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Abstract

Our research investigates how domain semantics are discovered from a relational database
at a high level of automation. The discoveries are then represented as the extended Entity-
Relationship schema [2] (i.e., conceptual schema) and integrity constraints of the database,
which can support and drive the subsequent knowledge discovery in this database.

This paper presents a discovery process which obtains an extended Entity-Relationship
schema from a relational database by analyzing not only data instances but also the exe-
cutable data schema of’the database. In addition, our research appears to be the first ones
to address the problem of erroneous data for discovering inclusion dependencies. An interactive
knowledge-based system, the Knowledge Extraction System (KES), has been developed to per-
form the discovery process. KES demonstrates how knowledge-based systems technology can
be applied to support the work of knowledge discovery in a database. It also illustrates that the
discovery process can be implemented at a high level of automation.

1 Introduction

In discovering knowledge from an existing database, a major difficulty is that often the meaning
of the data has been lost during various evolutions and modifications of the database over many
years by many persons. No one may know exactly what the data and the relationships between
the data really are. However, it is essential and important for any knowledge discovery process to
have such an understanding in order to discover knowledge from databases. This understanding
can only be achieved by raising the level of abstraction above that of the database itself and
representing it as a schema in a conceptual model. Our research thus has two objectives: 1) to
consider how domain semantics are discovered for existing relational databases, and 2) to develop 
discovery process that obtains an extended Entity-Relationship (EER) schema that corresponds 
the possible (most likely) design specifications of an existing relational database by analyzing not
only the extension (data instances) but also the intension (data schema)of the database. The term
"domain semantics" refers to information about the application domain that should be captured
during the requirement specification phase of database design [2].

During the design and maintenance of a database, some domain semantics may not be captured,
or they may be captured but removed due to the representation limitations and implementation
considerations of the database system [9]. It is often difficult to obtain a good conceptual under-
standing of a legacy database, especially when there is a lack of documentation and one can only
refer to information provided by the target database management system (DBMS). However, legacy
databases typically contain ,a large volume of data instances for knowledge discovery. It is neces-
sary for any process applied to knowledge discovery in databases to understand the relationships
between the data. In addition, domain semantics can also help the discovered knowledge be more
meaningful to the end user [12]. Therefore, a process to obtain the domain semantics of databases
at a high level of automation is obviously necessary to drive and support knowledge discovery in
databases.
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Several researchers have provided some means for inferring functional and inclusion dependen-
cies from data instances of a relational database, e.g., [1, 10, 11]. However, these dependencies
mainly represent the properties of the physical implementation of the database. In addition, due to
the various semantics degradations during the design and maintenance of a database, any process
for discovering domain semantics must have other knowledge than the functional and inclusion de-
pendencies. For example, knowledge to make the appropriate reverse schema transformation from
the relational data schema to a conceptual one is needed. Database reverse engineering provides
solutions for these problems [5, 9, 13]: It produces a sufficient understanding of an existing database
and its application domain by recovering the domain semantics of an existing database and repre-
senting them as a conceptual schema that corresponds to the most likely design specifications of
the database. Thus, in this paper, we discuss how the results of reverse engineering research can
be applied to the discovery of knowledge in a database.

This paper is divided into four sections. Section 2 introduces the discovery process together
with its steps and rules. The architecture of the Knowledge Extraction System is presented in
Section 3. We offer some concluding remarks in Section 4.

2 The ,Discovery Process

The discovery process deals with rules for discovery, the executable schema and data instances in
the existing database, and the user if necessary. The process is divided into six sequential steps as
shown in Figure 1. Each step is discussed briefly below. Our paper presents several rules used in
the generation and identification steps of the process. Full details of the process and the rules used
can be found in Chiang [5].

Sources for Discovering Domain Semantics. Sources of information for discovering domain
semantics are classified into three categories according to how they can be obtained. Furthermore,
in order to minimize human involvement, the order of these sources is also the sequence in which
the discovery process obtains the required information.

1. Data dictionary of the target DBMS: Design specifications, such as the executable
schema, can be obtained directly from the target DBMS’s data dictionary.

2. Analysis of the executable schema and data instances: Information can be obtained
by analysis of data instances, such as functional and inclusion dependencies, key attributes,
and integrity constraints.

3. The users: User involvement is necessary whenever required information is neither stored
in the target DBMS nor obtainable by analysis of the executable schema and data instances.
The user can be a database administrator, a database designer or system analyst, or even the
end-user.

2.1 Initialization of Data Schemas

The information needed about the executable schema includes: relation names, attribute names,
attribute domains (data types), and primary keys. In general, the relation and attribute names can
be obtained directly by querying the data dictionary. However, many current DBMSs do not store
information about primary keys, e.g., DB2. Thus, the identification rule uses attributes’ properties
(e.g., non-null, uniquely indexed) and names (e.g., names with a prefix or suffix, such as SSN, 
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STEP 1:
Initialization

Specify the key attributes.
Clarify inconsistent attribute names.

Verified Executable Schema

1
STEP 2:

Decomposition
Infer functional dependencies.

Decompose relations into at ]east 3NF.

Third Normal Form (3NF) Relations;
Information about Keys

1
STEP 3:

Classification
Classify relations and attributes.

Classified Relations and Attributes

1

STEP 4:
Generation

Infer key-based inclusion dependencies.

1
Key-b~ed Inclusion Dependencies;
Classified Relations and Attributes

1
STEP 5:

Identification
Make a reverse schema transformation
from a relational to an EER model.

1
Domain Semantics and the EER Schema

1
STEP 6:

Refinement & Enhancement
¯ Refine the resulting EER schema.

Recover discarded integrity constraints.

1
Refined EER Schema;

Domain Semantics; Integrity Constraints

Figure 1: The Discovery Process

.-

ID, #) to find possible key attributes for each relation. Information about possible key attributes

is then provided to the user to aid in specifying the primary key of each relation.
Two types of naming problems are common: homonyms and synonyms. Homonyms occur when

the same name is assigned to attributes with different properties; synonyms occur when different
names are assigned to attributes with the same domain. The clarification rule analyzes attributes’

properties for mismatches or similarities to help the user detect inconsistent situations. Mismatches
occur when attributes with the same name have different data types and/or sizes; mismatches of two

attributes indicate that they may be homonyms. Similarity arises when attributes with different

names have the same data type and size, or even the same data instances. Two similar attributes

may be synonyms. Since not all naming inconsistences can be detected automatically, the user
must be informed of this phenomenon. After the similar and mismatched attributes are identified,

the user is asked to confirm the results and perform any necessary renaming.

2.2 Decomposition of Relations

The discovery process decomposes non-third normal form (3NF) relations1 of the input database
into at least 3NF, which allows the identification step to deal with relations which primarily cor-
respond to one entity type or one relationship type, rather than more than one entity type or a
mixture of entity and relationship types.

1See Elmasri and Navathe [8] for the terminology of relational databases.
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RELATION

PERSON:
CUSTOMER:
EMPLOYEE:
’ MANAGER:

DEPARTMENT:
PRODUCT:

PI~ CE:
MACHINERY:

PROJECT:
DEPEIDENT:

ORDER:
WORK-ON:

SCHEDULE:
EQUIPMENT:
C0MM-PROJ :

ATTRIBUTES

[SSN, name, address]
[SSN, custid, name, sex, credit]
[SSN, salary, hired-date, sex, super-ssn]
[SSN, rank, promotion-date, deptno]
~EP~O, dept-name, location, ordid]
[PRODID, description]
[PEODID, minprice, maxprice]
[MACID, description, cost]
[PID, projname, budget, dept-name]
[NAME, SSN, sex, bdate, relationship]
[PRODID, CUSTID, ordid, order-date, qty]
[SSN, PID, start-date]
[MACID, ORDID, schedule-time]
[CAERIERID, PRODID, CUSTID, ship-date]
[PID, COMM-PID]

TYPE

(STRONG)
(STRONG)
(STRONG)
(STRONG)
(STRONG)
(STRONG)
(STRONG)
(STRONG)
(STRONG)
(WEAK)
(REGULAR)
(REGULAR)
(REGULAR)
(SPECIFIC)
(SPECIFIC)

Figure 2: A Relational Data Schema

Primary keys and functional dependencies are needed to identify relations that violate the 3NF

requirement. After non-3NF relations are identified, some standard algorithm (e.g., [3]) can then 

used to decompose them into ones that satisfy the 3NF requirement. Previous research has studied
how to infer functional dependencies by analyzing data instances, e.g., [1, 10, 11] using probabilistic

methods, and at least one commercially available tool, DB Designer by Cadre Technologies Inc.,
uses these methods to infer functional dependencies. The data schema shown in Figure 22 is taken

to be the executable schema resulting from these steps. This example is used throughout our paper.

2.3 :Classification of Relations and Attributes

Each relation is classified based on the comparison of its key(s) with other relations’ keys into one

and only one of four possiblecategories: Strong Entity Relation, Weak Entity Relation, Regular
Relationship Relation, and Specific Relationship Relation. The attributes of each relation are then

classified depending upon their properties: 1) whether it is part of the primary key; 2) whether the
non-primary-key attribute(s) are the key of another relation. Each attribute is classified into one

and only one of five possible categories: Primary Key Attribute (PKA), Dangling Key Attribute
(DKA), General Key Attribute (GKA), Foreign Key Attribute (FKA), and Non-Key Attribute

(NKA). See Chiang et al. [7] for detailed discussion of the classification schemes of relations and
attributes.

2.4 Generation of Inclusion Dependencies

An inclusion dependency is denoted as A.X ~ B.¥, where A and B are relations, X is an attribute

or a set of attributes of A, and Y is aa attribute or a set of attributes of B. X and Y must have the
same number of attributes [41. This inclusion dependency states that the set of values appearing

in A. X must be a subset of the set of values appearing in B.Y.
Inclusion dependencies are generated by the following sequence. First, possible inclusion de-

pendencies are formulated by the formulation rules. Second, invalid dependencies are detected and

~The names of relations and primary keys are shown in capital letters.
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eliminated by the rejection rule. Finally, redundant dependencies are detected by the inference rule
and then removed.

2.4.1 Formulation of Possible Inclusion Dependencies

In order to avoid formulating many inappropriate dependencies, the rules only propose inclusion
dependencies between relations’ key attributes (primary, candidate, and foreign). These rules are
outlined below:

1. IF: two strong entity relations, A and B, have the same key, X,
THEN: formulate A.X << B.X and B.X ~ A.X.
JUSTIFICATION: Subtype/supertype relationships and vertically fragmented relations [8]
result in such inclusion dependencies.

Consider the strong entity relations PERSON and EMPLOYEE in Figure 2. The following inclusion
dependencies are formulated:

PERSON. [SSN] << EMPLOYEE. [SSN’]
EMPLOYEE. [SSN] << PERSON. [’SSN]

.
IF: the key, X, of a relation (entity or relationship), A, appears as a foreign key, X, of another
relation (entity or relationship), 
THEN: formulate B.X ~ A.X.
JUSTIFICATION: Cases where foreign keys represent binary relationships between entity
types or between entity and relationship types result in such dependencies.

Consider the relations MANAGER, DEPARTMENT, and ORDER. The following inclusion dependen-
cies are formulated:

MANAGER. [deptno] ~ DEPARTMENT. [DEPTN0]
DEPARTMENT. [ordid] << ORDER. [ordidJ

3. IF: the key, X, of an entity relation, A, appears as the primary key attribute(s) of a weak
entity relation, W,
THEN: formulate W.X ~ A.X.
JUSTIFICATION: The presence of weak entities’ keys will result in this type of inclusion
dependency. These dependencies are used to determine the owner entity types of weak entities.

4. IF: the key, X, of a relation (entity or relationship), A, appears as the primary key attribute(s)
of a relationship relation (regular or specific), 
THEN: formulate R. X << A.X.
JUSTIFICATION: Relationships represented by relationship relations will result in such
inclusion dependencies. These dependencies are used to determine participating entity types
of relationship types identified by relationship relations.

2.4.2 Rejection of Invalid Inclusion Dependencies

Each proposed inclusion dependency is subject to further analysis to validate or reject it. Since
erroneous data instances are to be expected, we use hypothesis testing to avoid rejecting depen-
dencies that should hold but are violated in the database instance due to data errors. For each
proposed inclusion dependency, A.X << B.Y, two hypotheses are formulated:
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H0: A.X ~ B.Y holds in reality.
Hx: A.X ~ B.Y does not hold.

The parameters used are defined as follows:

r = true error rate in the data in question
a = number of data instances in A. X
b = number of data instances in B. Y
e = number of data instances, E, that appear in A. X but not in B. ¥

The reverse engineering process analyzes data instances of A. X and B. ¥ to obtain the values of a,
b, and e. The null values in A. X and B. Y are not counted in a, b, and e.

Under the null hypothesis, ~ is a point estimator of the true but unknown error rate, r. (Some
types of data entry errors will not be included in this, such as when data entered for A. X corresponds
to an existing value of B.¥, but the wrong tuple is referenced.) A confidence interval of any
desired confidence level can then be constructed around ~ using standard methods for estimating
proportions (see [14], p. 196.) If the upper bound of this interval is larger than any error rate
the user is willing to accept as plausible, then the null hypothesis is rejected; otherwise it cannot
be rejected. (Clearly, if the user specifies r = 0, the presence of any erroneous data will cause
the inclusion dependency to be rejected, so that error-free data is handled as a special case.) As
is standard in hypothesis testing, a type-one error occurs when a valid inclusion dependency is
rejected, while a type-two error occurs when an invalid inclusion dependency is not rejected. The
output of the discovery process thus needs to be reviewed and verified by the user, and problems
arising from such errors might be found then. Note that failure to reject an inclusion dependency,
even when it is fully satisfied by the current database instance, does not guarantee that it holds in
all possible database states.

2.4.3 Removal of Redundant Inclusion Dependencies

Redundant inclusion dependencies need to be detected and removed, because they can lead to
redundant relationships, or identifying the wrong participating entity type for a relationship type,
or both. This inference rule is used to detect redundant dependencies:

IF: A.X ~ B.X and B.Y ~ C.¥ hold, and Y is a subset of X,
THEN: A.¥ ~ C.Y is redundant.
JUSTIFICATION: It is based on the projection and transitivity properties of
inclusion dependencies.

2.5 Identification of Entity and Relationship Types

Identification rules encode knowledge necessary for performing reverse schema transformations from
the relational data schema to the EER schema. Table 1 summarizes the reverse schema transfor-
mations based on classified relations and attributes. Identification rules are used to identify entity
types first so relationship types among them can be identified thereafter. Several identification
rules are discussed in detail below.
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Table 1: Identification of EER structures by classified relations and attributes.

Relation
STRONG

WEAK

REGULAR

SPECIFIC

Attribute .Modelling Structures ~ the EER Modeli " ’ i .~ identifies a strong’entity type, or

PKA
FKA
NKA

PKA
DKA
FKA
NKA

PKA
FKA
NKA

PKA
GKA
FKA
NKA

¯ Identifies a relationship type with its own key
Key for the strong entity type
Identifies a binary relationship type
DescriPtive attribute for a relationship or an entity type

identifies a weak entity type
Relates a weak entity type with its identifying owner(s)
Key for the weak entity type
Identifies a binary relationship type
Descriptive attribute for a relationship or an entity type
Identifies a relationsh’ip type
Determines participating entity types
Identifies a binary relationship type
Descript!ve attribute for a relationship type
Identifies a relationship type
Determines participating entity types
Identifies new strong entity type(s)
Identifies a binary relationship type
Descriptive attribute for a relationship type

Strong Entities.

IF: a relation, A, is classified as a strong entity relation,
THEN: a) identify a strong entity type, A, and b) assign primary and candidate keys
eft to A.
JUSTIFICATION: According to Table 1, a strong entity relation can be converted
into one of two EER structures. Since a relationship type with its own key can also be
considered as an entity type, all strong entity relations are identified as strong entity
types of the EER model.

For example, CUSTOHER, a strong entity relation, is converted into a strong entity type, Customer.
The primary and candidate keys of CUSTOMER (i.e., SSN and custid), are assigned as the key
attributes of Customer.

Is-a relationships. Is-a relationships are identified using the following rule:

IF:
1. two strong entity types, A and B, have the same key, X, and
2. t.X ~ B.X holds, but B.X ,~ A.X does not,
THEN: identify an is-a relationship between A and B.
JUSTIFICATION: The first condition is the heuristic used to detect a subtype/supertype
relationship between two strong entity types having the same key. The second condition
employs an inclusion dependency to confirm the existence of an is-a relationship.

If two entity types, A and B, have the same key and the same set of data instances in their keys,
then the user is asked to specify the proper type of inclusion relationship between A and B, such
as A is-a B, A is-a-kind-of B, A is-part-orB, A has B, etc.
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Relationships identified by relationship relations. The identification rule identifies a rela-
tionship type among the participating entity types for each relationship relation.

IF: there is a relationship relation, R,
THEN: identify a relationship type, It, with its participating entity types.
IF:
1. the key, X, of an entity type, A, appears as a primary key attribute(s) of the
relationship relation, R, and
2. R.X ~ A.X holds,
THEN: A is a participating entity type of R.

IF: more than one entity type, A, satisfies the above conditions,
THEN: the user must confirm the exact participating entity type.

JUSTIFICATION: Conditions 1 and 2 above are necessary conditions for A to be a
participating entity type of R. If A is not unique in satisfying these conditions, then
further information which can only be supplied by the user is needed.

Consider WORK-0N in Figure 2. Suppose the following two inclusion dependencies hold:

WORK-ON. [SSN] ,~ EMPLOYEE. [SSN]
WORK-ON. [PID] ~ PROJECT. [PID].

The reverse engineering process identifies a binary relationship type between Employee and
Project, called WORK-ON.

Relationships identified by foreign keys. The identification rule identifies a binary relation-
ship type for each foreign key.

IF: a foreign key, X, in a relation (entity or relationship), B, appears as a key, X, 
tmother relation (entity or relationship), 
THEN: identify a binary relationship type. One participating entity type is identified
by the relation containing the foreign key (i.e., B). The other is identified by the relation
whose key is the same as the foreign key (i.e., A).
JUSTIFICATION: The foreign keys in the relational databases are used to represent
one-to-many binary relationship types. Therefore, such an identification is the most
appropriate transformation of a foreign key. The name of this relationship type must
be provided by the user.

Consider the foreign key deptno in MANAGER and the inclusion dependency,
~NAGER. [deptno] ~ DEPART~NT. [DF_~TN0]. The process identifies a binary relationship be-
tween the entity types Manager and Department, for which the user must provide a name,
for example MANAGE.

2.6 Refinement and Enhancement.

The resulting EER schema is then refined and enhanced to make it semantically richer and more
natural. First, the schema may contain EER structures that are identified by relational structures
resulting from performance optimization (e.g., vertical fragmentation of relations). Second, design
problems implicitly represented in the executable schema can be detected by the resulting EER
schema. Finally, the resulting EER schema and the inclusion dependencies are used to declare
integrity constraints for the existing database.
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Key and Entity Integrity Constraint.

IF: X is a key (primary or candidate) of relation 
THEN: X must contain unique values in any instance of A.

IF: X is also the primary key,
THEN: X must contain non-null values in any instance of A.

Domain and Referential Integrity Constraint.

IF: the key, X, of a relation, a, appears as either:
1. the foreign key, X, of another relation, B,
2. the key of a strong entity relation, B, or
3. the primary key attributes of a relationship relation, R,
THEN: (a) the foreign key X in B and/or the primary key attribute(s) X in R must 
the same’data type and size as X in A, and (b) each data instance of the foreign key 
in B and/or the primary key attribute(s) X in B and R must refer to the data instance
of X in an existing tuple of A.

3 The Knowledge Extraction System

The Knowledge Extraction System (KES), an interactive knowledge-based system, has been de-
veloped to perform the discovery process. KES illustrates how the integration of database and
knowledge-based systems can support the work of knowledge discovery in relational databases.
Currently, KES performs the last four steps of the discovery process.

KES is written in Arity Prolog and Microsoft C, integrated with the ORACLE RDBMS; it
runs on an IBM PC. It has six basic components. Figure 3 shows the architecture of KES and
the predominant information flows among its components. See Chiang [6] for detailed discussion
of KE~. Figure 4 shows the EER diagram representing the domain semantics discovered by KES
from Figure 2.

User Interface
(PROLOG)

I
USERS

Domain Queried

l- Request ! (PROLOG) Queries

I lOi c°ve e 
Discovery Rules Results

(EER Schema)

Knowledge
Base )

I System
Interface

(c)

QueriesI IQueried
, Results

RDBMS
(ORACLE)

D ta

(Existing)Database

Figure 3: Architecture of the Knowledge Extraction System
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Figure 4: A portion of the EER schema obtained from Figure 2 by KES. Strong entity types
are shown as rectangles, weak entity types are shown as double rectangles, relationship types
are represented by diamonds, and composite entity types are represented by dashed boxes. The
cardinality ratio of a binary relationship is shown by a pair of numbers along with the diamond.
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4 Concluding Remarks

Our research investigates how original design specifications of an exiting relational database can
be recovered by analysis of data instances and the executable schema. We present a process for
discovering domain semantics for existing databases. These discoveries are represented in an EER
schema that can provide a better interpretation of data with respect to the application domain in
order to support subsequent knowledge discovery processes. Since the original design specifications
are normally either unobtainable or uninteresting due to the various semantic degradations during
the design and maintenance of a database, the EER diagram resulting from the discovery process
should be considered as the best guess (most likely) design specifications as to what a rational
designer would use the relational structures appearing in the database to represent. The discovery
process uses discovery rules and the executable schema and data instances of the existing database,
and it deals with the user if necessary. The Knowledge Extraction System, an interactive knowledge-
based system, has been developed to demonstr~tte this discovery process can be implemented at a
high level of automation with the application of knowledge-based systems technology. The results
of our research should have immediate practical applications in research on knowledge discovery in
databases.
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