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Abstract

. Based on our experiments with financial market data, we have demonstrated that the domain
can be effectively modeled by classification rules induced from available historical data for the
purpose of making gainfu.l predictlons for equity investments, and thatnew techniques developed
atiBM Research, including minimal rule generation (I~MINI} and contextual feature analysis,
are robust enough to consistently extract useful information from noisy domains such as financial
markets. We will briefly introduce the rationale for our rule minimisation technique, and the
motivation for the use of contextual information in analysing features. We will then describe our
experience from several experiments with the S&P 500data, Showing the general methodology,
and the restdts of Correlations and managed investment based on classification rules generated
by R-MINLWe will sketch how the rules for clauificationscan be effectively used for numerical

prediction, and eventually to an investment policy. Both the development of robust ~minimai"
classification rule generation, ms well as its applir~ation to the financial markets, are part of a
continuing study.

Keywords
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1 Introduction

There is currently a surge of interest in financial markets data mining. Large amounts of historical
data is available for this domainin machine readable form. Analyses of this data for the purpose of
abstracting and understanding market behavior, and usingthe abstractions for making predictions
about future market movements, is being seriously explored [AI on Wall St., 1991, AI on Wall
St., 1993]. Some firms have also deployeddata mining analytical methods for actual investment
portfolio management [Barr and Maul, 1993]. We report here on our recent experiments with

applying classification rule generation to S&P 500 data.
The R-MINI rule generation system can be used for generating Uminimal" classification rules

from tabular data sets where one of the columns is a "class" variable and the remaining columns
are "independent" features. The data set is completely discretized by a feature discretization sub-
system prior to rule generation. The feature discretization performs feature ranking as well as the
conversion of numerical valued features into discretizedfeatures using a optimal cutting algorithm.
Once rule generation is ComPleted, the R-MINI system can be used for classifying unseen data sets
and measuring the performance using various error metrics.
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The R-MINI rules are in Disjunctive Normal Form (DNF). There have been many approaches
to generating DNF rules from data. These include [Michalski e~ a/., 1986, Clark and Niblett, 1989,
Weiss and Indurkhya, i993] which work in principle by iteratively forming one rule at a time to
cover some examples from the training datawhich are removed from consideration before repeating
the iteration. The other primary approach [Pagallo, 1989, Quln]an, 1993] is decision tree based,
i.e., a decision tree is created that classifies the training examples, and the rules are then derived
selecting and prll~ing the paths from the root to the leaf nodes.

While theR-MINi approach to generating classification rules is slml]ar to the former, it differs
from both approaches in its primary goal, which is to strive for a "minimal" rule set that is
complete and consistent with the training data. Completeness implies that the rules cover all of the
examples in the training data while consistency implies that the rules cover no counter-examples for
their respective intended classes. Others too have argued for generating complete and consistent
classification models before applying error minimizing pruning processes [Breiman et ai., 1984,
Weiss and Kulikowski, 1991]. The R-MINI system goes beyond current technology in its attempt
to generate "minimal" complete and consistent rules. The merits of striving for minimality have
been well discussed [Blumer et al., i989, Pdssanan, 1989]. Minimality of the representation will
favor accuracy and interpretability.

2 Minimal Rule Generation

The R-MINI rule generation technique works with tra|~i~g data in which all features are categorical
in nature. AII numeric features are therefore discretized by a feature analysis and discretization
sub-system .prior to rule generatlon. The rule generation technique is based upon a highly success-
ful heuristic minimization technique that was used for minimizing large switching functions (MINI

minimization techniques have been developed for a com-[Hong et d., 1974]). Similar heuristic .... ’
met ".ciplly available switching function minimization package, ’ESPItESSO [Brayton et al., 1984].
The core heuristics used in the MINI system for achieving minimalRy consists of iterating (for 
reasonable number of rounds) over three key sub-steps:

1. Generalization step, EXPAND, which takes each rule in the current set (initially each example
is a rule) and opportunistically generalizes it to remove other rules that are subsumed.

2. Specialization step, ttEDUCE, which takes each rule in the current set and specializes it to
the most specific rule necessary to continue covering only the unique examples it covers.

3. Iteformulation step, ItESHAPE, which transforms a pair of rules into another pair for all
pairs that can be thus transformed.

The It-MINI rule generation technique is in principle based upon this approach. Experiments
to date indicate that it is quite robust in its mlnimality; Since the rule generation relies on iterative
improvements, one can potentially use as much computing time as is affordable. In practice, we
have observed that It-MINI starts converging in 5-6 iterations on most well known test data sets
as well as on some of the specific real applications in which we have been using the system.

It-MINI has been applied to several real data sets, up to thosewith a few hundred features and
tens of thousands of examples. Preliminary evaluations suggest that complete and consistent full
cover rule setsthat result from applying other known techniques can be several times larger. Initial
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benchmarking studies have also indicated that the predictive powerof R-MINI’s rule sets is always
ahead of the "best" DNF rule sets generatedby other well known methods. An in-depth detailed
discussion of the rule generation component of R-MINI appears in [Hong, 1993].

3 Contextual Feature Analysis

As mentioned in the previous section, K.MINI rule :generation requires all features to be in categor-
ical form, and hence the reason for discretiZing an numerical features employing a feature analysis
and discretization sub-system. There is also another important reason for applying this step prior
to rule generation. Classilication model generators ~ typically work only as well as the quality
of the features from which they axe trYing to generate a model. Poor features will ~|most always
result in weakly performing classification models.

Various approaches have been used to alleviate this problem, The decision tree based methods
have relied On information theoretic measures (such aS the "entropy" and "glul" functions) 

determine the best feature to use at each node while expanding the decision tree [Brelman et al.,
1984]’ This basic principle may be thought of as a :l-level lookahead algorithm that determines
the best feature to use at a node based on how well the feature partitlons the trv~ing examples
into their respective classes. Variants of this method include 2-1evel and more lookahead methods

as well as employing simple conjuncts of features (instead of single features) as decision tests for
nodes.

and Indurkhya, 1993]. This method works in principle by attempting to constantly improve
the performance of a rule while being c0nstructed by swapping member tests (features) with new
tests. Although this method appears more powerful than the decision tree methods, it may not
perform well, in the presence of extremely large numbers of features.

The R-MINI system employs a contextual feature analyzer that simultaneously ranks the fea-
tures in terms of their classificatory power as well as determining the "optimal" number of cuts for
each numerical feature for discretization so as to maximize that feature’s ability to discriminate.
Features are ranked based upon merits that are computed for each of them. Merits are computed
by taking for each example in a class a set of "best" counter ex:tmples,, and accumulating a figure
for each feature that is a function of the example.pair feature values. Dyna~c program m|ng is
then used forproducing optimum cuts [Aggarwal eta/., !993] for the numeric vaxiables by sxmulta-
neously looking at all numerical features emd their value spans, This process is iteratively repeated
until a reasonable level of convergence emerges in the merits :and the cut values. In comparison to
the tree based: methods, the R-MINI Contextual feature analyzer may be thought of as a full-level
looks head feature analyzer.~ It will: not suffer from falling into false local minima because of its abil-
ity to analyze merits of features in a global context. An in-depth discussion of contextual feature
analysis appears in [Hong, 1994].

4 Experiments with S&P 500 Data

In cooperation with the IBM Retirement Fund group, we are undertaking a study to determine the
feasibility of applying DNF rule generation technology to managing equity investment portfolios.
Initial results appear quite promising.
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All our experiments have been conducted with S&P 500 data, for a contiguous period of 78
months. The data spans 774 securities ( S~P deletes and adds new securities to its 500 index over
time, so that the index continues to reflect the true market capitalization of large cap. firms). The
data comprises of 40 variables for each month for each security. The type of information conveyed
through these variables is both fundamental (company performance data) as well as technical (stock
performance data). Some of the variables providetrend’information (ranging from month-to-month
trends to 5-yearly trends). With the exception of one variable, the industry sector identifier, which
is categorical, all the rest are numerical.

Also available for each monthly stream of data for a security is the monthly total return for
that security, where the variables values are all at,the beginning of a month while the monthly total
return (stock change + dividends) is at the end of the month. From this 1-month return variable,
one can compute 3-month, 6-month, as well as 12-month returns, for each security for each month.
One can also compute the difference between these returns and the capitalization weighted mean
as weU as simple mean for each of the returns. Thus, ff one can envision the basic 40 variable set
as the "features’, then we have available several ways to assign classes to ee~.h of the examples (a
monthly stream of feature values for a security) by pick|~g from one of the computed returns.

We have conducted a series of compute-intenslve classification experiments with this data, using
different ways to assign class labels ~ well as different ways to partition the data. We will focus
in the rest of this paper on one pazticular study, which attempts to generate rules for classifying
examples based upon the differential between monthly return and simple mean of monthly returns
for agiven stre~ of data. The idea here is to use these rules to predict the differential for unseen
data for the following year(s) and utilize the predictions in a portfolio management scheme for
maximizing the investment returns. The portfolio management strategy strives to remain constantly
above the average market return, and therefore the use of the differential as a class label. A positive
differential merely implies a return that is higher than the market average. The actual return could
be pa~itive or negative.

4.1 Generating Classification Rules for Equity Returns

Class Returns Year. 1. Year 2 Year3 Year 4
c0 880 857 559 674
CI >_ -6 & < .2 110!’ 997 1188 936
C2 _> -’2&’< 2~ " 1344 1180 1533 1295
C3 _>2&<6 S74 883 977 1015
C4’ _>6 699 808 560 847

Table 1: Number of S&P 500 data examples per class for years 1-4

There are several issues at hand for determining how much data to choose for generating DNF
classifiCation rules for this domain. A routinely used approach would be to hide a portion of the
data, ranging from 10-30~, and generate rules from the remaining "training" data, and evaluate
their performance on the hidden "test" data. However, that approach is not adequate for the
financial markets domain. There is a strong time-dependent behavior in the securities market
which needs to be accounted for. An accepted practice is to use the "sliding window" approach, in
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which the data is laid out in temporal sequence, sad the classification generation sad performance
evaluation experiments are repeatedly performed on successive sets of training sad test data. This
method can be used for determining whether the performance of a particular approach withstands
the time-dependent variations that are encountered as one moves from set to set.

Adopting this latter methodology in on of our experiments, we chose to generate classification
rules from a consecutive 12 months of data, sad tested the performance of those rules on the
following sets of 12 month streams. The idea here was to evaluate the rate of decline in the
predictive power of classification rules as one moved forward in time. Once this rate is known,
one can establish a policy of re-generating the rules once every "n" years from the immediate past
data so as to continue holding up the predictive performance. Our data provided us with over 6
consecutive streams of 12 month data. We axe conducting our experiments from the earliest point
onwards, i.e., generate classification rules from the earliest available 12 month data (year 1), apply
those rules to year 2, year 3, etc. until the performance becomes unacceptable, say at year "n’.
Then re-generate classification rules from the 12=month data for year "n-l", sad repeat the process.

For the class label, we chose the differential between the next month’s 1-month total return
and the S&P 500 average 1-month return. This label is essentially a numericalvalued assignment.
We further discretized this assignment by attempting to emulate typical security analysts’ cate-
gorization method for stocks, which Would include the range %trongly performing", "moderately
performing", "neutral", "moderately underperforming’, sad "strongly underperforming". Based
upon pr~l~m~nm7 analysis Of the data distribution, we chose to assign the cut-point -6, -2, +2, and
+6. That is, all examples who had a class label value of 6% or more were put in one class (the
"strongly performing" class), all examples with class label values of 2~ or more and less than 6~
were put in another class (the Umoderately performing" class) and so on. Using this class parti-
tioning scheme, Table 4.1 illustrates how the first 4 years of data break up by class. Note that
although 12 months worth of data for 500 securities should translate to about 6000 examples, the
a~:tuals vary t’or each time period because we chose to discard examples which had one or more
missing values for the 40 features. The actual examples that we worked with are 4901 for year 1,
4725 for year 2, 4817 for year 3, sad 4767 for year 4.

Before proceeding to apply R-MINI’s feature analysis sad discretization step, we tried to care-
fully adjust the features based upon discussions with the domain experts. As we pointed out in the
previous section, the quality of features is of extreme importance in ensuring the quality of the gen-
erated classification model. Some of our adjustments to the raw data included the normalization of
some features and the inclusion of additional trend indicating features. This preprocessing usually
results in the transformation of input raw features into a new set of features, sad cannot be done
in the absence of domain experts. However, if this expertise is available, then utilizing it to refine
the features is always very desirable. Once these transformations were made, we applied R-MINrs
feature discretization step to the data for Year I, which corresponds to 4901 examples. The result
of this step is the assignment of merits to all the features sad the assignment of cut points to the
numerical features. Table 4.1 illustrates the merit and cut assignment for this experiment. Note
that features with a 0 value for cutpoints indicates that the feature is categorical. Also, we chose
the merit values to discard certain features from the rule generation step. These features appear
the lower end of the table. Their cut points are not important, since they do not play a subsequent
role in the classification experiments, sad are therefore not indicated.

Using the selected features and fully discretized data values, we then apply R-MINI’s rule
generation step to the training data, which is now essentially a 5-class problem with 4901 examples
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Feature
’ r, tlbylm
monthrl2
pr2
retlmretl
retl
prl
pr3
pr6
wdueprice

dowprlce
earntr
epeprlce
bookprlce
epe8
sprlce
hsz
per
cap
beta
epsl~r]ce
roe
z~veq
sects
fund
Pq
odl
yld
sabhr
epsYed"

du
derat
Spr&t
quslty

growth
cne

Merit
322
277
230
229
228
223
216
201
197
152
131
122
121
11S
112
111
110
105
105
105
100
94
91
90
?8
77
67
66
61
61
58
S2
48
42
40
40
29
21

T~ble 2: Feature Merits and Cut Points for Year 1 Data

a~d 30 features. Since R-MINI uses a randomization process in its minimization phase, we run 1t-
MINI several times (typically 5-6) on the same data set, and go with the smallest rule set that was
generated. In this particular case, the smallest rule set size w~ 569. That is, 569 rules completely
and consistently Classified the 4901 training examples, Table 4.1 i]/ustrate just 2 of these rules,
where the first rule, Rule 1; is for Cius 0, which corresponds to "strongly underperforming" and
the second rule, 11ule 481’, is for Class 4, which Corresponds to "strongly performing".

4.1.1 Rule-based Regression

To be able to precisely quantify the predictive performance, especially from an investment man-
sgement point of view, it is necessary that the classification rules predict the actual return, and
not the discretized class segments. We have developed a metric for assigning numeric predictions

for the 11-MINI classification rules. While primarily motiwted by the current set of experiments,
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Rule 1:
,nont~12" NOT’( 5.50 < X < 9.60; )
aprice: ( X < 4&10; 
beta: ( X < 1.101 
qmprice: NOT ( 0.06 < X < 0.06; 
~,6: ( s.~ <_ x 
pes: ( 1.54 ~_ X )
pr3: NOT ( 0.93 _< X < 1.011 1.07 _< X < 1.171 
¯ ~luq.~ce: ( 0.S6 < X )
v~: ( -2.S7 < X )
retlmretl: ( .10.86 ~ X )
~tlb¥1m: ( 1.03 < X )

Then ==~. CO

Rule 481:
beta: ( 1.10 _< X 
cap: ( X < 274&60; 
e]~,v=: ( e.~6 < X )
italy: NOT ( 4.89 <_ X < 9.46; )
peg: ( X < 1.64; 
prl: ( X < 1.1o; 
pr2:.NOT ( 1.06 <_ X < 1.141 
pr$: NOT ( 0.03 _< X < 1.011 )
1~6: NOT ( 0.91 < X < 1.021 
rlnveq: NOT ( 6.63 < X < 10.641 )
valueprlce: NOT ( 0.70 _< X < 0.86; 
vur: NOT ( -2~7 <_. X < 0.84; )
retlmretl: NOT ( -10.86 < X < -4.05; 
retlbylm: ( X < 1.03; 1.06 __ X < 1.06; 

Then ==* (34

Table 3: Examples of R-MINI Classification Rules Generated from Year I Data
.e

it is conceivable that this approach could be used in any domain where it is required to predict
numerical values. In a sense, this metric extends our R-MINI classh~¢ation system for applications

in non-linear multi-vari~te regression.
What we do is associate with each rule three parameters; ~, the mean of all actual class values

(in this case, the differential between 1-month total return and mean S&P 500 1-month total return)
of training examples covered by that rule; #, the standard deviation of these values; and N, the
total number of training exa~nples covered by that rule.

When a rule Set of this nature is applied to hidden "test" data, we have two metrics for predicting

the numeric class value for each example in the test data, In the simple averaging approach, we

compute for each example the simple average of/~ of all rules that cover it as its predicted value

(ass|gning ~ prediction of 0.0 ~ no rules cover it). in the weighted average approach, we compute and

w hted aver ¯ of vW of all rules that cover st ass: nm a redictlonusigna, predlctionofth e elK ag ’ ~ /~ " . , " ( "g ; g p " "

of 0.0 if no rules cover it). In genera], we have noticed that the weighted average approach leads
to smoother correlations between predicted and actual values.

4,2 Investment Portfolio Management with R-MINI Rules

To evaluate the performance of the generated rules, we applied them to subsequent year data. For
example, rules generated from data for months 1-12, after some minimal pruning, are applied to

KDD-94 AAA/-9# Workshop on Knowledge Discovery in Databases Page 413



Total Return
0 ....................................................................................... .......................... ° ....... °°°°°"°°°°* ............

’°i ..................................................................................! ......................i .........................
~- ! i ! i

: : : .:o - ... :
: . . ooO.,.Oo oO .% oo ¯ .. :-- : : . OoO°: ¯ o..o.* , .
: : : ." °% .

0 ’- ............................ ~ ..................... ; ..... ...4 .............................................................................. _.

: : o : o.
¯ =, o.~..= .

: ; .oOo.oo."

(20):; " : "’ ..... ’’"

l-

140~: .............. ’ .............: ..............’ .............: ..............* .............: .............| .............~ ............. i ...............i--Vl

10 20 30 40 50 60

Months
R-MINI Active Portfolio Simulated S&P 500 Index Fund

eIeHII*HO*O0

Figure I: Comparing Total Returns of Simulated S~¢P 500 Index Fund Portfolio and R-MINI Rule
Based Active Portfolio

the the following two years of data. We pruned out rules that cover 3 or less examples, since they
are assllmed to be covering the noise component in the data. For the remaining set of rules, we
computed the ~, ~, and N for each rule, and then applied them to data for months 13-48.

For effective comparison of how these rules would perform if realistically used, we constructed
a portfolio management scheme based upon these rules, and compared it to a simulated Sg~P 500
¯ index fund performance. A index fund is passive in nature, and all that a Sg~P 500 index fund does
is to constantly try and reflect the make up of the Sg~P 500 index, by investing in those companies

¯ in proportion of their capitalization I. In contrast to this passively managed approach, a portfolio
management scheme based upon I~-MINI rules Will need to be highly active, since every month the

¯ rules will be making predictions which will need to be acted upon. What this active management
policy does in principle is to start out with a investment which reflects the Sg~P 500 index fund,

:The simulation of the passive index fund was performed on only that subset of the available S&P 500 that did
not have missing information, i.e., the data in Table 4.1. This simulation may not correspond exactly to the zeal
S~P 500 performance, although it is very close.
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Monthly Return
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Figure 2: Comparing Monthly Returns of Simulated Step 500 Index Fund Portfolio and R-MINI
Rule Based Active portfolio

but then make trades every month based upon the rule predictions. One strategy that we have
shown to be successful is as follows:

1. Generate rules (and use only those that cover > 3 examples).

2, Start with $1 mi11ion S&P 500 index portfolio.

3. Execute monthly action at the end of month as follows:

(a) Update portfolio value for each equity position based upon the month’s actual total
return for that equity.

(b) Apply rules to month-end data for making predictions.

(c) Sort predictions in descending order.

(d) Sell bottom 50% of sorted list provided the values are less than 4%.
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(e) Buy top 5% of sorted list provided the values are greater than 4%, in equal amounts
using funds available from the sale.

The buy and sell cutoff points and thresholds (50%, 5%, 4%, 4%) are parameters that can 
adjusted for controlling the behavior of the portfolio. For example, they can be adjusted to make the
portfolio "aggressive" or "conservative". Aggressive portfolioe are characterized by high turnover
and large positions in limited equities. Conservative portfolios hold relatively larger number of
equities and trade less. The buy/sell cutoff points and thresholds for our investment portfolio
simulator can be varied to achieve different behaviors on this spectrum.

For the above settings, Figures 1 and 2 illustrate how our active portfolio performs against a
pas~ve portfolio, on a monthly basis as well as a c11mulative basis. We can see that the active
management portfolio returned 44% return for months 13-48, as compared to a 4% return using a
passive indexed portfolio. On the other hand, we can also see that the active management portfolio
returned 56% return for months 13-36, as compared to a 12% return using a passive indexed
portfolio. One could argue that the rules that were generated from data for months 1-12 held up
well for months 13-36, but started weakening out thereafter. One therefore will need re-generation
of rules from data for months up to 36 for applying to months 37 onwards, and repeating the
process at the end of every two years. Our full performance evaluation exercise therefore will be
done using the regime of generating rules for years 1, 3, and 5. The rules from year 1 will be used
for making predictions for years 2-3, year 3 rules will be used for predicting returns for years 4-5,
and year 5 rules will be used for years 6 and beyond.

Although we make a few simplifying assumptions when constructing the portfolio management
simulations, we feel that they win not adversely affect the comparison. For example, we ignored
the issue of fees and transaction costs of trading securities. However, these costs apply both to the
passive as well as active portfolios. We expect that with the inclusion of such costs, the narrowing
of the gap between the two will be a function of the portfolio settings. For a "conservative" setting,
the g£p may narrow, while it may still remainsizable for an "aggressive" setting. To be realistic and
take all such factors into consideration, we are developing a more powerful portfolio management
strategy that will compensate for additional constraining factors such as these.

5 Discussion

We can draw two key conclusions based upon our experiments. First, the S&P 500 data, as
characterized by the features illustrated in Table 2, seem to provide adequate information for
usdul classification rule generation. Second, our techniques and methodology have the ability to
extract this information from what is well known to be noise prone data.

The application of DNF classification ru~es in non-linear multi-variate regression applications
is in itself another interesting direction to explore. The advantages of using DNF rules for these
applications is dear; they provide a superior level of representation and interpretability in contrast
to black-box style mathematical functions. Expert analysts can examine and understand these
rules, and potentially even hand-edit them for improved performance.

We have demonstrated the predictive power of K-MINI’s minimal rule generation philosophy
in conjunction with its contextual feature analysis. We have observed that the K-MINI generated
rules, when embedded in an appropriate portfolio management scheme, can outstrip passive index
funds in performance.
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We are also beginning to gain insight into temporal longevity of classification rules generated
from historical data in the financial markets. Our initial experiments have dearly illustrated the
nature of decay in predictiv e performance-~s one goes out further into time. We are nearing the
completion of our ,sliding window" rule generation and performance evaluation, and the promising
results continue to hold. We have begun to explore options for embedding our methodology into
an actual deployment.

References

[Auarwal et al., 1993] A. Aggarwal, B. Schieber, and T. Tokuyama. Finding a Minimum Weight
K,link Path in GTaphe with Monge Property and Applications. Technical report, IBM Research
Division, 1993.

[AI on Wall St., 1991] Artificial Intelligence Applications on Wall Street. IEEE Computer Society,
1991.

[AI on WMI St., 1993] Artificial Intelligence Applications on Wall Street. Software Engineering
Press, 1993.

[Barr and Ma~i, 1993] D. Barr and G. Maul. Neural Nets in Investment Management: Multiple
Uses. In Artificial Intelligence Applications on Wall Street, pages 81-87, 1993.

[Blumer et aL, 1989] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability and
the Vapnik-Chervonenkis Dimension. JACM, 36:929-965, 1989.

[Brayton et a/., 1984] It. Brayton, G. Hachtel, C. McMullen, and A. Sangiovsnni-Vincenteili. Logic
Minimization Algorithms for VLSI Syntheais. Kluwer Academic Publishers, 1984.

[Breiman et al., 1984] L. Breiman, J. Priedman, It. Olshen, and C. Stone. Classification and Re.
gression Trees. Wadsworth, Monterrey, CA., 1984.

[Clark and Niblett, 1989] P. Clark and T. Niblett. The CN2 Induction Algorithm. Machine Learn-
ing, 3:261-283, 1989.

[Hong et aL, 1974] S.J. Hong, It. Cain, and D. Ostapko. MINI: A Heuristic Algorithm for Two-
Level Logic Minimization. IBM Journal of Research and Development, 18(5):443-458, September
1974.

[Hong, 1993] S.J. Hong. It-MINI; A Heuristic Algorithm for Generating Minimal Rules from Ex-
amples. Technical Report ItC 19145, IBM Research Division, 1993.

[Hong, 1994] S.J. Hong. Use of Contextual Information for Feature Ranking and Discretization.
Manuscript in preparation, 1994.

[Michalski etal., 1986] R. Michalski, I. Mozetic, J. Hong, and N. Lavrac. The Multi-Purpose
Incremental Learning System AQ15 and its Testing Application to Three Medical Domains. In
Proceedings of the AAAI-86, pages 1041-1045, 1986.

KDD-94 AAAI-94 Workshop on Knowledge Discovery in Databases Page 417



[Pagallo, 1989] G. Pagallo. Learning DNF by Decision Trees. In Proceedings of the Eleventh IJCAI,
pages 639--644, 1989.

[Quinlan, 1993] J.R. Qulnlan. 04.5: Programs ]or Machine Learning. Morgan Kaufmann, 1993.

[Rissanaa, 1989] J. Rissanan. StochMtic Complexity in Statistical Inquiry. World Scientific Series
in Computer Science, 15, 1989.

[Weiss and Indurkhya, 1993] S. Weiss and N. Indurkhya. Optimized Rule Induction. IEEE EX-
PERT, 8(6):61-69, December 1993.

[Weiss and K,dileowski, 1991] S.M. Weiss and C.A. Kullkowski. Computer Systems That Learn.
Morgan Kaufmann, 1991.

Page 418 AAM-94 Workshop on Knowledge Discovery in Databases KDD-94




