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Abstract

Most existing inductive learning systems form concept descriptions in propositional lan-
guages from vectors of basic features. However, many concepts are characterized by the
relationships of individual examples to general domain knowledge. We describe a system
that constructs relational terms e~ciently to augment the description language of standard
inductive systems. In our approach, examples and domain knowledge are combined into an
inheritance network, and a form of spreading activation is used to find relevant relational
terms. Since there is an equivalence between inheritance networks and relational databases,
this yields a method for exploring tables in the database and finding relevant relationships
among data to characterize concepts. We also describe the implementation of a prototype
system on the CM-2 parallel computer and some experiments with large data sets.

1. Introduction.

Typical inductive learning systems, such as decision-tree learners [10] and rule learners [2],
[fi], form concept descriptions in propositional languages based on the similarities and dif-
ferences between vectors of features. The set of features is static and completely determined
beforehand. Furthermore, these learners do not take into account relationships among the
examples, or relationships to general domain knowledge.

The goal of the work described in this paper is to use existing domain knowledge to create
new terms, not already present in the features originally provided, for inductive learners to
use. Our approach is to represent examples and background knowledge in the form of an
inheritance hierarchy with roles (equivalent to a multi-table relational database). We then
use parallel formula propagation techniques [1] to suggest relevant terms efficiently. Parallel
formula propagation can find relationships in large knowledge bases, including relationships
that span multiple functional links and relate multiple examples (see example below). The
new terms are used to augment the description language of a standard machine learning
prosram.

The use of domain knowledge is necessary when the features attached to individual ex-
amples do not capture abstractions and general distinctions that relate many examples of
a concept. In some domains, typical inductive learning with only the basic features creates
many small disjuncts that are inherently error-prone [4] [3], because of a lack of statisti-
ca/confidence in a disjunct that covers very few examples. Creating higher-level features
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can be useful for coalescing many related small disjuncts into a larger rule, with m~re sta-
tistical confidence [12]. As the examples below show, these larger rules can also be more
understandable than the corresponding collection of small disjuncts.

In order for a system that combines data with prior domain knowledge to be useful, it
must not require that the user know a priori what knowledge will be relevant to the learning
problem. Thus, such systems must be able to deal with large knowledge bases that contain
mostly irrelevant knowledge. When large knowledge bases are combined with large example
sets, it is vital that efficient techniques are available-both for the representation of the prior
knowledge and for the search for relevant prior knowledge. Previous work has shown how
parallelism can help to scale up feature-based inductive learning to very large data sets [9].
In the present work we show how parallelism can be used to scale up learning with domain
knowledge to large knowledge bases (perhaps in combination with large data sets).

2. Parallelism and Domain Knowledge.

We will use a simple ’blocks world’ example to illustrate our basic ideas; later we will describe
how the system performs on real-world learning problems.

t t

Figure 1: A Simple Example.

Consider the example in Figure 1. It shows blocks of various shapes, sizes, and colors.
Additionally, some of the blocks are stacked on top of each other. A simple feature-based
learner cannot learn a description of the concept set consisting of blocks 2, 3, and 5 since
it is limited to reasoning only about their intrinsic features such as shape and color. To
learn a simple description of the concept (it consists of blocks that are on other gray blocks)
requires representing and reasoning with relational information.

We can represent the relevant information for this concept with the simple inheritance
network in Figure 2. We can see that the blocks of the concept are connected by paths
consisting of on and color links to the node Gray. The problem is that we do not know
beforehand that this combination of links characterizes the set. In a more complex example
there would be many links coming from each node, and even after looking at the diagram it
might not be clear what relationships were common to all the nodes of the concept.

Aronis [1] developed a method, called parallel formula propagation to explore all the
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Figure 2: Network for Example.
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Figure 3: A Simple Example of Formula Propagation.

possibilities simultaneously. Hwe attach initial.formulas to one or more nodes in the network,
we can propagate them through the network according to a small set of rules to show the
relationship of the original nodes to the other nodes in the network. The idea is illustrated
in Figure 3. The initial formula Block 2 = Block 2 is attached to node Block 2. It crossed
the Block 2 ~ Block 1 ]ink to become the formula on-Block 2 = Block 1. Notice the new
formula is true because the ]ink tells us that Block 2 is on Block 1. Then, this new formula
crosses the Block 1 ~_,lor Gray ]ink to become the formula color-on-Block 2 = Gray. That is,
the Block 2 is on a block whose color is Gray.

This model can be extended to count occurrences of formulas, and hence record the
frequency of relationships. Suppose that in Figure 2 we mark all the blocks in the concept
(Block 2, Block 3, and Block 5) with the initial formula X = X, and the blocks in the
complement with the initial formula Y = Y. As these formulas propagate through the
network, certain formulas show up frequently on certain nodes. This reflects the prevalence
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of particular relationships from nodes in the concept (or complement) to that node. Nodes
can count the number of times each formula occurs to keep track of these relationships.
In the example here, the node Gray will eventually have three occurrences of the formula
color-on-X = Gray, and no occurrences of the formula color-on-Y = Gray. This shows that
all three of the blocks in the concept have this relationship, and none of the blocks in the
complement do, so we know that the formula color-on-X = Gray characterizes the concept.
In other words, the concept consists of exactly those blocks that are on a gray block.

Figure 4: Characterizing a Class.

This method will work well if nearly all of the nodes of the concept are related to a single
node in the same way, and few if any nodes of the complement have that same relationship.
Figure 4 illustrates a set-, C, that can be characterized by the rule:

~R(X) = A] ~ C(X)

That is, the items in C (at least most of them) are connected to A by a sequence of links
R. If we place the initial formula X = X on each item in C, they will propagate across the
network and collect on the node A as (several copies of) the formula R(X) = A. The 
A win be distinguished because it has so many formulas initially from the concept C. In
fact, any relationship and node that characterizes the concept will have an accumulation of
formulas.

Although potential characterizing relationships can be found in parallel, we still may
need to search through combinations of them to find suitable rules. For instance, in the
situation above the rule may also be true of many objects outside of the concept C. In
that case we will need to search through additional conditions to exclude these negative
examples. Alternatively, the relationship might not be true of an the concept, and we might
need to search for additional formulas to characterize the remaining items of the concept.
Consider the situation in Figure 5. It could be the case that neither R(x) = A nor S(x) 
characterizes the set, but their conjunction does.
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Figure 5: Characterizing a Class with a Conjunction.

3. A Prototype System.

We have built a prototype system based on the ideas presented above. The basic operation
of our system is as follows:

.
Load the learning set and a knowledge base into an inheritance network. Then mark
the nodes of the concept with positive initial formulas (X = X), mark the nodes of its
complement with negative initial formulas (¥ = ¥), and allow them to propagate 
through the network keeping track of accumulations.

,
Select significant formulas based on the proportion of positive and negative formulas
that have accumulated. Briefly, if a formula has a large number of positive occurrences
and few negative occurrences, it is a candidate to characterize some or all of the concept
but little of the complement.

.
Use the selected formulas to create new features for the learning set (this can be clone in
parallel as described below), then run a feature-based learning system on the enhanced
database (this can also be done in parallel, see [9]).

The basic ideas have been explained above; the rest of this section wiU describe some of the
details of our implementation.

8.1. Parallel Implementation.

The CM-2 Connection Machine is a SIMD computer with thousands of processors that is
ideally suited for implementing the formula-propagation model. Each node can be assigned
to a single processo~ and instructions for propagating formulas across links can be issued by
the front-end to all processors simultaneously.

The process of propagating formulas from the concept and its complement up through
the network has been described above. One important problem surfaces when this is imple-
mented on the CM-2: inheritance networks have irregular structure with branching factors
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that can range from a few links to several hundred or thousand, but the CM-2 uses a regu-
lar interconnection scheme for data communications between processors. A bottleneck will
result if many nodes try to send formulas to a single node at once (each node has at most 32
direct communication lines, but may have hundreds of links). Furthermore, each processor is
a sequential processor and must process each incoming formula individually. We have solved
’this problem by using auziliar~l nodes to spread a node’s links, and hence its communication
and processing load, across several processors. By building a tree of processors rooted at
a node with many links, each leaf processor can process a portion of the original node’s
links, then combine the results through the tree. If the original node had n connections,
this scheme introduces a log n factor, which is much better than the order n time required
to process all ]inks directly. This scheme also reduces the amount of memory required by
nodes to store all of its links.

Once the formulas have been propagated, potentially useful ones need to be identified.
We say a node is significant if it has some formula attached to it that has a higher proportion
of positive formulas than the proportion of negative formulas (proportions computed relative
to the total number of items in the concept or complement). These nodes can be identified
and marked in parallel. More complex measures of significance are possible and further work
is required to explore these.

B f A
fx=A I’~ 3"D x=A

/\
C D

Dfx=C Dfx=A

E F
Dfx=E Dfx=A

Figure 6: A Simple Downscan.

Given a significant formula FX - A on a node A we want to attach the new feature
FX = A to every node of the learning set whose F is A, that is, every node whose initial
formula propagated through a sequence of links F and isa links to end on the node A. This
can be clone in parallel by first attaching an initial formula to the node A and allowing it
to propagate backwards across links. Nodes of the original learning set related to node A
(both in the concept and its complement) w.’fll have the formula FX = A attached to them,
and this can be used as a new feature. This is illustrated in Figure 6.

The new features are derived from nodes and relationships that seemed to be significant,
according to a rough indicator based on the proportion of concept and complement nodes
related to it. While there is no guarantee these new features win enhance the learning
process, they will generally augment the features an inductive learner can operate with. In
our prototype, after the new features are identified and attached to the learning set we use
the RL sytem [2] to learn rules to characterize the concept.
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3.2. Results on Scientific Data.

The system was run on a database of several hundred stellar spectra to learn classification
rules for luminosity. A stellar spectrum is marked by several lines corresponding to ionized
substances in the star’s atmosphere. These lines have varying intensity and can be used to
predict the star’s luminosity.

When the ltL system was given data on the stars and their spectral lines (whether they
were present or absent) it produced the following four rules:

TiO line-~ High Luminosity

C2 line ~ High Luminosity

OH line ~ High Luminosity

Ca+ line ~ High Luminosity

That is, if a star’s spectrum has a line for any of the molecules TiO, C2, OH, or the ion Ca+

it has High Luminosity.

Spectral line

Element D

,on,z,~ F--") N,,,,t,~, [’--I
Element Element

Singly MulUply
Ionized D Ionized D D

DNN
H He Ca O N C

I~ Molecule

DDD
TiO C OH

has-line s-line

has-line "~ Star

Figure 7: Spectral Lines Classification.

These rules are useful, and they match experts’ classification of stars, but they do not
capture connections and generalizations in the data and features being reasoned about. To
capture and represent generalizations in learned rules requires representing and using basic
scientific knowledge. We linked the stellar spectra to the knowledge base of elements and
their characteristics shown in Figure 7. (In our experiments, data for several thousand stars
were used, but only one is shown here for clarity.) By learning with both data and the general
knowledge available in the inheritance network, the system learned two rules (instead of the
previous four):
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Molecule(has-line(x)) --, High Luminosity(x)

Ca +(has-line(x)) --~ High Luminosity(x)

The first rule states that if an item ("x") has a spectral line that satisfies the predicate
Molecule, then that item satisfies the predicate High Luminosity. The second rule says
that if an item has a line that satisfies the predicate Ca+ then is satisfies the predicate
High Luminosity.

These two rules can, in fact, be combined into a single rule if more knowledge is added
to the knowledge base that represents an exceptional property of the element Calcium that
makes it similar to molecules. But this would require representing and using nonmonotouic
reasoning, which is currently beyong the capabilities of the system.

The system was also run on a database of 3.5 million infant births and deaths from the
U.S. Department Of Health. in the original data, births were categorized according to county,
state, and region of the country where they occurred. These regions included areas such as
New England, Middle Atlantic, Southeast, etc. In addition to the categories found in the
original data from the Department of Health, we linked the records to other geographic
categories including the new region "East Coast." When run on the combination of original
data and the new domain knowledge the system was able to find a new rule that Asians
living on the East Coast have an extremely low incidence of infant mortality. Note that a
simple attribute-value hierarchy would not have discovered this rule, because East Coast is
not one of the regions that would have been specified, and there was no a priori way to know
that ’East Coast’ would be a relevant category. However, by putting in several categories
that might be relevant (into an efficient representation), this rule could be learned.

4. Capabilities and Limitations.

Since formulas are propagated along all paths in parallel, the complexity of finding significant
nodes, and new terms for learning, is linear in the depth of the network. Because of this
efficiency, and the fact that all paths can be explored simultaneously, the system does not
have to choose which paths seem most promising. Other systems, such as FOIL, have to
perform a heuristic search through a large space of terms. But such a system often cannot
do sufficient look-ahead to know which branches of the search tree are most promising.

For instance, [111 gives the following example of a concept that FOIL cannot learn. The
FOIL system is given the relations:

P = {(1), (2)}

A = {(1,t), (2, f), (3,t), (4, 

B= {(1, t), (2, t), (3, f), (4, 

C = {(1, f), (2,t), (3, f), 
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Q= {(t)}

When attempting to learn the concept P, it must first select one of the relations A, B, or C.
But with limited search and lookahead theyall look equally promising, and FOIL chooses the
wrong one, thus pruning the branch of the search tree leading to the correct solution. Using
our system, (with relations represented in graph format) formulas are propagated across all
links in parallel and the correct characterization of the concept is noticed immediately. 1

The efficiency of the system stems from its limited description language based on links of
an inheritance network. The inheritance system can find new terms of the form fl ... f3x - Y
where x and y are nodes, and each fi is a role link in the network. (There can also be isa
links interspersed with the role links, but they will not appear in the final formula). Then,
using RL, the system can assemble the new terms into Boolean combinations to characterize
a concept.

Although this language is more restricted than some other systems, for example FOIL and
GOLEM, it takes advantage of a close correspondence between databases and inheritance
networks. Records (rows of relations) correspond to individuals, and columns correspond 
relational links. For instance, the simpIe database with the relations shown in Figure 8 can
be represented as the inheritance network shown in Figure 9. This simplified example does
not show all the structure associated with -the various attributes. For instance, BMW’s may
themselves have structure and be classified with additional isa links.

People
Name Occupation Automobile
Bob Accountant BMW
John Programmer Spectrum
S~[n Bartender Corvette
Suzie Lawyer BMW
Tim Lawyer BMW

Occupations
Occupation Salary
Accountant High
Programmer Medium

Bartender Low

Lawyer High

Figure 8: A Simple Relational Database.

Reasoning with only the disjoint tables of the original database, a learning program
could only find that accountants and lawyers own BMW’s. But a learning program based on
formula propagation can use the inheritance network to learn that people with high salaries
own BMW’s. This would be done by first markingthe node BMW, and then propagating
formulas to mark those people who own BMW’s. From there, the new formulas would be
propagated through the network to find characteristics of those people. In this case, it would
be those people who have jobs with high salaries. The rule that people with high salaries
own BMW’e is equivalent in this database to the rules that accountants and lawyers own
BMW’s. But the single rule intuitively is more explanatory, andin fact is more useful. Since
inheritance networks represent generalizations (knowledge) as well as individual facts, using

1The concept is characterized by the predicate Q(B(x)), but since we represent the unary relation Q as
the single-valued role link Q Q, we find the formula Q(B(x)) 
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Low

them it is possible to generalize rules. Thus, you will get rules that are more robust as data
is added.

This correspondence between databases and inheritance networks will allow our system
to learn from the relations implicit in the structure of many databases. It wiU also open
the possibility of integrating databases into knowledge bases to exploit generalities that are
expressed as knowledge, rather than just data.

5. Related Work.
%

This work is closely related to other work on relational inductive learning, which has come
to be known as "inductive logic programming" [11] [7] [8], Our method differs from these
methods in that we take advantage of the efficiencies offered by representing background
knowledge as an inheritance hierarchy (with roles). Standard relational approaches (e.g.,
FOIL [11] and GOLEM [7]) assume that background knowledge is expressed as a set of
ground facts. For large amounts of background knowledge combined with large data sets,
the number of ground facts needed can be immense. Therefore, these approaches will not
scale up to very large problems. Inheritancy hierarchies give a compact and efRciently
searchable representation for background knowledge.

We use techniques for finding relationships in inheritance hierarchies to suggest new terms
to a propositional learner. Thus, our work is related to other work on feature construction
(or =constructive induction"). Matheus gives a’good overview of techniques for feature con-
struction [5]. Most of this work does not address the use of a large body of domain knowledge
for suggesting relational terms. One exception is the inductive logic programming system
LINUS [8]. LINUS uses relational background knowledge to suggest new terms to standard
feature-based inductive learners. However, LINUS enumerates all possible relational terms,
based on syntactic and semantic constraints (such as type constraints). As with the rela-
tional approaches discussed above, such an exhaustive enumeration will not scale up to very
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large problems (e.g., problems with many examples and lots of irrelevant domain knowl-
edge). We address this problem by using formula propagation techniques to find only terms
that appear to be useful for characterizing the concept to be learned; these terms can be
compositions of relationships from the hierarchy.

6. Discussion and conclusions.

The two real-world applications to which we have applied our prototype system do not
take full advantage of the system’s capability for learning relational terms. In each case,
a system that allowed learning with attribute-value hierarchies alone (and not relational
knowledge) could also have learned the more general rules. However, as the blocks-world
example illustrates, more complicated relationships can be discovered. In addition, the
computational effort involved scales to the complexity of the knowledge represented in the
inheritance hierarchy. At the least-complex end of the spectrum (no background knowledge),
the system degenerates into a standard feature-based learner. If attribute-value hierarchies
are provided, the system can take advantage of them to learn more general rules. At the
most-complex end, the system can take advantage of background knowledge that includes
functional roles and relationships between examples.

.In conclusion, we believe that inheritance hierarchies can represent background knowl-
edge that can be useful for real-world learning problems. We have shown that inductive
learning can take advantage of the efficiency of the inheritance hierarchy representation for
augmenting the description language of a propositional learner. This is important when
there is a large amount of (mostly irrelevant) background knowledge in addition to a large
number of ex~_m__ples. In such domains, blindly compiling all background knowledge into
propo’Aitional form (or the set of all possible ground facts) is infeasible. The inheritance
hierarchy representation also facilitates parallelization. On a massively parallel machine,
this greatly increases the space of relations that can be searched for relevant knowledge.

Most of the work on this project is future work. We hope to link large databases with
large knowledge bases in such a way -that learning is feasible. For example, infant mortality
data could be linked with knowledge about industrial and environmental factors for different
regions of the country. Considering that we are already dealing with over three million live
births per year, efficiency is a major concern. In addition, we would like to improve the
parallel inheritance hierarchy search to deal with more complex inheritance representations
(including non-monotonicity).
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