on Knowledge Discovery in Databases KDD-94

need to employ the (large number) of negative examples.

4 Conclusions

We have presented a general and generic discovery algorithm operating in the inductive
logic programming paradigm. We have shown it at work on a number of seemingly
disparate disc0very tasks, thus showing the power and the potential of the technique. Very
¯ Crucial in this resPeCt was theuse of a flexible and declarative bias specification mechanism
that allowed us to specify the syntax of the target regularities. We want to stress here
that the system is also efficient, demonstrated by the fact that the experiments on the
mesh-data fan in time comparable to that of the two fastest inductive logic programming

¯ system implemented in C. in conclusion, we have provided important evidence to the
belief that the two questions raised in the introduction may be answered positively.

References

[1] H. Ad~, L. De Rsedt, and M. Bruynooghe. Declarative Bias for Bottom Up ILP Learning
Systems, 1994, Submitted to Machine Learning.

[2] F. Bergadano and D. Ounetti. An interactive system to learn functions] logic programs.
In Proceedings of tAe 13th lnte~mational Joint Conference on Artificial Intelligence, pages
I044"1049. Morgan Kaufmann, 1993.

[3] W. Cohen. Grammatically biased learning: learning logic programs using an explicit an-
tecedent description language. Artificial Intelligence, 1994. To appear.

[4] L. De Raedt. Interactive Theory Re~ision: an Ir~ducti~e Logic Programming Approacl~ Aca-
demic Press, 1992.

f

[5] L. De Raedt and M. Bruynooghe. A theory of clausal discovery. In Proceedings o[the 13t~ In-
ternational Joint Conference on Artificial Intelligence, pages 1058-1063. Morgan Kaufmann,
1993.

[6] L. De Raedt and S. D|eroski. First order jk clausal theories are PAC-learnable. Technical
Report KUL-CW-, Department of Computer Science, Katholieke Unlversitelt Leuven, 1993.
submitted to Artificial Intelligence.

[7] L. De Raedt and N. Lavra~, The many faces of inductive logic programming. In 2. Ko-
morowski, editor, Proceedings of the Tth International S~mposium on Methodologies for I~
telligent 5~stenu, Lecture Notes in Artificial Intelligence. Springer-Verlag, 1993. invited
paper.

[8] L. De Rsedt, N. Lavra~, and S. D~eroski. Multiple predicate learning. In Proceedings of
the 13th International Joint Conference on Artificial Intelligence, pages 1037-1042. Morgan
Kaufmann, 1993.

[9] T.G. Dietterich and R.S. Michalski. Discovering patterns in sequences of events. Artificial
Intelligence, 25:257-294, 1985.

[10] B. Dolaak and S. Muggleton. The application of inductive logic programming to finite element
mesh design. In S. Muggleton, editor, InductitJe logic programming, pages 453-472. Academic
Press, 1992.

[11] S. D~-eroski, S. Muggleton, and S. Russei. PAC-learnability of determinate logic programs.
In Proceedings of the 5tK A CM ~orkshop on Computational Learning Theo~71, pages 128-135,
1992.

KDD-94 AAAI-94 Wor~hop on Knowledge Discovery in Databases Page 273

[12] S. Dhroski and L. Todorovski. Discovering dynamics: from inductive logic programming
to machine discovery. In Proceed!ng~ o/the AAAI’g3 Workshop on Knoluledge D~co~e~V in
DataboJea, pages 125"137. AAAI Press, 1993. Washington DC.

[13] P. Plach. Predicate invention in inductive data engineering. In P. Brasdil, editor, Proceedings
o[the SOt ~’~ropeatt Conference on Machine Learning, Lecture Notes in Artificial Intelligence,
pages 83-94. Springer-Verlag, 1993.

[14] M. Kantola, H. Mannila, KJ. Raiha, and H. Siirtola. Discovering functioned and inclusion
¯ dependencies in relationed databases. In~e~afiona130u~o~ o/intelligen~ S11,~ema, 7(7), 1992.

[!5] ;]-U. Kiets and S. Wrobel. Controlling the complexlty of learning in logic through syntactic
and task-oriented models’ In S. Muggleton, editor, Inguc~ive logic programming, pages 335-

359. Academic Press, 1992.

[18] 3.U. Kiets. Some lower bounds for the computational complexity of inductive logic program-
ming. fin Proceeding# o/ |he 6~ E~ropean Conference on Machine l, ea~ing, volume 667,
pages 115-124; Lecture Notes in Artificial Intelligence, 1993.

[17] P. Langley, G.L: Brsdshaw, and H.A. Simon. Rediscovering chemistry with the BACON
system. In R.S Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine l, ea~ing: aa
a~Q~ciai intelligence approa¢~ volume i, pages 307"330. Morgan Kaufmann, 1983.

[18] N. Lsvra~ and S. Dieroski. Indactive Logic Programming: Tec/miques and Applications. Ellis
Horwood, 1993.

[19] J.W. Lloyd. Pounda6on~ o~ logic programming. Springer-Verlag, 2nd edition, 1987.

[20] S. Muggleton, editor. Inaluc~ive Logic Programming. Academic Press, 1992.

[21] S. Muggleton and L. De Raedt. Inductive logic programming : Theory and methods. 3our~al
of Logic Programming, 1994. to appear.

[22] S. Muggleton and C. Fens, Efiicient induction of logic programs. In Proceedings o.f the 1st
; conference on algo~l~mic le~ing ~l~eor3l, pages 368-381. Ohmsma, Tokyo, ;Japan, 1990.

[23] G. Piatetsky-Shapiro and W. Frawley, editors. Knowledge dbco~erp in databo~ss. The MIT
Press, 1991.

[24] G. (Ed.)Piatetsky-Shapiro, Special issue on knowledge discovery in databases, l~fe~a~ion~d
3o~a] of Intelligent S~later~,, 7(7), 1992.

[25] 3.R. Quinlan. Learning logical definition from relations. Machine ~ea~ing, 5:239-266, 1990.

[26] I. Savnik and P.A. Flach. Bottom.up induction of functional dependencies from relations. In
P~csedinga o.f ~e AA AI’9~ Workshop on Kno~edge Disco~er~ in D~taba~es, pages 174-185.

AAAI Press, 1993. Washington DC.

[27] J. Schlimmer. Learning determinations and checking databases. In Proceedings of the
AAAPgl Workshop on K~o~ute~ge D~co~ev9 in Databases, pages 64-76, 1991. Washing-
ton DC.

[28] E.Y. Shapiro. Algo~t~mic Program Debugging. The MIT Press, 1983.

[29] W.M Shah. Discovering regularities from knowledge bases. International 3o~aI o.f In~elii.
gent S~lstem~, 7(7), 1992.

[30] W. Van Laer and L. De RaedL Discovering quantitative laws in inductive logic programming.¯
In Proceeding~o! ~eFamii~a~zation Workshop of t~e ESPRIT Nehuork of Ezcellence on
Machine I, ea~ming, pages 8-11, 1993: Extended Abstract, Blanes, Spain.

Page 274 AAAI-94 Workshop on Knowledge Discovery in Databases KDD-94

