
Learning Data Trend Regularities From Databases in
Dynamic Environment *

Xiaohua Hu, Nick Cercone, Jinshi Xie
Department of Computer Science, University of Regina

Regina, SK, Canada, $4S 0A2
e-mail: {xiaohua, nick} @cs.uregina.ca

a

Abstract

Knowledge discovery in databases has attracted a lot of attention from the AI and databases

community because of the huge information stored in the databases. There are a lot of algorithms

developed to find rules from databases directly, but all these algorithms assume that the data and

the data scheme are stable and most of the algorithm focus on discovering the regularities about

the current data in the databases. In this paper we present a method which can learn rules from
the :current data in the database to predict the data trend in the future. Our method combines

the techniques of attribute-oriented induction, object-oriented databases and transition network.

In our model, both the database contents and the database structure may evolve over the lifetime

of a database.

Keywords: Machine Learning, Discovery in Databases, Use of Domain Knowledge

*The authors are members of the Institute for Robotics and Intelligent Systems (IRIS) and wish to acknowledge
the support of the Networks of Centres of Excellence Program of the Government of Canada, the Natural Sciences and
Engineering Research Council, and the participation of PRECARN Associates Inc.

KDD-94 AAAI-94 Workshop on Knowledge Discovery in Databases Page 323

From: AAAI Technical Report WS-94-03. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved.

1 Introduction

Knowledge discovery in databases has attracted a lot of attention from the AI and databases

community because of the huge information stored in the databases. There are a lot of algorithms

developed to find rules from databases directly [3], but all these algorithms assume that the data

and the data scheme are stable and most of the algorithms focus on discovering the regularities

about the current data in the databases. The reality is that the contents of databases and database

scheme may change over time and users are often interested in finding the general trends of data

evolution in the future. So it is important to discover data evolution regularities in a dynamic

evolving database. Because of the large volume of data, data evolution regularity can not be

simply expressed by enumeration of the actual data. Machine learning technology should be

adopted to extract such regularities in databases.

In this paper we propose a new method for discovering rule from the current data in the

databases to predict the data trend in the future. Our method combines the techniques of

attribute-oriented induction [2], object-oriented databases and transition network. In our model,

both the database contents and database structure (schemes) may evolve over the lifetime of

database.

This paper is organized as follow: In section 2 we discuss the primitives for learning data

trend regularities. The principle and algorithms for learning in dynamic environment is presented

in Section 3. The study is summarized in Section 4.

2 Primitives for Learning Data Trend Regularities

The real world is a dynamic and evolving place, to represent and simulate it efficiently and

effectively, we use the object-oriented data model because object oriented representations are

very convenient to describe real world. Our method involves elements of the following areas:

attribute-oriented induction, object-oriented database model and transition network. In this

section, previous work from each of these areas is reviewed.

2.1 Attribute-Oriented Induction

The attribute-oriented induction was first proposed in [2]. The key to the approach is an attribute-

oriented concept tree ascension technique for generalization which was implemented using well-

developed set-oriented database operations, substantially reducing the computational complexity

of the database learning task. An attribute is generalizable if there are a large number of distinct

values in the relation but there exists a concept hierarchy for the attribute (i.e., there are higher

level concepts which subsume these attribute values). Otherwise, it is nongeneralizable.

Page 324 AAAI-94 Workshop on Knowledge Discovery in Databases KDD-94

The general idea of basic attribute-oriented induction is one in which generalization is per-

formed attribute by attribute using attribute removal and concept tree ascension. If an attribute

is nongeneralizable, then it should be removed in the generalization. Attribute removal corre-

sponds to the generalization rule, dropping conditions [5]. Consider a tuple as a set of conjuncts

in the logical forms; an attribute value together with its attribute name form one of the conjuncts.

By removing a conjunct, a constraint is eliminated and the concept is generalized. If there are a

large set of distinct values for an attribute, the large set of values must be generalized. However,

if there is no higher level concept provided for the attribute , it can not be further generalized

by ascending the concept tree. Therefore, the attribute should be eliminated in generalization.

Attribute removal can also be viewed as a generalization of the attribute to the most general
concept ANY and then removed from the representation.

If an attribute is generalizable, then it should be generalized to a higher level concept value by

concept tree ascension techniques. Concept tree ascension corresponds to the generalization rule,

climbing generalization trees [5]. If there exists a higher level concept for the value in the concept

tree, then the substitution of the value in each tuple in the relation by the corresponding higher

level concept makes the tuple cover more cases than the original one, and thus it generalizes the

tuple.

As a result, different tuples may be generalized to identical ones, and the number of distinct

tuples in the generalized relation is reduced. In the procedure of generalization, the tuples in

database are generalized to the desirable level, the table gained at this stage is called generalized

relation. The generalized relation contains all the essential information of the original data in the

database.

2.2 Object-Oriented Model

Object-oriented data models and systems embody rich data structures and semantics in the con-

struction of complex databases, such as complex data objects, class/subclass hierarchy, property

inheritance, methods and active data etc.
An OODB organize a large set of complex data objects into classes which are in turn organized

into class/subclass hierarchies with rich data semantics. Each object in a class is associated with

(1) an object identifier, (2) a set of attributes which may contain sophisticated data structures,

or list-valued data, class composition hierarchies, multimedia data etc., and (3) a set of methods

which specify the computational routines or rules associated with the object class.

Objects & Object identifies: Objects can serve to group data that pertain to one-world

entity. For example, we can treat a document as an object which group chapters, indexes, etc.

into one entity, namely, a document. Chapters serve as attributes of the document object. In like
manner, a chapter can be defined as another type of object which groups sections into one entity.

The uniform treatment of any real-world entity as an object simplifies the user’s view of the real

KDD-94 AAAI-94 Workshop on Knowledge Discovery in Databases Page 325

world. This implies that the state of an object consists of values for the attributes of the objects,

possibly with their own.

Objects can have a unique identity independent of the values that they contain. A system

that is identity-based allows an object to be referenced via a unique internally generated number,
an object identifier, independent of the value of its primary key, if any. The adoption of object

identifier facilitates the representation of the state of an object, namely, the state of an object is

naturally represented as a set of identifiers of the objects which are the values of the attributes

of the object

Complex Attributes g~ Methods: In an object-oriented database, object attributes may

be complex attributes: references, collection and procedures. Reference attributes are analogous

to pointers in programming language, or to foreign keys in a relation system. Collection is used for

lists, or arrays of values. The collection may include simple attribute values and also references.

Derived attributes are those whose values can be defined procedurally rather than stored explicitly,

by specifying a procedure to be executed when the value is retrieved or assigned. For example, we

may store such personal information as birth date and age in a personal databases. The birth date

will not change but the age will. It would be desirable to define a procedure for the age attribute

so that it always represents the difference between the current date and the birth date. Derived

date correspond roughly to views in the relational database, but procedure languages may define

more complex derivations than views, and are generally used to define individual attributes rather

than relation. Since knowledge discovery in database is a read-only operation to the database

and:does not change the state of the database in any way, derived attribute values, once retrieved

from the database can be treated just like regular attribute values. Derived attributes do not

pose any special problem to the knowledge discovery process.

Method is another important component of OODBs. Many behavior data of objects can

be derived by application of methods. Since a method is usually defined by a computational

procedure/function or by a set of deduction rules, it is difficult to perform generalization on

the method itself unless the generalization of the method is clearly understood by application

programmers and is coded as a new method which directly performs the required generalization.

In general, the generalization on the data derived by method application should be performed in

two steps : (1) deriving the task-relevant set of data by application of the method and, possibly,

also data retrieval; and (2) performing generalization by treating the derived data as the existing

ones.

Class: Class is used to group together object that respond to the same message, use the same

methods, and have variable of the same name and type. Each such object is called an instance of

its class. A class defines an object type or intent-the structure of a particular type. The intent

includes structure (that is, the attributes and relationships in which objects having this type can

participate) and behavior (that is , the methods associated with the type).

Page 326 AAAI-94 Workshop on Knowledge Discovery in Databases KDD-94

2.3 Transition network

Object-oriented model is supposed to model the real world more closely than traditional relational

data model because each real world entity can be modeled by an object in the computer. Unfor-

tunately, while the real world is a dynamic and evolving place, most object-oriented data models

are essential static: although objects can be dynamically created and destroyed, class can not.

They either do not support, or do not conveniently support, structural and behavioral changes

to instantiated objects. Databases, including object-oriented databases, often allow historical

accesses, but only for objects whose structure does not change. None of these systems provides

the mechanism necessary to describe data relation across transition in a dynamic system [1]. Fur-

ther, classes can not be dynamically modified as further attributes and behaviors of the objects

are discovered or needed. One of the key issues when combining a dynamic object-oriented data

model with time and histories to produce a dynamic system is how the relationships between the

instance variables in different state are defined. In our method, we use transition con.straints to

model the relationship between the instances variables in different state.

We say that an object which is an instance of one class (called the source class) undergoes

transition when it becomes an instance of another class (called target class). We distinguish two

types of transition evolution and extension [4], based on whether or not the object undergoing

the transition is preserved as an instance of the source class or not. In other words, an evolution

occurs when the transition object ceases to be an instance of the source class. For example,

when an object representing an applicant changes to reflect the acceptance of the applicant, it

undergoes an evolution; that is, it ceases to be an instance of the applicant subclass and becomes

an instance of the student subclass. An extension is a transition with the negative of the additional

condition associated with evolution. In other words, an extension occurs when the object remains

an instance of the source class with the negation of the additional condition associated with

evolution. For example, when an alumnus with a Master’s degree applies to the Ph.D program,

the transition of the object representing the alumnus into an instance subclass is an extension.

Note that some of the transition events are triggered solely by time whereas others are triggered

by other events in the dynamic system. In this paper we assume only evolution occurs in our

dynamic environment model.

2.4 An Example Database

Consider a simple version of the social security database in some social benefit office in Canada as

shown in Table 1,2,3. Figure 1 is the concept hierarchies for attributes age, salary and pension.

Figure 2 is the corresponding class hierarchy and transition network. Citizen may start as a child.

When children reach the age of 18, they become the instance of Adult class. Later, at age 65,

they retire (senior citizen) and eventually die. The transition from senior citizen to death is weak

KDD-94 AAAI-94 Workshop on Knowledge Discovery in Databases Page 327

old name sex birthday age employer salary dependents
al Sam M Dec. 5, 1954 method(birthday, today) NCR 7Ok (c1,c2,c3}
a2 Janet F Aug. 4, 1988 method(birthday, today) BNB. 53k (¢4, ¢5}
a3 Mary F June 23, 1945 method(birthday, today) NT 60k (¢6)
a4 Tom M July 17, 1963 method(birthday, today) GOV. 36k o

Jay M Oct. 24, 1970 method(birthday, today) MPE 40k (ci)
am Mark M Jan. 29, 1940 method(birthday, today) NGE lOOk (cj,ck}

Table 1: Instance of Class Adult

old name sex birthday age parent/guardian school
cl Jane F Oct. 5, 1984 method(birthday, today) al No, 1
c2 Janet F June. 4, 1986 method(birthday, today) al No.1

c3 Mary F June 23, 1985 method(birthday, today) al No. 2
c4 Peter M July 17, 1979 method(birthday, today) a2 Bran

cx John M Feb 24, 1980 method(birthday, today) az MMM
cz Frank M Jan. 29, 1982 method(birthday, today) a2 PCC

Table 2: Instance of Class Child

because some people may live older than 85 while some other may not. We use / > to represent
weak transition. For brevity, we still list database objects in tables similar to how we list tuples

in a relational table; the differences are, in addition to showing all the attribute-value pairs, we

also show the object identities (oids) and the values for reference attributes are oids. From the

knolyledge discovery point of view, it is unnecessary to distinguish which data are stored within

the class and which are inherited from its superclass. As long as the set of relevant data are

collected by query processing, the KDD will treat the inherited data in the same way as the data

stored in the object class and perform generalization accordingly.

{0-4}: kids; {4-14}: children; {14-:20): young

(20-29}: twenties; {30-39): thirties; {40-49}: forties

(50-64}: late_mid; (65-}: old
(kids, children}: child_age; {young, twenties}: young_age

(thirties, forties, late_mid}: mid_age; { old}: old_age

{child_age, youth_age, mid_age, old_age}: Any(age)

{()-20k}: low_income; {20K-34k): low_middleAncome; {35k-45k): mid_income

{46-65k}: high_income; (66k-}:very.highlncome;
{low.income, low_mid_income, mid_income, highAncome, very_high_income}: Any(income)

Figure 1: The concept hierarchy for age, salary, pension

Page 328 AAAI-94 Workshop on Knowledge Discovery in Databases KDD-94

old name SeX birthday age pension

sl Woope F Oct. 5, 1925 method(birthday, today) 17k
s2 Jason M July 14, 1929 method(birthday, today) 23k
s3 Rote F Jan. 28, 1913 method(birthday, today) 60k

sl Codoba M Aug.,24, 1910 method(birthday, today) 40k
sk Clark M Feb, 23, 1914 method(birthday, today) 10k

Table 3: Instance of Class Senior citizen

I n~e [
Person [birthday, ageI

/ age=18p age=65 ,~ age~85 @
Child Adult SeniorCitizen

[]emplOyerl
parent/guardian

salary [pension[
school dependents

SeniorCitizen.pension=Adult.salary when retired * 65%

Child.name=Adult.Name=SeniorCitizen.n~e

3

Figure 2: The class hierarchy and transition network for people

Principle and Algorithms for Learning in

Dynamic Environment

3.1 General Discussion

The general trend of evolution describes how a particular set of data evolves over a period of time,

for example, how the population changed over the past 10 years, or what is the trend 5 years

later. To discover data evolution regularities in the future, the evolving data should be identified

first and be extracted from the database.

In a relational database, we start learning by collecting relevant data into a relational table

using selection, projection, or join operations provided by the query language; namely, we make a

copy of the data portion in the database that are relevant to our learning task and the database

remains intact. We should abide by the same principle in an OODB. However, in an OODB,

instances are grouped into classes and related objects of different classes are connected through

references, i.e., oids, which acts as a counterpart of join in the relational sense. Attribute projec-

tion may not be supported in an 00DB in a dynamic environment. Moreover since in a dynamic

KDD-94 AAAI-94 Workshop on Knowledge Discovery in Databases Page 329

oid name sex penslon
sl Woope F 17k
s2 Jason M 23k
s3 Rose F 60k

sl Codoba M 40k
sk Clark M lOk

Table 4: Instance of Class Senior citizen

environment the data contents and scheme may change over the time, the data extraction pro-

cedure is more complicated. For example, if the city administrator wants to know the general

situation about the senior citizen 5 years later, the query may be submitted as below:

learn data evolution trend for seniorcitizen S

5 years later

in relevant to S.name, S.sex, S.pension

The data extraction procedure is performed in two steps (1) based on the query, extract the

target class objects; (2) examine the class hierarchy and transition network to check whether

there are any source class objects which can transform to the current learning class as time goes

by. For the above query, the first step is to extract all the citizens from the current senior citizen

class except those who are 80 years old (because we assume that senior citizen die at 85). Then

we $xamine the class hierarchy and transition network and find an Adult becomes a senior citizen

when he reaches 65. Hence we have to look through the Adult object class and extract those

adults who are older than 60 and derive the corresponding attributes values, e.g. replace salary

by pension. (we can assume that adult salary increases 4% each year, first compute the adult

salary when he retires , and then apply the method: seniorcitizen.pension=adult salary when

retired * 65 %). As a result, we get a set of task-relevant instances objects as shown in Table 4.

The "relevant data " returned from a query into an OODB is generally a set of oids pointing

to instances of a specific class-the queried class. After obtaining object instance relevant to

our learning task, we may start the induction process. The basic strategies of attribute-oriented
inductions [2] are still applicable when the induction is conducted on an attribute whose values are

of a primitive class. For example, in the generalization process, the attribute "S.name" is removed

(even if it were in relevance to the learning query) since it has no superordinate concept. Since

attribute projection may not be supported in an OODB, we encounter some technical differences

here from in a relational databases. Relevant as well as irrelevant attributes of objects of this

class can be accessed by dereferencing the oids in this set; attributes of related objects of other

classes are accessed through reference attributes.

One of the essential components of an OODB is object identifier (oid) which uniquely iden-
tifies objects. It remains unchanged over structural reorganization of data. Since objects in an

Page 330 AAAI-94 Workshop on Knowledge Discovery in Databases KDD-94

OODB are organized into classes which in turn belong to certain class and subclass hierarchy,

the generalization of objects may refer to their corresponding class and subclass hierarchy. In the

object-oriented database model, no two object instances are equal even if they have the identical

values for each of their attributes, because their oids will never be the same. The relational
attribute-oriented induction method is value-based. In an object-oriented database, when we

judge whether two object instance are "mergeable" in the relation sense, we only compare values

in the relevant attributes, ignoring the oids. When checking whether two reference attributes

have equal values, we see if the composing attributes of the pointed object instances are equal

instead of comparing the oid values of the two reference attributes. Irrelevant attribute values

are not compared. If two instances have identical values for every task-relevant attributes, one of

them is considered redundant even though their oids are different. To "merge" two instances, we

simply delete the old of one of them from the class extent and record the number of redundant

object in vote.

The evolving data may have two kinds of attributes: stable attributes and evolving attributes.

The stable attributes, in which the data values do not change over time, can be generalized by

attribute-oriented induction in the same way as those discussed in [2]. The evolving attributes, in

which the data. values change over time, can be generalized according to a generalized time slots

when appropriate. For example, adult’s salary keeps changing yearly and so we need to update

the salary based on the time value. Once we get the value for the salary, then we can still apply

attribute-oriented induction.

As to generalization of collection attributes and reference attributes, these two categories of

complex attributes maybe mixed. A collection attribute can have elements of pointers to another

class; a reference attribute can point to class consisting of collection attributes. Generalization of

a collection attribute should be performed on its composing elements and the generalized concept

for the collection is expressed in terms of its generalized elements. Generalization on a reference

attribute is conducted on each composing attribute of the object class being pointed to. Since the

objects being pointed to may be of a class that contains reference attribute as well, we may have

to apply the strategy of collection attribute several times. By the least commitment principle

[2], generalization should start on the finest concepts in order to guarantee correctness. This

means we may have to keep on dereferencing pointers until we reach a non-reference attribute.

The class composition hierarchy contains the information that will guide this pointer dereference.

When there exists a link from an attribute in one class to another class, and when this attribute

is relevant to the learning task, this link (pointer) should be dereferenced, that is, generalization

moves on to the referenced class. No more dereferencing is needed when we have come down to

a leaf class in a class composition hierarchy.

As a result of generalization, different objects may be generalized to equivalent ones where

two (generalized) objects are equivalent if they have the same corresponding attribute values

without considering their object identifiers and a special internal attribute count, which register

KDD-94 AAAI-94 Workshop on Knowledge Discovery in Databases Page 331

,, oid sex pension count
gl F low.income 30000
g2 M Iow.lncome 25000
g3 F low.mid .income 10000
g4 M iow-mid.inc0me 15000
g5 F mid-lncome 5000
ge M mid.lncome I0000
g7

~s
M high-income 3000
M very.high.lncome 2000

total I00000

Table 5: Instance of Class Senior citizen

the number of objects in the initial working class. Notice that a generalized object, though has its

own new oid (object identifier) in an OODB, is a carrier of the general properties of a set of initial

objects because the original identifier has been generalized into a class or superclass name. The

count accumulated in the generalized class incorporates quantitative information in the learning

process. After the generalization process, we get a generalized table as shown in Table 5.

Based on this generalized table, we can derive some useful data trend information: for example,

5 years later, there are about 100,000 senior citizens, 55~ are male, and 45 ~ are .female. Among

the female senor citizens, 66.7 ~ have lower income and so on

3.2 Algorithm

In s~mmary, we present the algorithm below. After task-relevant instances have been selected,

the procedure OOinduction is called. This procedure processes each attribute such that the

attribute threshold is satisfied. It then goes on to ensure that the final learned result contains no

more instances than the threshold. For each relevant attribute can be simple as of a primitive

class, or complex as of a set, a list, an array, or a reference, OOinduction has to treat each

attribute according to its type; this is done by the subprocedure Resolve(A). The element

a collection attributes can again be a complex class, and the attributes of the class pointed to

by a reference attribute may also be of a complex class. This gives Resolve(A) a recursive

nature. Since complex attributes are defined using primitive classes and can always break down

to primitive classes, Resolve(A) is guaranteed to terminate. Moreover, since all the extension

we made strictly follow the least commitment principle [2], the correctness of our algorithm is also

guaranteed. (In the algorithm "*A" refers to the object class pointed to by ’A’.)

Algorithm 1 An Data Trend Discovery Algorithm

Input: (1) an object-oriented databases (2) a set of class hierarchies and transition network,

a set of concept hierarchies Hi for each attributes, where Hi is a hierarchy on the attribute Ai, if

available; (4) the threshold value T and
Output. A set of data trend regularities

Page 332 AAAI.94 Workshop on Knowledge Discovery in Databases KDD-94

Method

Step 1. extract relevant data from object oriented databases into data set S

(1) extract data according to the query

(2) extract data according the class hierarchy and transition network

Step 2. Call Procedure OOinduction(S,T)

Step 3. Transform the final relation into a feature table, and extract the relevant rules

Procedure OOinduction(S,T);

/* S is the set of instances of some classes relevant to the learning task*/

Begin

For (each task-relevant attribute A of the class)

WHILE (the number of distinct values of A > T)
IF there does not exist a concept tree for A

THEN Mark A as "irrelevant" and exit

ELSE call Resolve (A)
/* now the threshold constraint is satisfied by each attribute */

WHILEISI >TDO

BEGIN

select the attribute containing substantially more distinct values or with

a better reduction ratio, and replace each value of them by its corresponding

¯ parent in the concept tree, and record the number of redundant instances in vote;

END

/* now the threshold constraint is satisfied by the instance set */

END

Resolve(A);

/* A is an attribute name on which generalization is done in this procedure */

BEGIN

CASE A of

Reference: If (*A has not been dereferenced)

THEN FOR (each attribute of the class) DO Resolve(attribute)

ELSE FOR (each non-reference attribute) DO Resolve(attribute);

Set: For (each element of A) DO Resolve(element);

Delete repetitive elements from A;

List: FOR (each element of A) DO Resolve (dement)

Primitive: For (each instance in set S)

Replace the value of attribute A by its parent concept in the concept tree;

Delete repetitive instance in set S;

KDD-94 AAAI-94 Workshop on Knowledge Discovery in Databases Page 333

END

4 Conclusion

In this paper we propose a new method to predict the data trend regularities in the future.

Our method combines the techniques of attribute-oriented induction, object-oriented model and

transition network. Our method has some practical value because in real application because it is

very necessary and important to provide the data evolution regularities to people for for making

decisions.

References

[1] Michel Augeraud, Freeman-Benson, (1991). Dynamic Objects, COCS’91 Conference on Or-

ganizational Computing System, Atlanta, Georgia

[2] Y. Cai, N. Cercone and J. ttan, (1991). Attribute_Oriented Induction in ttelational databases,
Knowledge Discovery in Database, AAAI/MIT Press, G.Piatetsky-Shapiro and W.J. Frawley

(eds) pp. 213-228

[3] W. J. Frawley, G. Piatetsky (1991). Knowledge Discovery in Database, AAAI/MIT Press,

[4] G. Hall and P~. Gupta, (1990). Modeling Transition, 7th international Data Engineering

"’Conference

[5] R.S. Mickalski, (1983). A Theory and Methodology of Inductive Learning, in Machine Learn-

ing: An Artificial Intelligence Approach, Vol. 1. Michalski et. al. (eds), Morgan Kaufmann,

pp 41-82.

[6] S. Nishio, H. Kawano and J. Han, (1993). Knowledge Discovery in Object-oriented Databases:
The First Step, Knowledge Discovery in Databases Workshop 299-313

[7] J.S. Xie, (1993). Attribute-Oriented Induction in Object-Oriented Databases, MS thesis,

School of Computer Science, Simon Fraser University, Canada

AAAI-94 Workshop on Knowledge Discovery in DatabasesPage 334 KDD-94

