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Abstract

Knowledge discovery in databases presents many interesting challenges within the
¢onte~t of providing computer tools for exploring large data archives. Electronic data
.repositories are growing qulckiy and contain data from commercial, scientific, and other
domains. Much of this data is inherently temporal, such as stock prices or NASA
telemetry data. Detect£ug patterns in such data streams or time series is an important
knowledge discovery task. This paper describes some pr~|~m;~,ry experiments with a
dynamic prograrnm~,~g approach to the problem. The pattern detection algorithm is
based on the dynamic time warping technique used in the speech recognition field.

Keywords: dynamic programming, dynamic time warping, knowledge discovery, pat-
tern analysis, time series.

1 Introduction

Almost every business transaction, from a stock trade to a supermarket purchase, is recorded
by computer; In the scientific domain, the Human Genome Projectis creating a database of
every human 8enetlc sequence. NASA observation satellites can generate data at the rate of
a terabyte per day. Overall, it has been estimated that the world data supply doubles every
20 months [FPSM91]. Many databases, whether formed from streams of stock prices, or
NASA telemetry, or patient monitors, are inherently temporal The challenge of knowledge
discovery research is to develop methods for extracting valuable information from these huge
repositories of data--most of which will remain unseen by human eyes.
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The data on which our knowledge discovery tools operate can be characterized by the tra-
ditional distinction between categorical data and continuous data [Ker86]. Categorical data
are characterized by nominal scales and simple group membership. An example pattern
based on categorical data would be"most residents of Manhattan are Democrats". Continu-
ous data may be ranked on ordinal scales, and differences become meaningful on interval and
ratio scales. Queries on continuous data are more complex since they include relationships
such as "less than" and aggregations such as averages or maxlmums. For instance, we might
find patterns such as "the average salary of Democrats that subscribe to the New Yorker is
greater than $50,000".

Both categorical and continuous data can be extended by adding a temporal dimension--
creating time series data. The last decade has witnessed a tremendous growth of interest and
research in the field of temporal databases, as illustrated in [TCG+93]. Among the temporal
data models that have been proposed in the literature, some ([CC8?]) directly model time-
series data; the advantages of these models have recently been clarified in [CCT94]. But
before we can use the results of queries on time series, we must be able to detect temporal
patterns such as "rising interest rates", or the small pattern in Figure 6, in the underlying
time series data. This is an !nterest~8 sub-problem within the context of discovering higher-
level relationships and is the focus of this preliminary paper. The detection of patterns in
time series requires an approximate or "fuzzy" matching process. These patterns may then
be used to construct higher-Ievel rules such as "Democrats withsteeply rising salaries are
likely to subscribe to the New Yorker".

For example, consider the line graphs in Figure 1 depicting lynx and snowshoe hare
populations over nearly a century [Odu71] [Cla73]. 1 What type of patterns emerge from
the data? One pattern seems to be that the "lynx population rises after an increase in the
snowshoe hare population"--fairly natural given the predator/prey relationship. In addition,
the "~ynx population appears to be less volatile than the snowshoe hare population". Lastly,
there are two "spikes" in the hare popu/ation that might be explained by a third data
stream--perhaps they are assoclated with "fashion sense" as tracked by sales of rabbit fur
garments! Of course, Figure 1 might represent data collected from any domain (just replace
the labels). One could imagine the hare population to be data tracking a computer industry
stock index and the lynx population to be a particular issue being "pulled" by movements
of the index.

Humans are very 8o0d at visually detecting such patterns, but programming machines
to do the same is a difiicult problem, The difficulty arises in capturing the ability to match
patterns with some notion of "fuzziness". SimS!St approximate pattern detection tasks are
found in several fields. Related wor]~ in s tatisilcs [JDS8]’ signal processing [Poo88], genetic
algorithms [(]o189] [Psc90], and spgech recognition[~88] offer a variety of useful techniques.

1The ratio of predatoz to prey seems to large, but the data are derived ~om commercial trapping, not
from se.ientifl¢ observation.
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Figure 1: Changes in the Lynx and Snowshoe Here Populations as Determined by the
Number of Pelts from the Hudson’s Bay Company.

2. Dynamic Time Warping

In particular, the problem of recognizing words in continuous human speech seems to include
me~y of the important aspects of pattern detection in time series. Word recognition is usually
bued on matching word templates assinst s waveform of continuous speech, converted
into a discrete time series. Successful recognition strategies a~e based on the ability to
s pprcTximately match words in spite of wide v~i~tions in t~m;ng and pronunciation. Recently,
speech recosnition researchers have used dynamic programming as the basis for isolated and
connected word recognition lain88] [RL90] [SC90].

T

Figure 2: An n by m Grid.

The technique of dynamic time warping (DTW) uses a dynamic progrsmmin8 approach
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to align the time series and a specific word template so that some distance measure is
minimized. Since the time axis is stretched (or compressed) to achieve a reasonable fit, 
template may match a wide variety of actual time series. Specifically, the pattern detection
tMk involves sea, chin8 a time series, S, for instwuces of a template, T.

S = si,82,...,,~,...8, (I)

T -tl,t=,...,t#,...t,~ (2)

The sequences 8 and T can be atranged to form a n-by-m plane or grid (see Figure 2), where
each grid point, (i,j), .corresponds to an alignment between elements a~ and tj. warping
path, W, maps or aligns the elements of S and T, such that the "distance" between them is
minimized.

W = wl,w=,...,wk (3)
That is, W is s sequence of grid points, where each wh corresponds to a point (i,j)k, as
shown in Figure 3.= For example, point ws in Figure 3 indicates that s= is aligned with t3.

1 S n

Figure 3: An Example Waxping Path.

In order to formulates dynamic programming problem, we must have a distance measure
between two elements. Many distance measures ate possible two candidates for a distance
function, 6, are the magnitude of the difference or the square of the difference,s

-I - tj I (4)
= = (5)

Once a distance measure is defined, we can formally define the dynamic time warping problem
a minimization over potential watping paths based on the cumulative distance for each

path, where 6 is a distance measure between two time series elements.
P

DTW(S,T) = minw[~ 6(wl,)] (6)
//=I

2When there is no timing di~erence the warpin8 path coincides with the diagonal llne, i : j.
~A given distance meuure allows warping paths to be ranked. It may also be useful to define relative (i.e.

percentage based) distance measure= to make individual distances mote comparable. For example, consider
comparing dktance between stock prices of $8 and $10 with that of $98 and $100.
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In dynamic programming formulations, we need a stage variable, state variables, and
decision variables that ideecribe legal state transitions [LC?8]. The stage variable imposes a
monotonic order on events and is simply time inour formulation. The state variables are
the individual points on the grid as illustrated in Figure 2. The decision variables are less
easily recognized in our formulation, but correspond to the restrictions on permissible paths
between two grid points. These restrictions serve to reduce the search space---the space
of possible warping paths. Searching through all possible warping paths is combinatorially
explosive. Therefore, out of concern for efficiency, it is important to restrict the the space of
possible warping paths--some restrictions are outlined below [SC90].

monotonicity
The points must be monotonically ordered with respect to time, is-x _< is and js-a <

2s.

2. continuity
The steps in the grid are confined to neighboring points, is-is-1 <_ 1 and js -is-1 <_ 1.

3. warping window
Allowable points can be constrained to fell within a given warping window, [ is- js I_<

w, where w is a positive integer window width (see Figure 3).

4. slope constraint
Allowable warping paths can be constrained by restricting the slope, thereby avoiding
excessively large movements in a single direction.

5. boundary conditions
.Lastly, boundary conditions further restrict the search space. The most restrictive
",.variant uses constrained endpoints, such as il = 1, Jl = 1 and is = n, js = m. Rather
than simply anchoring the points, we can relax the endpoint constraint by introducing
an "offset" in the above conditions. Lastly, a starting point may be specified, with
subsequent path constraints replac/ng a fixed ending point.

The dynamic programming formulation is based on the following recurrence relation,
which defines the cumulative distance, ~/(i,j), for each point.

’~(i,j) = 6(i,j) rnin[~/(i- 1,j), 7( i - 1,j - 1), 7( i,J - (7)
That is, the cumulative distance is the sum of the distance between current elements (speci-
fied by a point)and the minimum.of the cumulative distances of the neighboring points. The
above formulation is a symmetric algorithm since both predecessor points off the diagonal
are used.a The aynaml pr grammmg algorithm fillsin atab!e of cumulative distances as the
computation proceeds, removing the need to re-calculate partial path distances. Upon com-
pletlon, the optimal warping path can be found by tracing backward in the table--choosing
the previous points with the lowest cumulative distance.

4An asymmetric formulation would use 0nly one of the points, (i - I, j) or (i, j - I). Experimental results
suggest thatsymmetric algorithms perform better in the speech recognition domain [SC90].
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2.1 Measures of Fit

Once the best warping path is found, a score describing the "fit" of the template and under-
lying time series segment must be calculated. The score is intended to quantify the degree
of fit achievable by stretching or compressing the series emd template with regard to time.
In addition, the score must allow comparisons so that matches can be ranked. We might be
interested in comparisons of multiple matches of a single template against a long series, as
wel/u in comparisons of the fit of various templates with a series.

One possible measure is based on the ratio of the cumulative warping path distance to
a baseline distance. We have experimented with several baseline calculations, including a
boundary around the time series segment. An example of such a boundary is shown in Figure
5. In this example, the baseline is a relative baud centered around the series. For instance,
a data point of 50 would be bounded by 25 and 75, assuming the band width to be 100%
of the data value. The sum of these boundary intervals makes a reasonable baseline, with
the score set to zero if the warping path distance exceeds the baseline (thereby keeping the
score in the [0,1] range).

3. Simple Experiments

In order to illustrate the approach, we use the simple "mountain-shaped" test patterns shown
in Figure 4. The collection starts With a mountain that increases in increments of 20, with
subsequent patterns "/]attened" until we reach a horizontal line at 40.s

synthetic values

8O

flat40

60

40

20

0
0 1 2 3 4. 5

points

Figure 4: A Collection of Mountain-Shaped Patterns.

We ran a naive DTW algorithm on all combinations of mountain patterns. That is,
each pattern acted as both a series and s template during the matching process,e The naive
algorithm uses fixed endpolnts and some simple constraints on warping path slope (including
the monotonicity and continuity restrictions). The resulting scores are summarized in Table
1.

SThe units in this example have no paxtieulax meaning.
eThe values on either side of the diagonal axe different due to the baseline calculation being dependent

on which pattern acts as the series.
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scores
.templat./.e~e. flat40 rant5 mntlO mnt20
flat40 ~. ’1,0o 0.86 ! 0.76 0.61
nmt5 0.84 i.00 0.91 0.73
m-t10 0.68 0.89 1.00 0.85
nmt20 0.36 0.62 0.81 1.00

Table 1: Score Matrix for the "Mountain" Templates.

For example, consider the matching process with rant20 acting as the underlying series
andmntlO the speci~tc template, The overall score is 0.85, with the corresponding matrix of
cumulative distances (~/) shown in Table 2. Thewsrpin8 path representing the reasonably
close fit is shown below, with the appropriate Table 2 cells highlighted.

(6, 6)(5, 5)(5, 4)(4, 3)(3, 3)(2, 1)(0, O) (8)

The warping path is a sequenceof (i,j) pairs, indicating an alignment between a series
element, a~, and template element, tj.

6 9O 50 7O 110 130 9O 70
5 9O 50¸ 9O 9O 70 7O

i’
3O

80 ’20 4O 60 7O 6O 8O
..

6O 20 !So 50 60 7O 100
2 So 10 30 7O 9O 9O 110
1 to 10 9O 120 130 140

.f

0 2o 60 120 160 180 180

m,nIo/mt o o 1 2 3 4 5 6
distances (7)

Table 2: C-mulative Distance Matrix for rant20 sad mntlO.

4 Predator/PreyExperiments

Consider again the time series in Figure 1. The hare populationexhibits two "double-topped"
peaks which will form the basis for our pattern detection. These peaks may indicate some
interesting phenomena, perhaps heavy lynx hunting for pelts caused a break in the normal
spike-shaped cycles. In the entirely diHerent domain of stock market technical analysis,
involving the search for many such patterns, this particular form is called a "double top
reversal" [LR78], Figure 5 is a close-up of the peak occurring near 1850, including the
boundary which would be used to calculate a baseline score as discussed in Section 2.1.
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Figure 5: Double Top Peak in the Hare Population Near 1850.

Figure 6 describes an example template for a double top peak. In our experiment, the
template is specified in relative terms with respect tothe first point. This point serves as
an anchor durin8 the matching process, i~eriting the starting value from the time series
segment being considered. For instance, an anchor value of 20 from the underlying time
series will result in a template instance of 20, 40, 60, 80, 70,70, 80, 60, 40, 20, as illustrated in
the following table:

pattern
scaling 0 1 2 3 2.5 2.5 3 2 1 0

template
instance 20 4O 6O 8O 7O 7O 8O 6O 4O 2O

After matehlng the template a]on8 the hare population series, again using the DTW
-Igorithm described in Section 3, the two highest scores were anchored at 1849 (0.87) and
1870 (0.86). These points correspond nicely with the double-topped peaks in Figure 1. Most
other scores were substantially lower, with only a few reaching over 0.6. This matching
problem is fa~ly di~cult since there are several area~ which might be classified as double-
peaked and the template is quite simple, A more complex template should be harder to match
closely, and therefore be more selective. The graph of the scozes over the hare population
data is shown in Figure 7. The particular warping path anchored near 1850 is shown in
Figure 8, with the warping path alignments represented by dotted lines.
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Figure 8: The Series/Template Alignment Anchored Neax 1850.

5 Conclusion

The knowledge discovery sub-problem 0ffinding patterns in time series data is a challenging
reseezch issue. It is certainly important if we consider how much data is inherently tempo-
tad, such as stock prices,i patient information, or credit caxd transactions. Our preliminary
experiments with techniques based on dynamic time waxping axe encouraging.

Ozce we can detect patterns such ass double top peak, we can express higher-level
relationships or "knowledge" as rules, For example, the following rule expresses one possible
relationship, where tl and t2 represent s time interval.

double.top(hare, tl, t2) --, heavy.]zunting(lynz, tl, t2) (9)

We plan to develop more refined DTW algorithms and evaluate them in the context of
a prototype knowledge discovery tooI. In addition, we are interested in exploring parallel
algorithms to improve performance. Since the DTW algorithm is based on independent
matches of a template ag~nst segments of:s time series, we can divide the time series and
use paxallel matching-processes,,The granularity of the computations can be controlled by
changing the time series interval size. These independent tasks can then be distributed to
multiple processors.
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