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Abstract
We present a technique for evaluating classifications by geometric com-

parison of rule sets, Rules ~e represented as objects in an n-dimensional
hyperspace. The similarity of classes is computed from the overlap of the
geometric class descriptions, The system produces a correlation matrix that
¯ indicates the degree of similarity between each pair of classes. The tech-
nique can be applied to classifications generated by different algorithms,
with different nt~mbersof classes and different attribute sets. Experimental
results from a case study in a medical domain are included.

Machine Learning, Classification, Rules, Geometric Comparison

1. Introduction
Inductive learning algorithms fall into two

broad categories based on the learning strat,
egy that is used. In supervised learning
(learning from examples) the system is pro-
vided with examples, each of which belongs

¯ to one of a finite number of classes. The task
of the learning algorithm is to induce descrip-
tiojas of each class that will correctly classify
both the training examples and the unseen test
eases. Unsupervised learning, on the other
hand, does not require pre-classified exam-
pies. An unsupervised algorithm will attempt
to discover its own classes in the examples by
clustering the data. This learning mechanism
is often referred to as ’learning by observation
and discovery.’

One of the most important criteria for eval-
uating alearning scheme is the quality of the
class descriptions it produces. In general,
many descriptions can be found that cover
the examples equally well, but most perform
badly on unseen cases. Techniques are re-
quired for evaluating the quality of classifica-
tions, either with respect to a classification or
Simply relative to each other.

This paper presents anew method for com-
paring classifications, using a geometric rep-
resentation of class descriptions. The similar-
ity of classes is determined from their overlap

* This project was funded by the New
Zealand Foundation for Research in Science
and Technology

in an n-dimensional hyperspace. The tech-
nique has a number of advantages over ex-
isting statistical or instance-based methods of
comparison:

Descriptions are produced that indicate how
two classifications are different, rather than
simply how much they differ.

¯ The algorithm bases its evaluation on de-
scriptions of theclassifications (expressed
as production rules), not on the instances in
the training set. This approach will tend to
smooth out irregular or anomalous data that

¯ might otherwise give misleading results.

Classifications using differing numbers or
groups of attributes can be compared, pro-
vided there is some overlap between the
attribute sets.

The technique will work with any clustering
scheme whose output can be expressed as a
set of production rules.

In this study, the geometric comparison
technique is used to evaluate the performance
of :a clustering algorithm (AuToCLAsS) in a
medical domain. Two other techniques are
:also used to compare the automatically gen-
erated classifications against a clinical classi-
fication produced by experts.
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1.1. Comparlng Classlflcatlons and Rule
Sets

Regarding evaluation of unsupervised
’clustering’ type methods, Michalsld & Stepp
(1983) state that:

The problem of how to judge the qual-
ity of a clustering is difficult; and there
seems to be no universal answer to it.

¯One can, however, indicate two major
criteria. The first is that the descriptions
formulated for clusters (classes) should
be ’simple’, so that it is easy to assign

¯ objects to classes and’ to differentiate be-
tween the classes. This criterion alone,
however, could lead to trivial and arbi-
trary classifications. The second crite-
rion is that class descriptions should ’fit
well’ the actual data. To achieve a very
precise ’fit’, however, a description may
have to be complex. Consequently, the
demands for simplicity and good fit are
conflicting, and the solution is to find a
balance between the two."

The CLUS’m~2 algorithm used a combined
measure of cluster quality based on a num,
her Of elementarY criteria including the ’sim-

: plie~ty of description’ and ’goodness of fit’
mentioned above (Michalski & Stepp, 1983).

Hansen & Bauer (1987) use an information-
the’oretic measure of cluster quality in their
WITT system. This cohesion metric evalu-
ates clusters in terms of their within-class and

¯ between-class similarities, using the training
examples that have been assigned to each
class. Other ̄ measures are based on the class
descriptionsmin the form of decision trees,
rules or a ’concept hierarchy’ as used by
O~MEM (Lebowitz, 1987) or COBWEB (Fisher,
1987). Some clustering systems produce class
descriptions as part of their normal, opera-
tion while others, such as AUTOCLASS (Cheese,
man, et. al., 1988) merely assign examples to
classes. In this Case, a supervised learning
algorithm such as C4.5 (Quinlan, I992) can
be used to induce descriptions for the classi-
fication. This is the method used in this study
for evaluating AUTOCLASS clusterings.

Mingers (1989) uses the two criteria size
and accuracy for evaluating a decision tree i
(or an equivalent set of rules). Following
the principle of Occam’s Razor, it is gener-
ally accepted that the fewer terms in a model
the better; therefore, in general, a small tree
or rule set will perform better on test data.

Accuracy is a measure of the predictive abil-
ity of the class description when classifying
unseen test cases. It is usually measured
by the error rate--the proportion of incorrect
predictions on the test set (Mingers, 1989).
Accuracy is often used to measure classifi-
cation quality, but it is known to have sev-
eral defects (Mingers, 1989; Kononenko 
Bratko, 1991). An information-based mea-
sure of classifier performance developed by
Kononenko & Bratko (1991) eliminates these
problemsand provides a more useful measure
of quality in a variety of domains.

¯/

The remainder of this paper is organised as
follows. The next section briefly describes
WEKA,a machine learning workbench cur-
rently under development at the University of
Waikato.̄ This includes an overview of the
AUTOCLASS and C4.5 algorithms used in our

experiment. Section 3 describes our experi-
memal methodology and the algorithm used
by the geometric rule set comparison system.
Results of the experiment, using a diabetes
data set, are presented in Section 4. These
results are discussed in Section 5, including
some analysis of the performance of the geo-
metric comparison algorithm. Section 6 con-
tains some concluding remarks and ideas for
further research in this area.

2, The WEKA Workbench

WEKA,~ the Waikato Environment for
Knowledge Analysis, is a¯ machine learning
workbench currently under development at
¯ the University of Waikato (McQueen, et. al,
1994). The purpose of the workbench is to
give users access to many machine learning
algorithms, and to apply these to real-world
data.

WEKA provides a uniform interactive in-
terface tea variety of tools, including ma-

chine learning schemes, data manipulation
programs, and the LtsP-S’rAT statistics and
graphics package (Tierney, 1990). Data sets
to be manipulated by the workbench use the
ARFF (Attribute-Relation File Format) inter-
mediate file format. An ARFF file records in-
formation about a relation such as its name, at-
tribute names, types and values, and instances
(examples). The WEKA interface is imple-
mented usingthe TK X-Window widget set
under the "ICE scripting language (Ousterhout,

1 The name is taken from the weka, a small,
inquisitive native New Zealand bird related to
the well-known Kiwi.
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Figure 1. The WEKA Workbench

1993). ARFF filters and data manipulation ID3 (Quinlan, 1986). The basic ID3 algorithm

programs are written in C. WEKA runs under has been extensively described, tested and

UNIX on Sun workstations, Figure 1 shows an modified since its invention (Mingers, 1989;

example display presented by the workbench. Utgoff, 1-989) ’and will not be discussed in
detail here. However, C4.5 adds a number of

2.1. AutoClass enhancements to ID3, which are worth exam-
ining.

AUTOCLASS is an unsupervised induction al-
~orixhrn that automatically discovers ̄classes C4.5 uses a new ’gain ratio’ criterion to de-
In a database using a Bayesian statistical tech- termine how tO split the examples at each node
nique. The Bayesian approach has several of the decision tree. C4.5. This removes ID3’s
advantages over other methods (Cheeseman, strong bias towards tests with many outcomes
et.:al., 1988). The number of classes is deter- (Quinlan, 1992), Additionally, C4.5 allows
mined automatically; examples are assigned¯ splits to be made on the values of continuous
with a probability to each class rather than ab’ (real and integer) attributes as well as enumer-
i s01utely to a single class; all attributes are po- ations.
tentially significant to the classification; and Decision trees induced by I D3 are often very
the example data can be real or discrete. complex, with a tendency to ’over-fit’ the data

An AUTOCLASS run proceeds entirely with- (Quinlan, 1992). c4.5 provides a solution 
out supervision from the user. The program this¯ problem in the form of pruned decision
continuously generates classifications until a trees or production rules. These are derived
user-speeifiedtime has elapsed. The best clas-, from the original decision tree, and lead to
Sification found is saved at this poinL A va- structures that generally cover the training set
riety of reports can be produced-from saved tess thoroughly but perform better on unseen
classifications.̄  A WEKA filter has been writ- Cases. Pruned trees and rules are roughly

~ten that extracts the most probable class for equivalent in terms of their classification ac-
each instance, and outputs this information in curacy; the advantage of a rule representa-
a form suitable for inclusion in an ARFF file. tion is that it is more comprehensible to peo-

¯ This allows theAuTOCLASS classification to be ple than a decision tree (Cendrowska, 1987;
used as input to other programs, such as rule Quinlan, 1992).
and decision tree inducers. The first stagē in rule generation is to turn

2.2. C4.5 , the initial decision tree ’inside-out’ and gen-
erate a rule corresponding to each leaf. The

04.5 (Quinlan, 1992) is a powerful tool for resulting rules are then generalised to remove
inducing decision trees and production rules conditions that do not contribute to the accu-
from a set of examples. Much of C4.5 is de- racy of the classification. A side-effect of this
rived from Quinlan’s earlier induction system, process is that the rules are no longer exhaus-
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tive or mutually exclusive (Quinlan, 1992).
C4.5 copes with this by using ’ripple-down
rules’ (Compton, et. al., 1992). The rules are
Ordered, and any example is then classified by
the first rule that covers it. In fact, only the
classesare ranked, with the twin advantages
that the final rule set is more intelligible and
the order of rules within each class becomes
irrelevant (Quinlan, 1992). c4.5 also defines 
default class that is used to classify examples
not covered by any of the rules.

3. Methodology

3.1. The Data Set

Reaven and Miller (1979) examined the re-
!ationship between Chemical and Overt dia-
betes in 145 non-obese subjects. The data
set used in this study involves six attributes:
patient age, patient relative weight, fast-
ing ¯ plasma Glucose, Glucose, Insulin and
steady state plasma Glucose (SSPG). The
data set also involves two classifications, la-
beled CClass and EClass--presumably repre-
senting ’clinical classification’ and ’electronic
classification’. Each classification describes
three classes: Overt diabetics, those requiring
Insulin injections; Chemical ¯diabetics, ̄ whose
condition may be controlled by diet; and a~

Normal group, those without any form of
diabetes. The same data set is used in the
present study with the omission of patient age,

Reaven and Miller found the three attributes
Glucose, Insulin, and SSPG to be more sig-
nificant than any of the others.
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Figure 2. Scatterplotmatrixofdiabetesdata

¯ Normal class
o Chemical class
× Overt class

and SSPG), giving a single point in 3-space.
Each instance is assigned to the class whose
mean lies closest to it (in terms of the mini-
mum Euclidean distance). After each instance
has been assigned to a class, the class means
are recalculated. The process of assigning
instances to classes and recalculating class
means repeats until no patients are reassigned.
The algorithm assumes prior knowledge of the
class means:and number of classes, to define
the initial classes. Reaven and Miller used the
results¯ of a previous study (Reaven et. al.),
1976) to determine suitable starting means.

Both the clinical and electronic classifica-
tions assume¯ the presence of three classes.
The scatter plot below (Figure 2) shows the
data set and its clinical classification. Each
of the six Small plots shows a different pair
of variables (the plots at the lower right are
simply reflections of those at the upper left).
For example, the plot in the upper left cor-
ner shows Glucose vs. SSPG. The clinical
classification appears to be highly related to
the Glucose measurement: in fact, the three
classes appear to be divided by the Glucose

3.3. Classification using AutoClass

One objectiye of this study was to determine
īf the patients inthe data set naturally fall into
groups,¯ without prior knowledge of the num-
ber of groups or the attributes of the groups.
We also wished to determine the effectiveness
of AUTOCLASS’S classification of the diabetes
data, and compare it to the clinical classifica-
tion.

It is difficult to determine which attributes

measurement alone+ This is particularly well from the data set are reasonable ones to gener-
illustrated in the plot of Glucose vs. SSPG in atea classification. Some may be irrelevant,
the upper left plot. : and a classification generated using them may

: produce insignificant classes. Reaven and
The Electronic classification (EClass) Miller considered only Glucose, Insulin and

~enerated using a clustering algorithm by SSPG to be relevant attributes. They found
edman and Rubin (1967). Each class ¯that fasting plasma Glucose exhibited a high

described by the mean of the three variables degreē of linear association with Glucose (r 
of the instances in that class (GlucOse, Insulin 0.96), indicating that these two variables are
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Classification Attributes
AClass Glucose, Insulin, SSPG
AClassl Relative weight, Fasting

Plasma Glucose, Glucose,
Insulin, SSPG

AClass2 Glucose, SSPG
AClass3 Glucose, Insulin

Table 1. AUTOCLASS classifications

Classification Error Rate
CClass 7.2%
EClass 5.6%
AClass 5.6%
AClassl 7.2%
AClass2 3.2%
AClass3 4.8%

Table 2. Predicted error rate of rule sets

essentially equivalent. Four classifications
were ’made in the present study, using Auto,
CLASS. Each used different selected attributes,
as. shown in Table 1. Since AUTOCLASS com=
pletesits classification after a specified time
-has elapsed, an arbitrary execution time of
one hour was chosen. Classes did not appear
to change significantly with longer execution
times. However, a Comprehensive study of
the effects of differing execution time has not
been performed.

Although different in detail, all the classifi-

tion, and the differences were tallied. A differ-
ence in the classification of an instance from
the clinical classification is assumed to be a
misclassification. The percentage misclassi-
fication gives some indication of the ’good-
ness’ of a classification. Some misclassifica-
tions aremore important than others, and a

¯ single error statistic does not illustrate this. A
large number of Normal patients misclassified
as Chemical diabetics may not be important,
since they are in no danger of dying from this
classification error, however if Overt patients
are misclassified as Normal then death could
result. The Friedman and Rubin automatic
classification (EClass) has 20 misclassifica-
tions, giving an error statistic of 13.8%. This
wasdeemed acceptable by Reaven and Miller.

3.3.2. Class comparison using two
sample comparlson of means

Each class may be described by the means
of the attributes of the instances it contains.
This is similar to the generation of a classifi-
cation using Friedman and Rubin’s clustering
algorithm, where the means characterize the
classes. Each class is described by the means
land standard deviations of the three main at-
tributes: Glucose, Insulin, and SSPG. For
example, the Glucose mean for the Normal
class of the electronic classification (EClass)

will be compared with the Glucose mean for
the Normal class of the clinical classification
(CClass).

tion. Thus we were able to assign the names
’̄Normal’, ’Chemical’ and ’Overt’ to the gen-
erated classes. This is unlikely to be easy to
achieve in general. C4.5 was used to generate

¯ rule sets describin~ allsix classifications. The
attributes used to reduce the rule sets were in
all cases the same as those used to generate the
initial classification. Cross’validation checks

¯ cations divide the data set into classes that bear We used a two way t-test (Nie, et. al., 1975)
an obvious similarity to the clinical classifica- to compare the class means. The null hypoth-

esis was that there is no difference between the
two means. The level of similarity between
i two classifications is given by the number of
rejected t-tests. All tests were performed at
the 95% level of significance. For exam-
ple, the SSPG mean of the Chemical class
for EClass is significantly different from the
SSPG meanofthe Chemical class for CClass.
Assuming that the means of the classes in one

were performed on the rule sets to derive a classification must be the same as the means of
reliable estimate of their accuracy. The pre- the classes in another classification for the two
dieted error rates of each of the rule sets on
unseen cases is shown in Table 2. Three tech,

classes to be considered equivalent, then we

niques were used to compare the generated
cannot say that the Chemical class for CClass

classifications with the clinical classification:
is equivalent to the Chemical class generated

classification differences by instance, classi-
by Friedman and Rubin’s classification algo-

fieation differences by comparison of means, rithm (EClass).

and classification differences by comparison3.3.3. Comparing rules:for classification
of rules.

3.3.1. Comparing individual Instances

The automatic classification of each in-
stance was compared to the clinical classifica-

comparison.

Neither technique described above allows
us toaccurately compare different classifica-
tions. Comparing classifications by examin-
ing misclassified instances is dependent on
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the two individual sets of data being com-
pared. Examining misclassifications may not
provide an accurate estimate of the ciassifica-
tion errorrate for unseen data.

Assuming that a rule set accurately de-
scribes the classification of a set of data, then
by comparing two sets of rules we :are effec-
tively comparing the two classifications. The
technique presented in this paper for compar,
ing rules produces a new set of rules describ-
ing the differences between the two classifica-
tions. An analysis of this kind allows machine
learning researchers to ask the question "Why
are these two classifications different?" Pre-
viously it has only been possible to ask "How
different are these two classifications?"

3.4. Multidimensional Geometric Rule
~ Comparlson

This technique represents each rule as a ge-
ometric object in n-space. A rule set produced
using 04.5 is represented as a set of such ob-
jects. As a geometric object, a rule forms a
boundary within which all instances are clas-
sified according to that rule. The domain cov-

¯ erage of a set of rules is the proportion of
the entire domain which they cover. Domain
coverage is calculated by determining the hy-
pervolume (n-dimensional volume) of a set 
rules as a proportion of the hypervolume of
the entire domain. The ’ripple down’ rules
of 04.S must be made mutually exclusive to
en~ure that no part of the domain is counted

¯ more than once. The size of the overlap be-
tween two sets of rules provides an indication
of their similarity. The non-overlapping por-
tions of the two rule sets are converted into a
set of rules describing the differences between
the two rule sets.

3.4.1. Geometric Representation of Rules

A production rule can be considered to
delimit a region of an n-dimensional space,
where n is the ’dimension’ of the rulemthe
number of distinct attributes used in the terms
on the left hand side of the rule. The ’volume’
of a rule is then simply the volume of the re~
gion it encloses. Any instance lying inside
this region will be classified according to the
right hand side of the rule. There is a problem,
however, with rules that specify only a single
bound for some attributes. For example, the
two-dimensional rule

Glucose < 418 A SSPG < 145 ~ NORM

does not give lower bounds for either of the
attributes. The volume of this rule is effec-
tively infinite, making it very hard to compare

against anything else. Unfortunately, most
of the rules induced from our classifications
take this form, as G4.5 works by splitting at-
tributes rather than explicitly defining regions
of space. In this study, our solution to this
problem has been to define absolute upper
~d lower limits for each attribute. Rules that
do not specify a particular bound are then as-
sumed to use the appropriate absolute limit.
We have used the maximum and minimum
values in the data set for each attribute as our
absolute limits. The limits for the Glucose
attribute are zero ̄ and 1600; for SSPG they
are zero and 500. The rule above can then be
re-written as:

Glucose > 0 A Glucose < 418 A SSPG > 0
A SSPG < 145 =~ NORM.

The geometric representation of the above
rule is shown in Figure 3. The solid dots rep-
resent the Normal examples from the CClass
classification.
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Figure 3. Geometric representation of a rule

An entire set of rules describing a data set
can be represented as a collection of geomet-
ric objects of dimension m, where m is the
maximum dimension of any rule in the set.
Any rule with dimension less than the maxi-
mum in the set is promoted to the maximum
dimension. For example, if another rule,

Glucose > 741 =:, OVERT

were added to the first, ¯the dimension of this
rule would have to be increased to two the
current maximum in the set. This is because
two squares may be easily compared, but a
line and a square, or a square and a cube,
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may not. Promotion to a higher dimension is
achieved by adding another attribute to a rule,
but not restricting the range of that attribute.
The rule

Glucose > 741 =:, OVERT

in one dimension is equivalent to

Glucose > 741 A SSPG < 500 A SSPG > 0
=:, OVERT

in two dimensions. The range of SSPG is not
a factor in determining if a patient is Overt
since no patient lies outside the range of SSPG
specified in this rule.

Consider a comparison between the normal
classes of EClass and AClass. The input rule
sets are as follows:

EClass:

Glucose < 376 =~ NORM
Glucose < 557 ^ SSPG < 204 =~ NORM

AClass:

Glucose < 503 ^ SSPG < 145 => NORM
Glucose < 336 ~ NORM
Glucose < 418 ^ SSPG < 165 ~ NORM

Figure 4 shows the geometric representa-
tion of the two rule sets. The solid boxes
represent the EClass rules; the dotted ones
represent the AClass rules.
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Figure 4. Geometric input rules

3.4.2, The Cutting Function

Making rules mutually exclusive, and de-
termining their similarities and differences,

B

A

Figure 5. Before cutting

all involve the cutting function. Consider thek two dimensional example shown in Figure 5.

Rule A overlaps Rule B in every dimension.
Rule A is the cutting rule, and Rule B is the
rule being cut.

Each dimension in turn is examined; the
first being the z dimension. The minimum
bound (left hand edge) of rule A does not
overlap rule B, so it need not be considered.
The maximum bound (right hand edge) of rule
A cuts rule B into two segments. Rule B be-
comes the section of rule B which was over-
lapped by A in the z dimension. A new rule,
B I, is created which is the section of rule B
not overlapped by Rule A in the x dimension
(Figure 6).

B B1

A

Figure 6. After cutting z dimension

Considering dimension 2, the y dimension:
All references to rule B refer to the newly
created rule B at the last cut. The minimum
bound of rule A (the bottom edge) does not
overlap rule B, so no cut is made. The maxi-
mum bound of rule A (the top edge) overlaps
rule B, creating a new rule B2 which is the
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section of rule B not overlapped by rule A.
Rule B becomes the section of rule B which

is overlapped by rule A (Figure 7). The re-
maining portion of the original rule B after
all dimensions have been cut is the overlap
between the two rules.

B2 B1
I

A

B

Figure 7. After cutting y dimension

The new rules A, B, B 1, and B2 are all mu-
tually exclusive. Rules B 1 and B2 describe
the part of the domain covered by the original
Rule B, and not by Rule A. The cutting func-
tion generalises to N dimensions, since each
dimension is cut independently of every other
dimension.

Rule A is assumed to have a higher ’prior-
ity, than rule B. Any instances which lie in
thg overlap between rule A and rule B will
remain within rule A after the cut.

3.4.3, Generating mutually exclusive
rules

The ’ripple down’ rules of C4.5 may be+
thought of as a priority ordering of rules--
those that appear first are more important than
those that follow. Any instances that fall into
the overlap of two rules Would be correctly
classified by the higher priority rule, that is,
the one which appears first in the list.

Obviously higher priority rules must not be
cut by ̄ lower priority rules; the result would
no longer correctly classify instances. In an
ordered list of rules from highest to lowest
p.riority, such as those output from 04.5, the
rule at the head of the list will be used as a
cutter for all those following it+ Each cut rule
:is replaced by the segments not overlapped by
the cutter. B is replaced by B 1 and B2 in the
example above. Once all the rules below the
cutter have been cut, the rule following the
cutter is chosen as the new cutter. When no

cutters remain, the result is a list of mutually
exclusive rules--which classify all instances
exactly as before.

The mutually exclusive rules for the exam-
ple comparison between EClass and AClass
are shown below (Figure 8). As before, the
s01id boxes represent the EClass rules and the
dotted boxes represent the AClass rules. The
rules within each classification do not overlap.
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Figure 8. Mutually exclusive rules

3.4.4. Rule Set Differences

The objective of the geometric algorithm is
to compare two sets of rules and determine
their differences. Each class in the first set
of rules is compared with each class in the
second, generating a new rule set describing
¯ the differences between the two classes. Con-
sider two rule subsets: A and B, describing
two classes within different rule sets. Each
rule from A is used to cut each rule from B

*+ and the resulting set of rules describes the part
of the domain described by rule set B and not
by rule set A. The same process is used in
reverse (set B cutting set A) to describe the
part of the domain covered by set A that is not
covered by set B.

The difference matrix shows rule set cover-
ageofthe differences between rules describ-
ing two classes. This is not an accurate statis-
tic since bigger rules cover more of the do-
main and their differences will therefore ap-
pear more significant than smaller rules, even
though their relative differences may be sim-
ilar.
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For example, the rules below describe the
part of the domain covered by EClass (class
Norm) but not by AClass (class Norm). Fig,
ure 9 shows the geometric representation of
these rules in relation to the data set.

Glucose > 336 A Glucose < 376 A
SSPG > 165 =~ NORM

Glucose > 503 A Glucose > 557 A
SSPG < 204 ~ NORM

Glucose > 418 A Glucose < 503 A
SSPG > 145 A SSPG < 204 =¢. NORM

Glucose > 376
SSPG > 165

A Glucose < 418 A
A SSPG < 204 =~ NORM

to
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Figure 9. Output rules.

The EClass rules entirely encompass those ~
¯ ofACIass, so there are no rules describing the
part of the domain covered by AClass and not
by EClass.

the hypervolume of the rule from set A. This
statistic indicates the proportion of the rule
in set A overlapped by the one in set B. The
sum of the proportions indicates the similarity
between the two rule sets. Comparing a set
of rules to itself will produce a correlation
matrix with 100% along the main diagonal,
and 0% everywhere else, indicating that each
class completely overlaps itself and each class
is mutuallyexclusive (since all the rules are
mutually exclusive).

4. Results

This section presents the results produced
by the three classification comparison meth-
¯ ods described earlier--instance comparison,
tWO sample comparison of means and geo-
~metric rule comparison. For each method,
the five automatically generated classifica-
tions (EClass, AClass, AClassl, AClass2 and

¯ AClass3) are ̄ compared against the original
clinical classification, CClass.

Table 3 shows the results of the instance
comparison test. The numbers in each column
¯ indicate the number of examples classified
differently to CClass. These values are also
expressed as a percentage of the total training
set of 145 instances. The rows of this table
break the misclassifications down further to
show what types of misclassification are oc-
curring, For example, the row ’Norm~Chem’
¯ ¯represents instances classified as Normal by
CClass, but as Chemical by the automatic
classifications.

Results of the two-sample t-test comparison
are given in Table 4. Here the entries in the
table indicate the attributes for which the t-test
failed, for each class in the five classifications.
A failed test is one where the null hypothesis
was rejected, ie. ¯the mean of the attribute is

3.4.5. Correlation Matrix significantly different from the corresponding
CClass mean, at the 95% significance level.

The matrix provides a similarity measure,
or correlation estimate, between two sets of
rules. It ¯describes the amount by which the
two rule sets overlap. Each class from the first
set of rules is compared to each class from
the second set. Consider again two subsets
of rules~ A and B, each describing a class
within two different sets of rules. A describes
the ideal classification; Set B describes the
classification to be compared against the ideal.
As with the Difference Matrix, each rule from
¯ set A is compared to (cuts) each rule in set
B. The hypervolume of the overlap between
each pair of rules is taken as a percentage of

The bottom row of this table shows the total
number of rejections for each classification.

Tables 5-9 show the correlation matrix out-
put produced by the geometric rule compar-
¯ ison¯ system. "Phe table entries indicate the
amount of overlap between the two classes as
a proportion of the class listed across the top
of the table--in this case CClass.

5. Discussion

The correlation matrices produced by the
geometric rule comparison system can be used
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Difference
EClass

Classification
Type AClass AClass 1 AClass2 AClass3

Norm=~Chem 3 (2.1%)
10 (6.9%)

9 (6.2%)

1 (0.7%)
4 (2.8%)

3 (2.1%)

6 (4.1%)
0 (0.0%)

13 (8.9%)
5 (3.4%)

8 (5.5%)
1 (0.7%)

12 (8.3%)
2 (1.4%)

Chem~Norm

4 (2.8%)
3 (2.1%)

19 (13.1%)
Overt=:,Norm

5 (3.4%)
8 (5.5%)

Overt=~Chem 2 (1.4%)
Total 20(13.8%) 2t(14.5%) 21(14.5%) 25(17.2%) 31(21..4%)

Table 3. Results of classification instance comparison

Classification
Class EClass AClass AClassl AClass2 AClass3

Normal Glucose Glucose Glucose, SSPG
Chemical SSPG SSPG SSPG Insulin, SSPG

Overt Insulin

Total 1 0 2 2 5

Table 4. Results oft-tests on classification means

CClass
EClass Normal Chemical Overt
Normal 94.05%

5.95%
31.33% 0.00%

Chemical
0.00%

68.67%
0.00%

14.19%
Overt 85.81%

Table 5. EClass vs. CClass correlation

CClass
AClassl Normal Chemical Overt
Normal 94.89%

5.11%
41.68%

0.00%
58.32%

1.64%
Chemical 2.76%

Overt 0.00% 95.60%

Table 7. AClassl vs. CClass correlation

CClass
AClass Normal Chemical Overt
Normal 86.86% 13.62% 0.00%

~hemical 13.14%
0.00%

86.38%
0.00%

14.19%
Overt 85.81%

Table 6. AClass vs. CClass correlation

CClass
AClass2 Normal Chemical Overt
Normal 87.68%

12.32%
37.20%
62.80%

37.20%
Chemical 8.91%

Overt 0.00% 0.00% 53.89%

Table 8. AClass2 vs. CClass correlation

to determine which classification rule set com-
pares most closely to the clinical classifica-
tion. Choosing the best rule set to describe
the classification also depends on the partic-
ular misclassifications made by each rule set.
We indicated previously that misclassifying
Overt patients as Normal can result in death.
Obviously it is more important to minimise
these types of misclassifications rather than
those from Normal to Chemical for example,
where the effect ofmisclassification is not so
important. The correlation matrices indicate
AClass and ECIass have 0% misclassification
of Overt patients to Normal. AClass2 has a
Significant misclassification error of 37.2%.
AClass3 has low correlation between simi-
lar classes, and significant Overlap between
the Normal and Chemical classes. 35.25% of
Chemical diabetics are misclassified as Nor-
mal and 64.75% of Normal patients are mis-

CClass
AClass3 Normal Chemical Overt

Normal 35.25% 35.25% 8.29%
Chemical 64.75% 64.75% 20.76%

Overt 0.00% 0.00% 70.94%

Table 9. AClass3 vs. CClass correlation

classified as Chemical.

The Normal and Overt classes of AClass 1
are very similar to the equivalent CClass
classes, but the Chemical classes are not
highly correlated between these two classi-
fications. If misclassification of Chemical
diabetics to Normal were considered unim-
portant, AClassl would obviously be the best
classification. However, AClass has good
correlation between similar classes (all above
85%), and would be used if an acceptable
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error rate over all classes were desired.

It is desirable to have a single metric that
describes the similarity between two rule
sets. This could perhaps be calculated as a
weighted average of the correlation percent-
age for equivalent classes. In the tables above,
equivalent classes lie on the main diagonal of
the correlation matrix. If no misclassification
is considered more important than any other, a
weighting of 1.0 would be used for each class.
Table 10 shows this metric, calculated using
a weight of 1.0, for each rule set compared
to the CClass rule set. Thistabie indicates
that AClass is the classification most similar
to CClass, and that AClass3 is the least sim-
ilar. This supports the ’intuitive’ reading of
the correlation matrices.

Classification Similarity

EClass 82.84%
AClass 86.35%
AClassl 82.94%
AClass2 68.12%
AClass3 56.98%

Table 10. Overall correlation with CClass

The table of instance misclassifications can
be used in the same way as the correlation
matrix. The classification error for each type
of misclassification corresponds roughly to
those inthe correlation matrix. For example,
there are 19 misclassifications from Chemical
to Normal for the AClass3 e!assification, giv’i
ing an error rate of 13,1% (one of the highest
rates in Table 2). The same misc!assification:
in Table 7 gives an error rate of 37.2%----also
one of the highest. We believe the similarity
statistics in the correlation matrices are more
indicative of potential misclassification error
than the estimates of Table 2. The instance
misclassification errors are only representa-
tive of the current data set. For large data
sets this error may be close to the popula-
tion errormhowever, small data sets are not
representative of the population. The gee,
metric rules are ̄ more indicative of classifi-
cation errors because the rules are represem
tative of the population domainDthat is, it
is assumed the rules will be used to classify
unseen cases. Misclassifications indicated in
Table 2 are not always accounted for by the
rules. C4.5 reclassifies some instances when
the rules are constructed. The single misclas-
sification from the Overt class to the Normal
class by EClass for example, is not repre:
sented in Table 4.

An advantage of the instance misclassifi-
cations is that the distribution of the data is
inherent in the misclassifications themselves.
The geometric representation of the classifi-
Cations has no knowledge of the underlying
distribution of the data; the similarity esti-
mates assume a uniform distribution of each
attribute across the domain.

The t-test comparison of classes is very
imprecise. It imparts very little informa-
tion aboutthe quality of a classification com-
pared with the clinical classification. AClass
is indicated as a similar classification, since
the means of all the variables for each class
are equivalent. AClass3 obviously compares
poorly to the clinical classification since the
means are significantly different in all three
classes--two out of three means are different

¯ in both the Normal and Chemical classes. The
t-test results would indicate that AClass 1 and
AClass2 are comparable classifications. This
is an obvious disagreement with the analysis
of the geometric correlation matrices. The
similarity metrics for AClassl and AClass2
alone differ by 14.82%. 37.2% of Overt di-
abetics are classified as Normal by AClass2,
compared with 1.64% by AClassl.

6. Conclusions

This paper has presented a new method for
evaluating the quality of classifications, based
on a geometric representation of class descrip-
tions. Rule sets are produced that describe the
difference between pairs of classes. Correla-
tion matrices are used to determine the relative
degree of similarity between classifications.

¯ i The method has been applied to classifications
generated by AUTOCLASS in a medical domain,
and its evaluation compared to those of simple
instance comparison and statistical methods.

The results obtained so far are encouraging.
The¯evaluations produced by the geometric
algorithm appear to¯correlate reasonably well
with the simple instance comparison. We be-
lieve that the geometric evaluation is more
useful because it reflects the performance of
the classification in the real world, on unseen
data. Instance based or statistical methods

¯ cannot ̄ reproduce this. However, several as-
pects of the technique require further experi-
mentation and development.

The algorithm currently assumes a uniform
distribution for all attributes, which in gen-
eral is not valid. We plan to incorporate a
¯ mechanism for specifying the distribution of
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attributes to the algorithm, or at least use ’stan-
dard’ configurations such as a normal distri-
bution.

The system is at present limited to compar-
ing ripple-down rule sets. Ideally it would
also be able to handle rule sets in which every
rul.e has equal priority. There is a difficulty in
this case with overlapping rules from different
classes--unlike ripple-down rules there is no
easy way to decide which rule, if any, should
take priority.

Finally we plan to extend the system to
handle enumerated as well as continuous at-
tributes, and integrate it fully with the WEKA
workbench.
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