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Abstract

Semantic query optimization can dramatically speed
up database query answering by knowledge intensive
reformulation. But the problem of how to learn re-
quired semantic rules has not previously been solved.
This paper describes an approach using an inductive
learning algorithm to solve the problem. In our ap-
proach, learning is triggered by user queries and then
the system induces semantic rules from the informa-
tion in databases. The inductive learning algorithm
used in this approach can select an appropriate set of
relevant attributes from a potentially huge number
of attributes in real-world databases. Experimental
results demonstrate that this approach can learn suf-
ficient background knowledge to reformulate queries
and provide a 57 percent average performance im-
proverrtent.

1 INTRODUCTION

Speeding up a system’s performance is one of the
major goals of machine learning. Explanation-based
learning is typically used for speedup learning, while
applications of inductive learning are usually lim-
ited to data classifiers. In this paper, we present an
approach inwhichinductively learned knowledge is
used for semantic query optimization to speed up
query answering for data/knowledge-based systems.

The principle of semantic query optimization [9] is
to use semantic rules, such as all T~nisian seaports
have railroad access, to reformulate a query into a
less expensive but equivalent query, so as to reduce
the query evaluation cost. For example, suppose we
have a query to find all Tunisian seaports with rail-
road acces~ and ~,000,000 ft 3 of storage space. From
the rule given above, we can reformulate the query
so that there is no need to check the railroad access

of seaports, which may save some execution time.
Many algorithms for semantic query optimization
have been developed [8, 9, 15, 17]. Average speedup
ratios from 20 to 40 percent using hand-coded knowl-
edge are reported in the literature. This approach
to query optimization has gained increasing atten-
tion recently because it is applicable to almost all
existing data/knowledge-base systems. This feature
makes it particularly suitable for intelligent infor-
mation servers connected to various types of remote
information sources.

A critical issue of semantic query optimization is
how to encode useful background knowledge for re-
formulation. Most of the previous work in seman-
tic query optimization in the database community
assume that the knowledge is given. [9] proposed
using semantic integrity constraints for reformula-
tion to address the knowledge acquisition problem.
Examples of semantic integrity constraints are The
salary of an employee is always less than his man-
ager’s, and Only female patients can be pregnant.
However, the integrity rules do not reflect proper-
ties of the contents of databases, such as related
size of conceptual units, cardinality and distribution
of attribute values. These properties determine the
execution cost of a query. Moreover, integrity con-
straints rarely match query usage patterns. It is dif-
ficult to manually encode semantic rules that both
reflect cost factors and match query usage patterns.
The approach presented in this paper uses exam-
ple queries to trigger the learning in order to match
query usage patterns and uses an inductive learn-
ing algorithm to derive rules that reflect the actual
contents of databases.

An important feature of our learning approach is
that the inductive algorithm learns from complex
real-world information sources. In these information
sources, data objects are clustered into conceptual
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units. For example, the conceptual unit of a rela-
tional databases is a relation, or simply a table. For
object-based databases, it is a class. In description-
logic knowledge bases [3], data instances are clus-
tered into concepts. Each conceptual unit has at-
tributes that describe the relevant features. Most
inductive learning systems, such as ID3, assume that
relevant attributes are given. Consider a database
with three relations: car, person, and company. We
might want to characterize a class of persons by the
company they work for, or by the cars they drive, or
by the manufacturers of their cars. In these cases, we
need attributes from different relations to describe a
desired class of objects. Previous studies [1, 13] have
shown that the choice of instance language bias (i.e.,
selecting an appropriate set of attributes) is critical
for the performance of an inductive learning system.
To address this problem, we propose an inductive
learning algorithm that can select attributes from
(h~gerent relations automatically.

The remainder of this paper is organized as fol-
lows. The next section illustrates the problem
of semantic query optimization for data/knowledge
bases. Section 3 presents an overview of the learning
approach. Section 4 describes our inductive learn-
ing algorithm for structural data/knowledge bases.
Section 5 shows the experimental results of using
learned knowledge in reformulation. Section 6 sur-
veys related work. Section 7 reviews the contribu-
tions of the paper and describes some future work.

where the relation geoloc stores data about geo-
graphic locations, and the attribute glc_cd is a ge-
ographic location code.

The queries we are considering here are Horn-
clause queries. A query always begins with the pred-
icate answer and has the desired information as ar-
gument variables. For example,
QI: answer(?na~e) :-

geoloc (?name, ?glc ed, "Malta", _, -),
seaport (_, ?gl’c..cd, ?storage, _, _, _),
?storage > 1500000.

retrieves all geographical location names in Malta.
There are two types of literals. The first type cor-
responds to a relation stored in a database. The
second type consists of built-in predicates, such as
> and member. Sometimes they are referred to as
eztensional and intentional relations, respectively
(see [20]). We do not consider negative literals and
recursion in this paper.

Semantic rules for query optimization are also ex-
pressed in terms of Horn-clause rules. Semantic rules
must be consistent with the contents of a database.
To clearly distinguish a rule from a query, we show
queries using the Prolog syntax and semantic rules
in a standard logic notation. A set of example rules
are shown as follows:
R1 : geoloc (_, _, "Malta", ?latitude ,-)

?latitude > 35.89.

R2: geoloc (_, ?glc_cd, "Malta" ,_,_)
::~ seaport (_, ?glc~cd,_,_,_,_).

SEMANTIC QUERY
OPTIMIZATION

R3: seaport(_,?glc-cd,?storage ...... ) 
geoloc (_, ?glc_cd, "Malta", _, _)

?storage > 2000000.

Semantic query optimization is applicable to vari-
ous types of database and knowledge base. Never-
t~ieless, we chose the relational model to describe
.our approach because it is widely used in practice.

¯ The approach can be easily extended to other data
models. In this paper, a database consists of a set
of primitive relations. A relation is then a set of in-
stances. Each instance is a vector of attribute values.
The number of attributes is fixed for all instances in
a relation. The values of attributes can be either a
number or a symbol, but with a fixed type. Below
is an example database with two relations and their
attributes:

Rule 1ll states that the latitude of a Maltese ge-
ographic location is greater than or equal to 35.89.
112 states that all Maltese geographic locations in the
database are seaports. R3 states that all Maltese sea-
ports have storage capacity greater than 2,000,000
ft s. Based on these rules, we can infer five equiva-
lent queries of ql. Three of them are:
Q21 : answer(?name) :-

geoloc(?name, ?glc-cd, "Malta", _, _),
seaport (_, ?glc_cd,_,_,_,_).

Q22: ansver(?n~ae) 
geoloc(?name ,_, "Malta" , _, _) 

geoloc (name, glc_cd, country, latitude,longitude) ~23 : answer (?name) :-
seaport (name, glc_cd, storage, silo, crane, rail), geoloc (?name, _, "Malta", ?latitude, _),

?latitude < 35.89.
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021 is deduced from 01 and R3. This is an exam-
ple of constraint deletion reformulation. From It2,
we can delete one more literal on seaport and in-
fer that Q22 is also equivalent to {}1. In addition to
deleting constraints, we can also add constraints to
a query based on rules. For example, we can add
a constraint on ?latitude to {}22 from It1, and the
resulting query {}23 is still equivalent to {}1. Some-
times, the system can infer that a query is unsat-
isfiahle because it contradicts a rule (or a chain of
rules). It is also possible for the system to infer the
answer directly from the rules. In both cases, there is
no need to access the database to answer the query,
and we can achieve nearly 100 percent savings.

Now that the system can reformulate a query into
equivalent queries based on the semantic rules, the
next problem is how to select the equivalent query
with the lowest cost. The shortest equivalent query
is not always the least expensive. The exact execu-
tion cost of a query depends on the physical imple-
mentation and the contents of the data/knowledge
bases. However, we can usually estimate an ap-
proximate cost fromthe database schema and rela-
tion sizes. In our example, assume that the relation
geoloc is very large and is sorted only on glc_cd,
and assume thatthe relation seaport is small. Exe-
cuting the shortest query {}22 requires scanning the
entire set of geolo¢ relations and is thus even more
expensive than executing the query {}1. The cost

to evaluate q21 will be less expensive than I~1 and
other ~quivalent queries because a redundant con-
straint on ?storage is deleted, and the system can
still use the sorted attribute g3.c_cd to locate the
answers efficiently. Therefore, the system will select
{}21.

Although the number of equivalent queries grows
combinatorially with the number of applicable rules,
semantic query optimization can be computed with-
out explicitly searching this huge space. We have
developed an efficient reformulation algorithm that
is polynomial in terms of the number of applicable
rules. We also extended this algorithm to reformu-
late multidatabase query access plans and showed
that the reformulations produce substantial perfor-
mance improvements [8].

We conclude this section with the following obser-
vations on semantic query optimization.

1..Semantic query optimization can reduce query
execution cost substantially.

2. Semantic query optimization is not a tauto-
logical transformation from the given query; it
requires nontrivial , domain-speciflc background
knowledge. Learning useful background knowl-
edge is critical.

3. Since the execution cost of a query is dependent
on the properties of the contents of information
sources being queried, the utility of a semantic
rule is also dependent on these properties.

4. The overhead of reformulation is determined by
the number of applicable rules. Therefore, the
utility problem [10] is likely to arise and the
learning must be selective.

3 OVERVIEW OF THE
LEARNING APPROACH

Thissection presents an overview of our learning ap-
proach to address the knowledge acquisition problem
of semantic query optimization. The key idea of our
learning approach is that we view a query as a logical
description (conjunction of constraints) of the an-
swer, which is a set of instances satisfying the query.
With an appropriate bias, an inductive learner can
derive an equivalent query that is less expensive to
evaluate than the original. Based on this idea, the
learning is triggered by an example query that is
expensive to evaluate. The system then inductively
constructs a less expensive equivalent query from the
data in the databases. Once this equivalent query is
learned, the system compares the input query and
constructed query, and infers a set of semantic rules
for future use.

Figure I illustrates a simple scenario of this learn-
ing approach. An example query is given to a small
database table with 3 instances. Evaluating this
query will return an instance, which is marked with
a "+" sign. Conceptually, instances in this table
are labeled by the query as positive (answers) or neg-
ative (non-answers). We can use the inductive learn-
ing algorithm to generate an equivalent alternative
query with appropriate biases so that the generated
query is less expensive to evaluate. The generated
alternative query should be satisfied by all answer
instances and none of the others. This guarantees
the equivalence of the two queries with regard to the
current status of the data/knowledge base. Suppose
that in this simple database, a short query is al-
ways less expensive to execute. The system will bias
the learning in favor of the shortest description and
inductively learn an alternative query (tl = ’Z’ ).
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Figure 1: An Simplified Example Learning Scenario

The inductive learning algorithm will be discussed
in the next section.

The equivalence of the alternative query and the
example query provides a training ezamp/e of re-
formulation. In other words, this training example
shows which equivalent query an input query should
be reformulated into. The operationalization com-
ponent will deduce a set of rules from the training
example. This process consists of two stages. In the
first stage, the system uses a logical inference pro-
cedure to transform the training example into the
required syntax (Horn clauses). This syntax is de-
signed~so that the query reformulation can be com-
puted efficiently. The equivalence between the two
queries is converted to two implication rules:

(1)(A2 <_ 0) A (A3 = 2) ==# (AZ 

(2)(A1 = ’Z’) ~ (A2 _< 0) A (A3 = 2)

Rule (2) can be further expanded to satisfy our syn-
tax criterion:

(3)(A1 = ’Z’) ==# (A2 

(4)(.41 ’Z’) ====~ (A3 = 2)

After the transformation, we have proposed rules
(1), (3), and (4) that satisfy our syntax criterion.
In the second stage, the system tries to compress
the antecedents of rules to reduce their match costs.
In our example, rules (3) and (4) contain only 
literal as antecedent, so no further compression is
necessary. These rules are then returned immedi-
ately and learned by the system.

If the proposed rule has more than one antecedent
literal, such as rule (1), then the system can use the
greedy minimum set cover algorithm [6] to eliminate
unnecessary constraints. The problem of minimum
set cover is to find a subset from a given collection
of sets such that the union of the sets in the subset
is equal to the union of all sets. We rewrite rule (1)
as

(5)-,(A1 = ’Z’) =:~ -,(A2 _< 0) V -~(A3 = 2).

The problem of compressing rule (1) is thus reduced
to the following: given a collection of sets of data in-
stances that satisfy -~(A2 _< 0) V --(t3 = 2),find
the minimum number of sets that cover the set of
data instances that satisfy --(tl - ’Z’). Since the
resulting minimum set that covers -~(tl - ’Z’ ) 
-~(t2 < 0), we can eliminate "~(t3 = 2) from 
(5) and negate both sides to form the rule

(A2 _< o) (AZ = ’z’).

4 LEARNING ALTERNATIVE
QUERIES

The scenario shown in Figure 1 is a simplified ex-
ample where the database consists of only one ta-
ble. However, real-world databases and knowledge
bases usually decompose their application domain
into multiple conceptual units. One could try to
combine every conceptual unit that could be relevant
into a large table, then apply the learning system for
tabular databases directly. However, learning from
a large table is too expensive computationally. Such
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an approach will not work unless a small number
of relevant attributes are correctly identified before
learning.

In this section, we discuss inductive learning for
Horn-clause queries from a database with multiple
relations. Our learning problem is to find an al-
ternative query to characterize a class of instances
defined in a relation. In standard machine learning
terms, this subset of instances are labeled as positive
examples, and the others are negative examples.

Before we discuss the algorithm, we need to clarify
two forms of constraints implicitly expressed in a
query. One form is an internal disjunction, a set
of disjunctions on the values of an attribute. For
example, an instance of geolo¢ satisfies:
C1:
geoloc (?name,_, ?cry,.,_),
member (?cry, ["Tunisia", "Italy" , "Libya"] ).

iff its ?cry value is "Tunisia", ’"Italy", or
"Libya". The other form is a join constraint, which
combines instances from two relations. For example,
a pair of instances of geoloc and seaport satisfy a
join constraint:
C2: geoloc (?name I, ?glc_cd, _, _, _),

seaport (?name2, ?glc_cd, _, _, _, _).

iff they share common values on the attribute glc_cd
(geographic location code).

Out’inductive learning algorithm is extended from
the greedy algorithm that learns internal disjunc-
tions proposed by [7]. Of the many inductive learn-
ing algorithms, Haussler’s was chosen because itshy-
pothesis description language is the most similar to
ours. His algorithm starts from an empty hypothesis
of the target concept description to be learned. The
algorithm proceeds by constructing a set of candi-
date constraints that are consistent with all positive
examples, and then using a gain/cost ratio as the
heuristic function to select and add candidates to the
hypothesis. This process of candidate construction
and selection is repeated until no negative instance
satisfies the hypothesis.

We extended Haussler’s algorithmto allow join
constraints in the target description. To achieve this,
we extended the candidate construction step to allow
join constraints to be considered, and we extended
the heuristic function to evaluate both internal dis-
junctions and join constraints. Also, we adopted an
approach to searching the space of candidate con-
straints that restricts the size of the space.

4.1 CONSTRUCTING AND EVAL-
UATING CANDIDATE CON-
STRAINTS

In this subsection, we describe how to construct a
candidate constraint, which can be either an internal
disjunction or a join constraint. Then we describe a
method for evaluating both internal disjunctions and
join constraints. Given a relation partitioned into
positive and negative instances, we can construct an
internal disjunctive constraint for each attribute by
generalizing attribute values of positive instances.
The constructed constraint is consistent with posi-
tive instances because it is satisfied by all positive
instances. Similarly, we can construct a join con-
straint consistent with positive instances by testing
whether all positive instances satisfy the join con-
straint. The constructed constraints are candidates
to be selected by the system to form an alternative
query.

For example, suppose we have a database that
contains the instances as shown in Figure 2. In this
database, instances labeled with "÷ ’ ’ are positive
instances. Suppose the system is testing whether
join constraint C2 is consistent with the positive in-
stances. Since for all positive instances, there is a
corresponding instance in seaport with a common
glc~cd value, the join constraint C2 is consistent and
is considered as a candidate constraint.

Once we have constructed a set of candidate inter-
nal disjunctive constraints and join constraints, we
need to measure which one is the most promising and
add it to the hypothesis. In Haussler’s algorithm,
the measuring function is a gain/cost ratio, where
gain is defined as the number of negative instances
excluded and cost is defined as the syntactic length
of a constraint. This heuristic is based on the gen-
eralized problem of minimum set cover where each
set is assigned a constant cost. Haussler used this
heuristic to bias the learning for short hypotheses.
In our problem, we want the system to learn a query
expression with the least cost. In real databases,
sometimes additional constraints can reduce query
evaluation cost. So we keep the gain part of the
heuristic, while defining the cost of the function as
the estimated evaluation cost of the constraint by a
database system.

The motivation of this formula is also from the
generalized minimum set covering problem. The
gain/cost heuristic has been proved to generate a
set cover within a small ratio bound (ln Inl + 1) 
the optimal set covering cost [5], where n is the num-

KDD-94 AAA1-94 Workshop on Knowledge Discovery in Databases Page 315



geoloc ("Saf aqis", 8001,
geoloc ("Valletta", 8002,
geoloc ("Ma.reaxlokk", 8003,
geoloc ("San Pawl", 8004,
geolo c ("Marsalforn", 8005,
geoloc (°°Abano’° , 8006,
geoloc ("Torino", 8007,
geoloc (°°Venezia’, , 8008,

:

Tunis ia,
Malta,
Malta,

Malta,
Malta,
Italy,
Italy,
Italy,

..)

. .)+

¯ .)+

. .)+

¯ .)+

..)

..)

..)

seaport("Mareaxlokk" 8003 ...)
seaport("Grand Harbor" 8002 ...)
seaport ("Marsa" 8005 ...)
seaport("St Pauls Bay" 8004 ...)
seaport ("Cat ania" 8016 ...)
seaport ("Palermo" 8012 ...)
seaport("Traparri" 8015 . :.)
seaport("AbuKamash" 8017 ...)

Figure 2: The Database Fragment

ber of input sets. However, in this problem, the cost

of a set is a constant and the total cost of the entire
set covers is the sum of the cost of each set. This
is not always the case for database query execution,
where the cost of each constraint is dependent on
the execution ordering. To estimate the actual cost
of a constraint is very expensive. We therefore use
an approximation heuristic here.

The evaluation cost of individual constraints can
be estimated using standard database query opti-
mization techniques [21] as follows. Let DI denote
the constraining relation, and I~)x I denote the size of

a relation, then the evaluation cost for an internal
disjunctive constraint is proportional to

because for an internal disjunction on an attributeo

that i~ not indexed, a query evaluator has to scan
the entire database to find all satisfying instances.
If the internal disjunction is on an indexed attribute,
then the cost should be proportional to the number
of instances satisfying the constraint. In both cases,
the system can always sample the database query
evaluator to obtain accurate execution costs.

For join constraints, let ~2 denote the new re-
lations introduced by a join constraint, and ZI, Z2
denote the cardinality of join attributes of two re-
lations, that is, the number of distinct values of at-
tributes over which ~I and ~2 join. Then the evalu-
ation cost for the join over ~)I and ~2 is proportional

to

when the join is over attributes that are not indexed,
because the query evaluator must compute a cross
product to locate pairs of satisfying instances. If
the join is over indexed attributes, the evaluation
cost is proportional to the number of instance pairs

returned from the join, that is,

maz(zl,z .) 
This estimate assumes that distinct attribute val-
ues distribute uniformly in instances of joined re-
lations. Again, if possible, the system can sample
the database for more accurate execution costs. For
the above example problem, we have two candidate
constraints that are the most promising:
C3 :geoloc(?name,_,"Malta",_,_).

C4:geoloc (?nmne, ?gl c.cd, _, _, .),
seaport (_, ?glc.cd, _ ...... ).

Suppose I gsolocl is 300, and I ssaportl is 8. Car-
dinality of gZc_cd for geoloc is 300 again, and for
seaport is 8. Suppose both relations have indices on
glc_cd. Then the evaluation cost of C3 is 300, and
C4 is 300*8/300 = 8. The gain oft3 is 300-4 = 296,
and the gain of C4 is 300 - 8 = 292, because only
4 instances satisfy C3 while 8 instances satisfy C4.
(There are 8 seaports, and all have a correspond-
ing geoloc instance.) So the gain/cost ratio of C3
is 296/300 = 0.98, and the gain/cost ratio of C4 is
292/8 = 36.50. The system will select C4 and add it
to the hypothesis.

4.2 SEARCHING THE SPACE OF
CANDIDATE CONSTRAINTS

When a join constraint is selected; a new relation
and its attributes are introduced to the search space
of candidate constraints. The system can consider
adding constraints on attributes of the newly intro-
duced relation to the partially constructed hypothe-
sis. In our example, a new relation seaport is intro-
duced to describe the positive instances in geoloc.
The search space is now expanded into two layers,
as illustrated in Figure 3. The expanded constraints
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include a set of internal disjunctions on attributes of
seaport, as well as join constraints from seaport
to another relation. If a new join constraint has
the maximum gain/cost ratio and is selected later,
the search space will he expanded further. Fig-
ure 3 shows the situation when a new relation, say
channel, is selected, the search space will be ex-
panded one layer deeper. At this moment, candi-
date constraints will include all tmselected internal
disjunctions on attributes of geoloc, seaport, and
¢hamlel, as well as all possible joins with new re-
lations from geoloc, seaport and ch~--el. Ex-
haustively evaluating the gain/cost of all candidate
constraints is impractical when learning from a large
and complex database.

We adopt a search method that favors candidate
constraints on attributes of newly introduced rela-
tions. That is, when a join constraint is selected,
the system will estimate only those candidate con-
straints in the newly expanded layer, until the sys-
tem constructs a hypothesis that excludes all neg-
ative instances (i.e., reaches the goal)or no more
consistent constraints in the layer with positive gain
are found. In the later, case, the system will back-
track to search the remaining constraints on previous
layers. This search control bias takes advantage of
underlying domain knowledge in the schema design
of databases. A join constraint is unlikely to be se-
lected on average, because an internal disjunction is
usually much less expensive than a joi n. Once a join
constraint (and thus a new relation) is selected, this
is strong evidence that all useful internal disjunc-
tions in the current layer have been selected, and it
is more likely that useful candidate constraints are
on attributes of newly joined relations. This bias
works well in our experiments. But certainly there
are cases when this search heuristic prunes out use-

ful candidate constraints. Another way to bias the
search is by including prior knowledge for learning.
In fact, it is quite natural to include prior knowledge
in our algorithm, and we will discuss this later.

Returning to the example, since C4 was selected,
the system will expand the search space by con-
structing consistent internal disjunctions and join
constraints on seaport, Assuming that the system
cannot find any candidate on seaport with posi-
tive gain, it will backtrack to consider constraints
on geoloc again. Next, the constraint on co~mtxT
is selected (see Figure 3) and all negative instances
are excluded. The system thus learns the query:

03: answer(?name) :-
geoloc (?name, ?glc_cd, ")ialta", _, _),
seaport (-, ?glc.cd, _, _, _, _).

The operationalizstion component will then take 01
and this learned query 03 as s training example for
reformulation,

geoloc(?name, _, "Malta" , _,_)
¢$ geoloc (?name, ?glc-cd, "Malta", _,_) A

seaport (-, ?glc.-cd, _, -, -, -).

and deduce a new rule to reformulate 01 to 03:
geoloc (_, ?glc-cd, "Malta", _, _)
::~ seaport (_, ?glc_cd, _,_,_,_).

This is the rule It2 we have seen in Section 2. Since
¯ the size of geoloc is considerably larger than that
Of seaport,¯ next time when a query asks about geo-
graphic locations in Malta, the system can reformu-
late the query to access the seaport relation instead
and speed up the query answering process.

The algorithm can be further enhanced by includ-
ing prior knowledge to reduce the search space. The
idea is to use prior knowledge, such as determina-
tions proposed by [13], to sort candidate constraints
by their comparative relevance, and then test their
gain/cost ratio in this sorted order. For example,
assuming that from its prior knowledge the system
knows that the constraints on attributes latitude
and longitude ofgeoloc are unlikely to be relevant,
then the system can ignore them and evaluate candi-
date constraints on the other attributes first. If the
prior knowledge is correct, the system will construct
a consistent hypothesis with irrelevant constraints
being pruned from the search space. However, if the
system cannot find a constraint that has a positive
gain, then the prior knowledge may be wrong, and
the system can backtrack to consider "irrelevant"
constraints and try to construct a hypothesis from
them. In this way, the system can tolerate incorrect
and incomplete prior knowledge. This usage of prior
knowledge follows the general spirit of FOCL [12].

5 Experimental Results

Our experiments are performed on the SIMS
knowledge-based information server [2, 8]. SIMS
allows users to access different kinds of remote
databases and knowledge bases as if they were us-
ing a single system. For the purpose of our exper-
iments, SIMS is connected with three remotely dis-
tributed Oracle databases via the Internet. Table 1
shows the domain of the contents and the sizes of
these databases. We had 34 sample queries written
by users of the databases for the experiments. We
classified these queries into 8 categories according to
the relations and constraints used in the queries. We
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t

Figure 3: Candidate Constraints to be Selected

then chose 8 queries randomly from each category as
input to the learning system and generated 32 rules.
These rules were used to reformulate the remaining
26 queries. In addition to learned rules, the system
also used 163 attribute range facts (e.g., the range
of the storage attribute of seaport is between 0

and 100,000) compiled from the databases. Range
facts are useful for numerically typed attributes in
the rule matching.

The performance statistics for query reformula-
tion are shown in Table 2. In the first column, we
show the average performance of all tested queries.
We diyide the queries into 3 groups. The number
of queries in each group is shown in the first row.
The first group contains those unsatisfiable queries
refuted by the learned knowledge. In these cases,
the reformulation takes full advantage of the learned
knowledge and the system does not need to access
the databases at all, so we separate them from the
other cases. The second group contains those low-
cost queries that take less than one minute to evalu-
ate without reformulation. The last group contains
the high-cost queries.

The second row lists the average elapsed time of
query execution without reformulation. The third
row shows the average elapsed time of reformulation
and execution. Elapsed time is the total query pro-
cessing time, from receiving a query to displaying all
answers. To reduce inaccuracy due to the random la-
tency time in network transmission, all elapsed time
data are obtained by executing each query 10 times
and then computing the average. The reformulation
yields significant cost reduction for high-cost queries.
The overall average gain is 57.10 percent, which is

better than systems using hand-coded rules for se-
mantic optimization [8, 15, 17]. The gains are not so
high for the low-cost group. This is not unexpected,
because the queries in this group are already very
cheap and the cost cannot be reduced much further.
The average overheads listed in the table show the
time in seconds used in reformulation. This overhead
is very small compared to the total query processing
time. On average, the system fires rules 5 times for
reformulation. Note that the same rule may be fired
more than once during the reformulation procedure
(see (Hsu & Knoblock 1993) for more detailed 
scriptions).

6 RELATED WORK

Previously, two systems that learn background
knowledge for s~mantic query optimization were pro-
posed by [18] and by [14]. Siegel’s system uses pre-
defined heuristics to drive learning by an example
query. This approach is limited because the heuris-
tics are unlikely to be comprehensive enough to de-
tect missing rules for various queries and databases.
Shekhar’s system is a data-driven approach which
assumes that a set of relevant attributes is given.
Focusing on these relevant attributes, their system
explores the contents of the database and generates
a set of rules in the hope that all useful rules are
learned. Siegel’s system goes to one extreme by ne-
glecting the importance of guiding the learning ac-
cording to the contents of databases, while Shekhar’s
system goes to another extreme by neglecting dy-
namic query usage patterns. Our approach is more
flexible because it addresses both aspects by using
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Table 1: Database Features

I Databases l Contents [, l~,lstions Instances [ Size{MB) 
56?O8

Assets
16 10.48

Air and sea assets 14 5728 0.51
Fmllb Force module library 8 ¯ 3528 1.05

Table 2: Performance Statistics

t#
All ;0s.

of queries 26 Answerinferredl<60s’l>-174

t No reformulation 54.27 44.58 10.11 212.21
Reformulation 23.28 5.45 8.79 86.78

Time saved
’ %’ Gain of total elapsed time

30.99 1.31 125.46
57.1%

,39.14
¯ i

87.8% 12.9% 59.1%

IAvera eoverhead l’ 0"08 I 0.07 I 0.07 [ 0.11Times rule fired 15.ooI 8.00 14.1817.o0

example queries to trigger the learning and using in-
ductive learning over the contents of databases for
semantic rules.

The problem of inductive learning from a database
with multiple relations shares many issues with re-
search work in inductive logic programming (ILP)
(Muggleton et al. 1904), especially the issue 
when to introduce new relations. The main dif-
ference between our approach and ILP is that ~ we
also consider the cost of the learned concept de-
scription. Our system currently learns only single-
clause, non-recursive queries, while ILP approaches
can lelLrn multi-clause and recursive rules. How-
ever, due to the complexity of the problem, most
of the existing ILP approaches do not scale up well
to learn from large, real-world data/knowledge-bases
containing more than ten relations with thousands
of instances. Our approach can learn from large
databases because it also uses the knowledge under-
lying the database design.

Tan’s cost-sensitive learning [19] is an inductive
learning algorithm that also takes the cost of the
learned description into account. His algorithm tries
to learn minimum-cost decision trees from examples
in a robot object-recognition domain. The algo-
rithm selects a minimum number of attributes to
construct a decision tree for recognition. The at-
tributes are selected in the order of their evaluation
cost. When constructing a decision tree, it uses a
heuristic attribute selection function I2/C, where I
is the information gain defined as in ID3, and C is
the cost to evaluate a given attribute. This func-
tion is similar to our function gain~evaluation_cost.
While there is no theoretic analysis about the gen-

eral performance of the heuristic I~/C for decision-
tree learning, our function is derived from approxi-
mation heuristics for minimum set cover problems.

[11] defined another similar heuristic (2z - 1)/C
for cost-sensitive decision-tree learning. His paper
provides an information-theoretic motivation of the
heuristic.

[4] present an attribute-oriented learning ap-
proach designed to learn from relational databases.
The approach learns conjunctive rules by generaliz-
ing instances of a single relation. The generalization
operations include replacing attribute values with
the least common ancestors in a value hierarchy, re-
moving inconsistent attributes, and removing dupli-
cate instances. In contrast to our inductive learning
algorithm, this attribute-oriented approach requires
users to select relevant attributes before learning can
be performed.

The operationalization component in our learn-
ing approach can be enhanced with an EBL-like ex-
plainer to filter out low utility rules and general-
ize rules. A similar "induction-first then EBL" ap-
proach can be found in [16]. Shen’s system uses
general heuristics to guide the inductive learning for
regularities expressed in a rule template P(z, y) 
R(y, z) :~ Q(z, z). system has a defi nite goal ,
so we use example queries to guide the learning and
do not restrict the format of learned rules to a spe-
cific template.
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7 Conclusions and Future Work

This paper demonstrates that the knowledge re-
quired for semantic query optimization can be
learned inductively under the guidance of example

queries. We have described a general approach in
which inductive learning is triggered by example
queries, and an algorithm to learn from a database

with multiple relations. Experimental results show
that query reformulation using learned background
knowledge produces substantial cost reductions for
a real-world intelligent information server.

In future work, we plan to experiment with differ-
ent ways of selecting example queries for training,
and to develop an effective approach to using prior

knowledge for Constraining searches in the inductive
learning algorithm. We also plan to enhance the op-
erationalization component so that the system can

be more selective and thus avoid the utility problem.

A limitation to our approach is that there is no
mechanism to deal with changes to data/knowledge
bases. There are three possible alternatives to ad-
dress this problem. First, the system can simply re-
move the invalid rules due to the updateand let the
system learn from future queries after the update.
Second, the system can predict the expected utility
of each rule, and choose to update or re-learn a sub-
set of invalid rules. Third, the system can update or
re-learn all rules after the update. We plan to ex-
periment with all of these alternatives and propose
an approach to let the system decide which update
alternative is the most appropriate for an expected
model of database change.
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