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Abstract

Pre-Pruning and Post-Pruning are two standard methods of dealing with noise in
concept learning. Pre-Pruning methods are very efficient, while Post-Pruning methods
typically are more accurate, but much slower, because they have to generate an overly
specific concept description first. We have experimented with a variety of pruning
methods, including two new methods that try to combine and integrate pre- and post-
pruning in order to achieve both accuracy and efficiency. This is verified with test
series in a chess position classification task.

1 Introduction

Inductive Logic Programming (ILP) or Relational Learning has established itself as
one of the major research areas in the field of Machine Learning [Muggleton, 1992,
Lavrail and D~eroski, 1993]: The ability to define concepts from data distributed in separate
relational tables makes ILP methods particularly appropriate for learning from relational
databases (see e.g. [D~.eroski and Lavra~, 1993]).

However, data from real-world problems often are noisy or incomplete. Learning algo-
rithms that are meant to discover knowledge in real-world domains must be able to deal
with this problem [Matheus et al., 1993]. Another major issue for learning from real-world
data is efficiency [Frawley et al., 1992]. [Muggleton, 1993] argues that in many interesting
real-world problems -- such as the protein prediction problem [Muggleton et al., 1992] on
which the ILP system GOLEM [Muggleton and Feng, 1990] was tried -- millions of examples
may be available for training, which is beyond the scope of most ILP systems of today.

This paper is mainly concerned with achieving noise-tolerance through efficient Pruning
methods for relational learners. We will give a short introduction to relational learning
algorithms in section 2. Section 3 discusses several approaches to Pruning in ILP and presents
two new approaches to combining and integrating the two basic methods -- Pre-Pruning
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and Post-Pruning. In section 4 we give an experimental comparison of all the methods and
then draw some conclusions (section 5).

2 Inductive Logic Programming

Inductive Logic Programming (ILP) can be viewed at research on the intersection 
Logic Programming and Inductive Machine Learning [Muggleton, 1992]. In short the re-
search concentrates on the induction of PROLOG programs from relationM data. Be-
ing able to express the discovered knowledge in a first-order logic representation language
can overcome some of the limitations of classical learning algorithms. Most of them
learn from an attribute-value representation of the input data and their representational
power thus is restricted to decision trees [Quinlan, 1983] or propositional Horn clauses
[Michalski et aL, 1986, Clark and Niblett, 1989]. ILP algorithms on the other hand can not
only test attributes for specific values, but also make use of relations between the different
attributes. [D~eroski and Lavra~, 1993] discuss these issues.

The learning task for most relational learning systems is as follows:

Given:

¯ a set of positive and negative training examples

¯ background knowledge (typically in the form of relational tables)

Find:
%

¯ a logic program that is able to derive all of tile positive and none of the negative
training examples using the relations provided in the background knowledge.

Many ILP algorithms -- including all of the algorithms discussed in this paper -- address
this problem with the so-called separate-and-conquer strategy used in FOIL [Quinlan, 1990].
The basic idea behind this approach is to learn one rule after the other until all of the
positive examples are covered by at least one rule. The rules are constructed by evaluating
each variabilization of each relation in the background knowledge with a greedy heuristic
like information gain and then selecting the most promising candidate as the next literal of
the clause. This process is repeated until enough conditions have been found to rule out all
of the negative examples. All positive examples covered by this rule are then removed from
the training set. Rules are learned in this way until no positive examples are left.

ILP systems have already been applied on various real-world problems. Some of the
systems even produced new knowledge that was of considerable interest for researchers
in the application domain and has been published in journals of their subject area
[Muggleton et al., 1992, Sternberg et al., 1992, King et al., 1992].

Two of the main problems when dealing with real-world data are noise-tolerance and
efficiency. [Muggleton, 1993] argues that many real-world problems may involve thousands
or even millions of examples, so that efficiency is a major issue for research in ILP. In the
next section we will discuss several ways of achieving noise-tolerance in ILP programs and
will evaluate them with respect to efficiency.
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3 Pruning in Relational Learning Algorithms

Pruning is a standard way of dealing with noise in concept learning (see e.g.
[Mingers, 1989] or [Esposito et al., 1993]). There are two fundamentally different approaches
[Cestnik et al., 1987], Pre-Pruning and Post-Pruning. In sections 3.1 and 3.2 we will review
some of these methods that have been adopted for relational concept learning systems. In
section 3.3 we show how pre-pruning can be used for improving the efficiency and accuracy
of post-pruning by providing a better starting theory. Finally, in section 3.4, we introduce
a method that actually integrates both approaches by using post-pruning methods as a
pre-pruning criterion.

3.1 Pre-Pruning

Pre-Pruning methods deal with noise during concept generation. Algorithms that have no
pre-pruning heuristics are typically prone to overfitting the noise in the data. They try to
find concept descriptions that perfectly explain all the positive examples, but do not cover
any negative examples. In noisy data sets they therefore learn overly specific clauses. Many
of these rules mostly cover noisy examples and are bad generalizations. By learning a few
"over-general" rules instead of many very specific clauses, several algorithms deliberately
cover some negative training examples and leave some positive training examples uncovered
in order to avoid the above problem.

In ILP, pre-pruning has been common in the form of stopping criteria, i.e. heuristics
that determine when to stop adding conditions to a rule, or when to stop adding rules to
the concept description. The most commonly used criteria are

¯ Encoding Length Restriction: This heuristic used in the classic ILP system
FOR, [Quinlan, 1990] is based on the Minimum Description Length principle
[Rissanen, 1978]. It prevents overfitting the noise by learning only as long as the
costs of encoding a theory together with its exceptions will not exceed the costs of
encoding the examples as they are.

¯ Significance Testing was first used in [Clark and Niblett, 1989] and later on in the
ILP system mFOIL [D~eroski and Bratko, 1’992]. It tests for significant differences
between the distribution of positive and negative examples covered by a rule and the
overall distribution of positive and negative examples by comparing the likelihood ratio
statistic to a X~ distribution with 1 degree of freedom at the desired significance level.
Insignificant rules are rejected.

¯ Cutoff Stopping Criterion: This simple method used in FOSSIL [Fiirnkranz, 1994a]
only adds a condition to a rule when its heuristic value is above a predefined threshold.

mFOIL’s significance testing along with the m-estimate and a powerful beam search
have been very successful in learning concepts in noisy domains [D~,eroski and Bratko, 1992].
Similar results have been obtained for the very efficient cutoff criterion. Both have been
shown to be superior to the encoding length restriction, because the latter is dependent on
the size of the training set, so that the size of the learned concepts (and thus the amount of
overfltting) may increase with training set size [F/Jrnkranz, 1994a].
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3.2 Post-Pruning

Post-pruning was introduced to relational learning algorithms with Reduced Error Prun-
ing (REP) [Brunk and eazzani, 1991] based on previous work by [Quinlan, 1987] and
[Pagallo and Haussler, 1990]. The basic idea is that in a first pass, no attention is payed
to the noise in the data and a concept description that explains all of the positive and none
of the negative examples is learned. For this purpose the training set is split into two subsets:
a growing set (usually 2/3) and pruning set (1/3). Th e concept description th at has be
learned from the growing set is then simplified by deleting conditions and rules from the
theory until any further deletion would result in a decrease of predictive accuracy measured
on the pruning set.

However, this approach has several disadvantages, most notably efficiency. [Cohen, 1993]
has shown that REP has a time complexity of l’l(n 4) on purely random data. Therefore
[Cohen, 1993] proposed GROW, a new pruning algorithm based on a technique used in the
GROVE learning system [Pagallo and Haussler, 1990]. Like REP, GROW first finds a theory
that overfits the data. But instead of pruning the intermediate theory until any further
deletion results in a decrease in accuracy on the pruning set, in a first step the intermediate
theory is augmented with generalizations of all its clauses. In a second step, clauses from
this expanded theory are subsequently selected to form the final concept description until no
further clause improves predictive accuracy on the pruning set. For noisy data the asymptotic
costs of this pruning algorithm have been shown to be below the costs of the initial phase
of overfitting.

3,3 Combining Pre- and Post-Pruning

As stated in the last section, the GROW algorithm can drastically reduce the costs of prun-
ing an overly specific theory. However, the overall costs of the algorithm are still unnec-
essarily high, because like REP, GROW has to learn an overly specific intermediate theory.
[Cohen, 1993] therefore further improves the GROW algorithm by adding two weak MDL-
based stopping criteria. These methods are not intended to entirely prevent overfitting like
the pre-pruning approaches of section 3.1, but to reduce the amount of overfitting, so that
the post-pruning phase can start off with a better theory and has to do less work.

The same is attempted in the top-down pruning (TDP) approach described 
[F~rnkranz, 1994b]. Here FOSSIL’s simple cutoff stopping criterion (see section 3.1) is ex-
ploited for a powerful algorithm that generates all theories learnable by FOSSIL with dif-
ferent settings of the cutoff parameter [Ffirnkranz, 1994a]. From these the most specific
theory within one standard error of classification of the most accurate theory is selected as
the starting theory for the post-pruning phase. This is quite similar to the approach taken
in CART [Breiman et al., 1984] where the most general decision tree within this standard
error margin is selected as a final theory. However, the implementation of TDP made use
of several optimizations, so that finding this theory is often cheaper than fitting the noise.
In particular, the theories are generated in a top-down fashion and are evaluated on the
way, so that learning can stop after a theory has been found that is below one standard
error of the best theory so far. A more detailed description of this process can be found in
[Ffirnkranz, 1994b].
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3.4 Integrating Pre-and Post-Pruning

There are several problems with pruning in relational concept learning. Not all of them
are attacked by the algorithms in the previous sections [F~irnkranz and Widmer, 1994]. In
particular, the separate-and-conquer strategy used in all FoiL-like ILP systems (see section 2)
may cause problems. The important difference between this method and the divide-and-
conquer strategy used in most decision tree learning algorithms is that pruning of branches
in a decision tree will never affect the neighboring branches, whereas pruning of conditions of
a rule will affect all subsequent rules. Deleting a condition from a rule means that the clause
is generalized, i.e. it will cover more positive instances along with some negative instances.
These negative instances are deliberately ignored, i,e. they are practically identified to be
noisy. Consequently these instances should be removed from the training set so that they
cannot influence the learning of subsequent clauses. However, the initial growing phase of
post-pruning algorithms does not know which of the instances will be covered by the pruned
rule and is therefore not able to remove those instances from the training set. In the best
case those superfluous examples in the growing phase only lead to the generation of some
additional clauses that will be pruned in the pruning phase. In the worst case, however,
those instances may lead the learner down a garden path, because they may change the
evaluation of the candidate relations in subsequent learning and thus the "correct" literals
might not be selected. A wrong choice of a literal cannot be undone by pruning.

[Ffirnkranz and Widmer, 1994] present I-REP, an efficient solution to this problem by
means of integrating pre-pruning and post-pruning: Each clause is learned until it covers
no more negative examples. Then literals are deleted from this clause in a greedy fashion
until any further deletion would decrease the accuracy of this clause on a separate pruning
set. The resulting rule is then added to the concept description and all covered positive
and negative examples are removed from the training -- growing and pruning -- set. The
remaining instances in the training set are then redistributed into a growing and a pruning
set and a new clause is learned. When the predictive accuracy of the pruned clause is below
the predictive accuracy of the empty clause (i.e. the clause with the body fail), the clause
is not added to the concept description and I-REP returns the learned clauses. Thus the
accuracy of a clause on the pruning set also serves as a stopping criterion, i.e. post-pruning
methods are used as a pre-pruning heuristic.

4 Experiments

We have tested several algorithms in the domain of recognizing illegal chess positions in
the KRK chess endgame [Muggleton et al., 1989]. This domain has become a standard
benchmark problem for relational learning systems. The goal is to learn the concept of an
illegal white-to-move position with only white king, white rook anti black king on the board.
The target predicate is illegal (A, B, C,D, E, F) where the parameters correspond to the row
and file coordinates of the pieces in the above order. Background knowledge consists of the
relations X < Y, X = Y and adjacent (X,Y). This task would be very hard for attribute-value
learning systems, which typically cannot make use of background knowledge in the form of
relations (but see [DSeroski and Lavra~, 1993] for a way to circumvent this problem). The
domain contains a total of 262,144 different instances; 86,976 (33.18%) of them are illegal.
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ilIegaI(A,B,C,D,E,F)
illegal(h,B,C,D,E,F)
ilIegaI(A,B,C,D,E,F)
ilIegaI(A,B,C,D,E,F)

:-C=E.
:-D=F.
:- adjacent(A,E), adjacent(B,F).

:- A = C, B = D.

Figure 1: An approximate KRK theory that is 99.57% correct.

The signs of 10% of the training instances were deliberately reversed to generate noise
in the data. The learned concepts were evaluated on test sets with 5000 noise-free exam-
pies. The sets used were the same as in [Ffirnkranz, 1994a]. See also the Appendix of
[Ffirnkranz, 1993] for a closer description of the domain.

The tested algorithms were

¯ the pre-pruning systems FOIL 6.1 [Quinlan and Cameron-Jones, 1993] and FOSSIL
(with a cutoff of 0.3) [Ffirnkranz, 1994a],

¯ the post-pruning systems REP [Brunk and Pazzani, 1991] and GRow [Cohen, 1993],

¯ the combined system TDP [Ffirnkranz, 1994b],

¯ and the integrated system I-REP [Ffirnkranz and Widmer, 1994].

All algorithms were implemented by the author in PROLOG except for FOIL 6.1 which
is written in C and publicly available from ftp. cs. su. oz. au. The PROLOG systems had
major parts of their implementations in common. In particular they shared the same interface
to the data. GRow used the same pruning operators as REP1. FOIL 6.1 was used with
its default settings except that the -V 0 option was set to avoid the introduction of new
variables. The PROLOG systems had all of their argument modes declared as input, which
has the same effect. The only difference in search space between the PROLOG systems
and FOIL 6.1 was that the former did not consider recursive literals for efficiency reasons.
FOIL 6.1 would probably have been faster if this had been enforced, but no significant
difference in accuracy can be expected (see [Ffirnkranz, 1994a] for results from experiments
with the same data sets, where the code of FOIL 4 was modified to prevent recursion). Run-
times for most algorithms were measured in CPU seconds for SUN Sparc stations ELC. The
experiments with FossIL, FOIL 6.1 and TDP, however, were performed on a SUN Sparc
station IPX, which gave the other algorithms a 5 : 6 advantage (determined on a few test
runs on both machines).

The algorithms were trained on identical sets of sizes from 100 to 1000 examples. All
reported results were averaged over 10 runs, except for the training set size 1000, where only
6 runs were performed, because of the complexity of this task for some algorithms.

Figure 2 shows curves for accuracy and run-times over 5 different training set sizes.
I-REP -- after a bad start with only 84.55% accuracy on 100 examples -- achieves the

1In [Cohen, 1993] REP and GROW also used identical pruning operators. They were, however, slightly
different from our choice. We used the operators described in [Brunk and Pazzani, 1991].
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highest accuracy. In predictive accuracy, FOIL did poorly. Its stopping criterion is depen-
dent on the training set size and thus too weak to effectively prevent overfitting the noise
[Ffirnkranz, 1994a]. With 1000 examples FOIL learns concepts that have more than 20
rules and are incomprehensible. I-REP on the other hand consistently produces the 99.570£
correct, understandable 4-rule approximation of the correct concept description of figure 1.
This theory correctly identifies all illegal positions, except the ones where the white king is
between the black king and the white rook and thus blocks a check that would make the po-
sition illegal, because white is to move. The post-pruning approaches REP and GROW both
are about equal, and TDP does not lose accuracy compared to them. All three, however,
only rarely find the 4th rule of figure 1. It can also be seen that the pre-pruning approach
taken by FOSSIL needs many examples in order to make its heuristic pruning decisions more
reliable.

Algorithm

FOIL 6.1
FOSSIL (0.3)
REP
GRow
TDP
I-REP

Accuracy
Pre ] Post

94.70
98.27
85.65
85.65
96.56

98.01
98.30

Run-time
Pre Post

127.17
44.39

2129.89 23125.34
2129.89 806.89

Total

127.17
44.39

25255.23
2936.78

98.50 433.54 162.25 595.79
99.55 115.35

Table 1: KRK domain (10% noise), 1000 examples

FOSSIL, on the other hand, is the fastest algorithm. FOIL, although implemented in
C, is slower, because with increasing training set sizes it learns more clauses than FOSSIL
[Ffirnkranz, 1994a] and has extensive backtracking mechanisms. REP proves that its pruning
method is very inefficient. GRow has an efficient pruning algorithm, but still suffers from the
expensive overfitting phase. TDP brings a little speed-up compared with REP and GROW,
which is mainly due to the fact that it is able to start post-pruning with a much better
theory than REP or GROW, as can be seen from table 1. I-REP, however, learns a much
better theory and is faster than both, the growing and the pruning phase of TDP.

In fact, I-REP, where post-pruning is integrated into a pre-pruning criterion, is only
a little slower than FOSSIL, but much more accurate. Thus it can be said that it truly
combines the merits of post-pruning (accuracy) and pre-pruning (efficiency). This becomes
also apparent in figure 3, where accuracy (with tile standard deviations observed in the
different runs) is plotted against the logarithm of the run-time.

I-REP has also been tested on some of the standard Machine Learning databases
that can be found in the UCI repository (ics.uci.edu). and again was significantly
faster than REP or GROW [Ffirnkranz and Widmer, 1994]. On most natural domains
(like Mesh, Promoters and Votes) it achieved a higher accuracy than REP and GRow
[Ffirnkranz and Widmer, 1994]. However, it did worse than both of them in domains with
low redundancy, where rules have to be found that cover only a few training examples (e.g.
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Tic-Tac-Toe). In these domains post-pruning methods generally do not do very well, as they
all tend to over-generalize. I-REP, however, does more so than the other algorithms.

5 Conclusion

We have compared several approaches to pruning in relational concept learning. Conven-
tional pre-pruning methods are very efficient, but not always as accurate as post-pruning
methods. The latter, however, tend to be very expensive, because they have to learn all over-
specialized theory first. I-REP [Ffirnkranz, 1994a] is an algorithm that integrates pre- and
post-pruning into one criterion. Our experiments show that this approach effectively com-
bines the efficiency of pre-pruning with the accuracy of post-pruning in domains with high
redundancy. As real-world databases typically are large and noisy [Matheus et al., 1993],
and thus require learning algorithms that are both efficient and noise-tolerant, I-REP seems
to be an appropriate choice for this purpose.
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