
Machine Discovery Terminology

Willi Kl0sgen kloesgen@gmd.de
German National Research Center for Computer Science (GMD), 53757 Sankt Augustin, Germany

Jan Zytkow zytkow@wise.cs.twsu.edu
Department of Computer Science, Wichita State University, Wichita, KS 67208, U.S.A.

Introduction: We compiled this preliminary list of terms relevant for Machine Discovery, their
definitions, and their most characteristic contents. The final goal is’todescribe the role of Machine
Discovery and simplify the &scuSslonS within Machine Discovery Community. However, our
current definitions areneither complete, nor adequate, while their sequencing and grouping of
terms may not be satisfactory, We invite ~ou to participate in the elaboration and refinement
process. ~herefore, comments andrevision~ to thedefinitions and their groups, and suggested
additional terms are most welCome. Finally, any remarks to the implementation of this discussion
process which shall be ~on WWW are very welcome.

A definition may useterms which may require further definitions. To end the chain of defini-
tions0 some terms must be ieftundefined. We do not ~to define terms which are technical in
other disciplines. We also do not try to define common Senseterms. Some of the key terms, which
we left Undefined, include "knowledge", "theory", "model". Theyhave common sense meaning
which we utilize, and they also have been technically defined in disciplines such as logic and
philosophy of science.

Our definitions do not lead to increasingly abstract concepts. To the contrary, we frequently
define by enumeration of examples. This makes definitions concrete and allows us to end the
definition chains.

1. Discovery Systems

MACHINE DISCOVERY is a subfield of Artificial Intelligence which develops *discovery
methods* and *discovery systems* to support *knowledge discovery processes*.

KNOWLEDGE DISCOVERY PROCESS aims at finding out *new knowledge* about an
~*applicati0n domain*. Typically, a discovery process consists of many *discovery steps*, each_o. ~ . ~ ’ , :
attempting at the completion of a ~cular discovery task . and accomphshed by the apphcation

¯ Of a ~/discovery methbd*. The discovery process iterates many times through the same domain,
typically based on search in various hypotheses SPaces. New knoWl.~ge is inferred from data
often with the use of old knowledge, *Domain exploration*and discovery focussing* are
discovery processes applied in new domains, where old knowledge is not available.

DISCOVERY.STEP is apart of a discovery process. Discovery steps, *methods*. and *tasks* are
’interrelated: step is an application of a method; method accomplishes a task, task rationalizes a
method. The main discovery steps include data collection, *pattern extraction from data*,
inductive generalizations. of data, *knowledgevefification*, *knowledge transformation*. A
knowledge discovery process may use steps which do not directly lead to new knowledge, but

KDD-94 AAAI-94 Workshop on Knowledge Discovery in Databases Page 463

From: AAAI Technical Report WS-94-03. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved.

enable further discoveries, such as *knowledge presentation*, management of *data*, manage-
ment of*domain knowledge*, and selection of new goals.

DISCOVERY METHOD is aa ~gorithm which performs a step of a *discovery process*. To have
a theoretical value,the algorithm~!s suppo~ by a theoretical framework~ A discovery method can
be a reconstructed hummi activity actually used to ~uii~e *new!knowledge*, can combine human
methods in a novel way~ but can be also a new method. Research areas from which *Machine
Discov~ery* adapts pieces of discovery methods include Machine ~ing, Statistics, Intelligent
Database Management, Visualization, and *heuristic search* and *knowledge representation* in
Artificial Intelligence.

DISCOVERY TASK is a direct or indirect specification of a component of new knowledge.
Discovery tasks are open. They can be charac~rized by various Spaces of possible solutions.

DISCOVERY SYSTEM is a software and possibly also hardware system that performs or
supports a user in performing *knowledge discovery processes*. Typically, a discovery system
integrates various *discovery methods*, and can be used in interactive and iterative ways.
DiscoVery systems canbe conlpared by evaluating their *autonomy* and *versatility*.

AUTONOMY measures to what extent a discovery system evaluates its decisions and produces
new knowledge automatically, without external intervention. The degree of autonomy ranges
f̄rom "apprentice systems" with low autonomy over "assistant systems" to "associate" and "master
systems" which areneady automatic discoverers.

VERSATILITY measures the variety of *application domains* and steps of *discovery processes*
which a *discovery system* supports.

¯ MAJOR DIRECTIONS IN MACHINE DISCOVERY are characterized by similar requirements
and similar characteristics, of the *discovery process*. The main directions are *Knowledge
Discovery in Databases* and *Automated Scientific Discovery*. Future directions may include
"Discovery in Mathematics", "Robotic Discoverers", and the like.

KNOWLEDGE DISCOVERY IN DATABASES (KDD) is: a *major direction in machine
discovery* dealing with *knowledge discovery processes* in databases. KDD applies to the ready
dataavailable in all domains of science and in applied domains of marketing, planning, controlling,
etc. Typically, KDD has to deal with *inconclusi~;e data*, *noisy data*, and *sparse data*.

AUTOMATED SCIENTIFIC ̄ DISCOVERY (ASD) is another *major direction in machine
, . , , ,discovery dealing with knowledge dlscovery processes analogous to those used by working

scientists to make iheir discoveries. In distinctiosi to KDD, a di~overy process in ASD may seek
additional data to improve the quality and expand the scope of generated knowledge. ASD covers
fields of NaturalSciences (Astronomy, BiolOgy, Chemistry, Physics, etc.), Medicine, and Social
Sciences (Economy, Sociology, etc.).

2. World

APPLICATION DOMAIN is a real or abstract system existing independently from the *discovery
system*, An application domain conslstsof *objects*, which: can belong to one or several classes,

w U * * ~taad of object attrib tes and relationships [3etween objects. Rather than to the whole world,
¯ discovery systems* apply to limited aplalication domainS, with the intent to discover useful
¯ domain models* and ,domain theory*. In empirical discovery, ’ the application domain becomes
known by *data*, from which a *discOvery process* attempts to generate *new knowledge*.

Page 464 AAA/-94 Workshop on Knowledge Discovery in Databases KDD-94

OBJECT (entity, unit, case) is a member or a part of an *application domain* (*universe*).
Objects can belong to’ different classes of similar objects, such as persons, transactions, locations,

: events, and processes. Objects possess *attributes* and *relationships* to other objects.

ATTRIBUTE (field, variable) characterizes a single aspect of *objects* of an object class.
attribute has a value foreach object in that class. This value is typically a number or a label. The
value may be also a complex Structure like a time series or even a picture that represents a person
or a Iocatibn in a mulu-m~lia application.

RELATIONSHIP (relation) combines *objects* from several object classes. A relation can
seen as a subset of a product set of several object class~es. The relation holds for elements of this
subset.

3. Knowledge

dl~omMAIN MODEL is a representation of one or several classes of *objects* of the *applicationain* and some of their *relations*. The set of all objects forms the *universe* of the model.
¯ Domain model represents the perspective that: a *discovery process* has on the application

domain, A domainmodei can include *data* and *domain ~owledge*.The formalisms used to
build a domain model range from simple data files withadded *data dictionary* to *knowledge
representation* ~gms of Artificial |ntelligence, An initially defined domain model is gradually
elaborated in the course of knowledge discovery processes to achieve a *domain theory*.

UNIVERSE. For a class of objects represented ina *domain model*, a universe is the total set of
’ ~1 possible objec~ of this class. Often a probability measure is given or assumed for the universe.

The subset of objects represented in the*domain model* belongs to a *sample set*.

SAMPLE SET is the subset of objects of an *universe.* which are represented in the *domain
model* and for which *data* are available. Often some probabilistic properties of the sample set
are given or assumed.

DOMAIN THEORY is a comprehensive, consistent, and valid model of the *application domain*.
Depending on the *knowledge representation* used to build the model, these characteristics
¯ measuring the quality of a domain theory are more formally defined.

DOMAIN KNOWLEDGE holds all information specific to the *application domain*, not
belonging to *data*.

Some examples of domain knowledge ...

NEW KNOWLEDGE augments or refines the contents: of the current *domain model*. New
knoWledge Can be presented to the user and can extendthe ~er’s mental model of the *application

, w It , ,domain , The user of a discovery system can also be the same or another system, and new
lat, owledge can augment the performance of this system, and may be used in making further
dlscoverii~s. Typically, the user supervises the refinement of the domain model by new knowl-
edge. New knowledgelS described within a’knowledge representation* formalism.

KNOWLEDGE REPRESENTATION deals with data structures representing knowledge about
many*application domains*, Artificial Intelligence offers knowl~xtge representation paradigms like
frames, production rules, semantic networEs, first order logicl Typicaiknowledge representation

* * * * * * * * * *structuresused in discovery systems are patterns like trees, rules, functional relations .

KDD-94 AAAI-94 Workshop on Knowledge Discovery in Databases Page 465

4. Data

DATA consist of the collected (measured, sensed, polled, observed, etc.) *attribute* values for
¯ *obj~ts* and *relationships* between objects in the’*application domain*. Data coming from

ex~riments include the results of manipul~ti0ns and the subsequent readings of sensors. For the
¯ salve of completeness, special values *lfiisSing Data* or *Not al3plicable da~a* can be used. Data
¯ can be arranged in various *.data formats,, Themeaning of datain databases is represented by a

data dictionary. In*Automated Scientific Discovery*, the meaning of data is represented by
manipulators and sensors and operating procodures ~ugh which ihey acquire data. The volume
of dam may be measured in bytes or the number of records times the number of attributes and in
practical applications ranges from bytes to terabytes.

DATA FOR~... T is a data structure to represent a ~cular piece of *data*. Data formats may be
different for &fferent applications, For instance, data a~ut a ~cular object can be arranged into
a *record1’, and many records Can be arrangedinto a *data matrix*. The*attribute type* describes
the set of values of a given attribute and the meaningful;Operations on those values. *Discovery

: methods* may be limited to special *data types*.

INCONCLUSIVE DATA. Especially in *Knowledge Discovery in Databases (KDD)* applica-
tions, the availab!edatabases are insfall~for special purl~ses~ which may differ from the KDD
purposes. Therefore, some *attributes* which may be relevant for a *discovery process* are often
missing in *data*, Those hiddenvariabies may be important and their absence may make it
impossible to discover significant knowledge about a given domain.

NOISY DATA. Often *data* are infected with errors due to the nature of the collection,
measuring, or sensoring procedures. Statistical methods can treat problems of noisy data.

MISSING DATA, *Attribute* values for some *objectS.* may be missing, because they were not
measured, not answered, or simply lost. *Discovery meth~s* can treat fiiissing data by omitting
the corresponding *records*, inferring values for the missing values, or treat missing data as a
sptcipl vaih¢ to beincluded additi0naily in the *attribute domain*.

NOT APPLICABLE DATA. Sometimes *attribute* values are missing, because they are logically
impossible for some *objects*, like the value "pregnant" for "male" objects. Information about this

~ sp6cial kind of*missing data. can be included in the *dOmain knowledge* and can be treated in a
special way by*discovery methods*.

SPARSE DATA, The.events actually represented in given databases or *sample sets* typically
build only a very small (sparse) sui/set of~the *event s~*. The order of magnitude is much
higher for the*event space~., due to the abundance of coinbinations in building the product set of
the *attribute domains*. Especially, this holds for *sample sets*.

EXTERNAL DATA¯ refers to the permanently stored data and data structure. External data are
often stored in a database management system.r A *discovery system* can transform data available
in a database system into its own special external data organization to speed up access and
processing of data.

INTERNAL DATA refers to the data and its structure that is processed by a *discovery method* in
main memory. Internal data are typically organized in data matrices . Discovery methods may
process datai’ncrementally, in this Case, a loop overth¢ i~put data can be organized, where at each
step of the 10op, only a small part of the input data is used by themethod when processing the
¯ . . ¯ -- " " ’ ’ ¯ . .input data. A special incremental technique m data dnven search .

Page 466 AAAI-94 Workshop on Knowledge Discovery in Databases KDD-94

RECORD is the collection of *data* belonging to one *object*. In the relational model, it is also
called a tuple.

VIRTUAL ATTRIBUTE derives a value for each object of an *object* class by some user defined
specification (transformation, method, etc.). Often. this specification refers to other *attributes*.

ATTRIBUTE TYPE of an *attribute* can be *nominal*, *ordinal*, *continuous*, *complex*.

ATrRIBUTE DOMAIN is the set of possible values of an *attribute*.

NOMINAL is an *attribute type* characterizing an *attribute* with an *attribute domain* for
which no ordering is given.

ORDINAL is an *attribute type* characterizing an *attribute* with an *attribute domain* with an
ordering.

CONTINUOUS is an *attribute type* characterizing an *attribute* with an *attribute domain* of a
(dense) subset of real numbers. RATIO is a subty~ wRh an interpretation of arithmetic operations
(addition, multiplication) on domain values.

TAXONOMY is a hierachical system of subsets of an *attribute domain*, mostly arranged as a
tree.

DATA MATRIX is a subset of *data* systematically organized into a matrix in which each row
represents the Values of all *.attributes* (of a subset f attributes.) f or one *object* and each column
represents values of one attribute for each object (ofa subset of objects).

DATA TYPE characterizes (a subset of) *data* by the number of *object* classes and the
attribute types of the *attributes* (that exist in this subse0. TypiCal data types are *rectangular*
and *multi relational*.

RECTANGULAR is a simple *data type* characterizing *data* with one class of *objects* and
non complex *attribute types*. In the relational model, this assumes a single table.

MULTI RELATIONAL isa *data ~* characterizing *data* for several classes of *objects* with
non complex *attribute types*. *Relations* are availat/le connecting the object classes.

TIME,-SERIF_~ is a *data type* for time series as logical data units. Relational. object oriented, or
special time series databases c~ be used to store time Series. One *attribute* represents different
moments of time; the values of this attribute are ordered. Other attributes store information about
c0-inciding properties of *objects*.

COMPLEX-STRUCTURE is a *data type* characterizing *data* that do not belong to the
rectangular, *muir!relational*, or *time-series* type. Examples of complex-structured data are
chemical, genetical, physical Structures, image data, text and multimedia data.

DATA DICTIONARY includes information about the *attribute types* and values.

KDD-94 AAAJ-94 Workshop on Knowledge Discovery in Databases Page 467

$. Sets of objects

EVENT SPACE refers to a selection of *attributes* of one *object* class. The event space is the
product set of the *attribute domains*. To each event, a set of objects is associated. If a probability
measure is defined for the *universe*, an event holds a probability.

CONCEPT is a subset of *objects* which ma~, have some relevance in the *application domain*.
Of.ten a concept is defined by an e~’ent belon~ng to some *event s~, if a concept refers to one
object class, In c~e of several object classes, a concept is a product set of subsets of object
classes, defined by predi~s. A *concept l~guage* determines the concepts that can be defined.

CONCEPTLANGUAGE is usedto construct *concepts*. Typical languages are *first order
concept languages* and *propositional concept languages*.

CONCEPT SPACE is the set of all *concepts* which may be built within a *concept language*.
The number of elements of this space depends on ~e type of the concept language. For languages
0f’strictly conjunctive form* oi%ider/1 with no *intei, nal disjunbtio~s*, this number is mostly
limited enough to prevent severe combinatorial problems. The problem of combinatorial explosion,
however, is usually present for *disjunctive normal forms* without any order limitations. A

¯ cone.opt lattice is given by ~ ~ally ordered s~ of concept extensions (subsets of objects with
Set inclusion as partial ordering)and the partially ordered space of concept descriptions (terms
the *concept language* partially ordered by generality).

HRST ORDER CONCEPT LANGUAGES use some subset of predicate logic, mostly function-
free Horn clauses, to represent *concepts* and *rule* patterns.

PROPOSITIONAL CONCEVT LANGUAGES (attributive languages) refer to conditions
attributes and their values. The main subtypes of these languages are *strictly conjunctive form*
and *disjunctive normal form*.

STRI, CTLY CONJUNCTIVE FORM is a *(propositional) concept language* with terms built
Conjunctions of*selectors*. A main subtype is the strictly conjunctive form of order n, allowing at
most n conjunctions. Other subtypes are defined by restrictions for the construction of *selectors*.

SELECTOR defines a selection condition with an *attribute* and one or several values of the
¯ *attribute domain*. In case of an’*ordinal* attribute type, one or several intervals may appear in a
selector. An internal disjunction includes several values or intervals.

INTERNAL DISJUNCTION is a disjunctive selection built with several values of one *attribute
domain*. In case of an*ordinal* attribute type, also a disjunction of several intervals is possible.
To restrict the number of internal disjunctiofis, *taXonomies* can be defined.

DISJUNCTIVE NORMAL FORM is a *(propositional) concept language* with terms built by one
or several disjunctions of conjunctiOns of selectors . The number of disjunctions is limited by n
for disjunctive normal¯ form of order n.

CONCEPT CLASSES are a set of *concepts*. *Rule* patterns refer to concept classes in their
conditional or conclusion parts. Typically concept classes are disjoint. They form a partition, if
they also cover all *objects*.

Page 468 AAAI-94 Workshop on Knowledge Discovery in Databases KDD-94

6. Patterns

PATTERN is a statement class which can bealso regarded as a generic statement with free
variables. Instantiated patterns (*pattern instance~*) are candidates (hypotheses) to capture
knowledge* on aa *application domain*[An*evaluation* of a C~didate exploits *data* and
domain-knowledge. A pattern isdefined by a *pattern representation*. Various *pattern types*
are applied in *Machine Discovery*.

PA’IWERNINSTANCE is a member of a *pattern* class. It can capture an elemental part of *new
knowledge* like a single *rule* or a composite ~ likea System of rules or a *tree*. A pattern
instance i~ fixed by an instantiation of the free v~ables in the generic s,tatement belonging to the

pattern class. A pattern instanceis a sta~ent $ in a pattern, languagedescribing relationships
among a su~et D$ of *data* of the *application domain* with *interestingness* i. S is simpler
titan an enumeration of all*records* in Dg.

PATTERN LANGUAGE is a formalism to communicate *new knowledge* on an *application
domain*. The kind of statements constructed in such a language depends on the *pattern type* and
varies from natural,language-like sentences like *rules* to more abstract statements like *trees* or
even graphical statements of a graphical language, An impo~t component of a pattern language
is the *concept language* used to build *concepts* within patterns.

PATTERN REPRESENTATION refers to the representation of a *pattern* in a *discovery
system*. The main representation components refer to *pattern extraction*, *evaluation*,
presentation specifications, and *pattern arguments*.

PATI’ERN EXTRACTION is a major *discovery task*. For the various *patterns* and *pattern
types*, special pattern extraction methods (e.g~ *tree extraction method*, *rule extraction
method*, *functionaldependency extraction method*, Or *s~tisfical pattern extraction method*)
discover *new knowledge* in the form of *pattern instances*. Pattern extraction methods rely on
search and *evaluation*.

EVALUATION checks a *pattern instance* by measuring its *interestingness*. An *application
test* can verify some preconditions for the interestingness of an instance. In case of a composite
instance like a *try*, a system of *rules*, or an *equation*, alSO the components of the instance

(node, single rule, term of an equation)canbe evaluated.

PRESENTATION SPECIFICATIONS determine, how the contents of a *pattern instance* are
presented to the user, e.g. in natural language, tabular, graphical, or audio-visual form.
iPresentation templates* are typicaisimple presenhtion specifications.

PRESENTATION TEMPLATE is a schema for a textual or graphical presentation of a statement
(*pattern instance*). Typically such a schema has some ~eters. The values of the parameters
are fixed by the pattern instance.

PATTERN ARGUMENTS correspond to free variables in the generic statement of a *pattern*.
This component includes specifications on the admissible iristantiations of the free variables and
theirpr0Perties, 6.8. *ext~tion properties* exploited by a *pattern extraction* method. *Range*
is an argument which is available in most patterns.

RANGE is a subset of objects . Typically it is defined by a logical condition on some
attributes and their values (*concept language*), it is used to restrict the scope of a *pattern*

a subset of *objects*. If the statement refers to several object classes, a range is a product of
subsets :of objects of these classes.

KDD-94 AAAI.94 Workshop on Knowledge Discovery in Databases Page 469

EXTRACTION PROPERTIES of *pattern arguments* are exploited by a *pattern extraction*
method to construct a *search space* and operate on it. E:g.; extraction properties can determine
conditions, that exclude all sUbnodes ofa n~e from further *search*.

EXTRACTION GOALS are general directives for *pat ternr extraction* specified by the user of a
discovery system during *discoVery focussing*. They relate to the application purpose of the
new knowledge to be discovered (e:g. ~ura~ classiffcati~’or structure uncovering), *pattern
language*, *evaluation*. and extracti~ effort (g~ulari~ andextent of *search*).

INTERESTINGNE~S of a *pattern instance* measures its quality and has several dimensions¯
The main dimensions are the *vali~tion* On the *sample set*, the *reliability* on the *universe*,
the degree of *redundancy* with respect to other already :known pattern instances, the
generality, the *simplicity*, and the *usefulness*.

VALIDATION checks a *pattern instance* (or component of an instance) referring to the subset
data in the *sample setj Which is conneetexl with the instance.T0 checkan instance, usually a
statistical test or some other criteria are validated. Additionally to the decision, whether an instance
is valid or not, often also an *evidence* measure is calculated.

EVIDEIqCE measures the statistical significance or some other kind of conspicuousness of a
pattern instance.

APPLICATION TESTis a filter which includes some preconditions for a *pattern instance* to be
evaluated as ,interesting*. The filter is Used to avoid l~ossibly extensive evaluation efforts, when
the interestingness of an instance can be eXclud~ already by the preconditions.

Rgl ~WABILITY includes some estimation on the validityin the *universe* of the *pattern instance*
¯ ~ . ¯ , : ¯ ̄ . ¯ . °which was discovered m the sample set*, Cross-vahdaaon methods can be apphed to derive

Some estimation on the correctness o~" the statement (pattern instance) in the universe.

RED.UNDAblCY relates to several *pattern instances* or to several knowledge components of a
complex pattern instance (e.g’ :nodes in a *tree*). Redundancy is given, if one instance
component follows (logically) from another one. Quantification of redundancy can be introduced
to measure the conditional probability of one instance or component given the other one.

GENERALITY measures the strength of a *pattern instance* in terms of the size of the subset of
objects which are described by the statement.

SIMPLICITY measures the syntactical complexity of a statement (*pattern instance*).

USEFULNESS quantifies the possible usefulness of a statement (*pattern instance*). The
usefulness can be related to a task the user of a *discovery~system* has to perform or to a task that
a computer system can perform on the basis On the discovered *new knowledge*.

PATTERN TYPES are classes of *patterns*. The main classes are *logic-numerical pattern*,
elementary pattern, and *complex pattern*.

LOGIC-NUMERICAL PATTERN holds the subclasses *tree*, *rule*, *functional relation*,
statistical pattern.

ELEMENTARY PATTERNS workon aggregations of *data*. Typical aggregations are given by
reports (e.g. based.on group-by SQL operations)or multi’dimensional tabulations. Aggregation
o rations include count; sum, max, min, ave~ge’~ etc~ Elementary patterns do not involve a

S e *complex s arch process and mvesUgate rows or columns of these tabulations e.g. for

Page 470 AAAI.94 Workshop on Knowledge Discovery in Databases KDD-94

monotony, convexity, concavity, maximum, minimum, discontinuity, outlier. Several rows or
¯ columns can also be compared (e.g. all cells in one row are larger than the corresponding cells in
another row).

COMPI.V:X PATTERNS are patterns not of the *elementary pattern* or *logic-numerical pattern*
type. They are relevant for discovery in *application domains* with *data* of the type *complex
structure*.

TREE is a tree-like partition of an *universe* or *sample set* into a hierachically ordered set of
concepts, Each conce~ on a hierarchical level is rectirsively &vided into subconcepts on a next
lower liierarchical level. Typically, ~cepts On ~h ~erarchi~ level arc disjoint and collectively
exhaustive, and the description of the subconce~ on the next leyel (*concept language*) includes

¯ a further conjunctive term built with one further *attribute*. The ̄main subtypes of this *pattern
type* are *classification~treeS* and *regression trees*.

TREE EXTRACTION ~HOD uses criteria to select a (nex0 *attribute* for each *concept* on
hierarchical level, to divide: the*attribute domsn* Of this attribute in (disjoint) subsets which
correspond to the subconcep~On the next level, t0terminate furtber partitioning of a concept, and
to *prfine* the tree. The criteria used by the extracuon method dependon the *extraction goals*.

CLASSIFICATION TRI::.g is a *tree.* representing a set of *classification rules* for *concept
classes*. Eachlea,~e ofa classifi~tion tre~ is associated to a concept class, where the description

¯ of the leave constitutes a sufficient condition for the concept Class. Classification trees can be used
to classify objects following the cOncept descriptions from root to leaves.

REGRESSION TREE is a *tree* representing a set of homogenous *concepts*..A concept (node)
¯ in this tree is homogeneous referring to a *continuous attribute*, i.e. the variance of this attribute

in the concept is minimal.

RULE correlates two *concepts*. Typically, the left hand side concept LHS is a sufficient
condition for the right hand side concept RHS. A rule can be presented as: If LHS then RHS.
Ther~ are *exact*, *strong*,̄ and *pro~bilistic rules* as well as *attributive* and *first order
rules*.

EXACT RULE allows no exceptions. Each object of the LHS *concept* of a *rule* must also be
an element of the RHS concept.

STRONG RULE allows some exceptions. The number of exceptions mostly may not exceed a
given limit expressed as percentage or absolutely.

PROBABILISTIC RULE relates the conditional probability P(RHS I LHS) to the probability
P(RHS).

ATI"RIBUTIVE or PROPOSITIONAL ¯RULE is based on a *propositional concept language*.

FIRST ORDER RULE is based on a *first order concept language*. In this case, LHS and RHS
concepts are sets of object tuples (including several object classes).

CLASSIFICATION RULE belongs to a system of classification *rules* which has to be
discovered for given right hand side *concept classes*.

CHARACTERISTIC RULE belongs to a system of characteristic *rules* which has to be
discovered for a given left hand side *concept*.

KDD-94 AAAI-94 Workshop on Knowledge Discovery in Databases Page 471

RULE EXTRACTION METHOD discovers a system of *rules*. The *extraction goals* include
the desired subtypes of rules, (partly) fixing LHS resp{ RHS *concepts*, and other goals like

¯ predictivity (maximal classification accuracy) or uncovering of structure.

FUNCTIONAL RELATION is a *pattern* relating a dependent *attribute* to one or several
independent attributes. *Functional dependency* and *equation* are subtypes.

FUNCTIONAL DEPENDENCY exists between a dependent *attribute* and some independent
attributes, if for eac.h pair of objects with ~ual vaiu~ of the independent attributes the values of
the dependent attribute are equal to0. An APPROXIMATE FLiNCT1ONAL DEPENDENCY
allows some exceptions (e.g. due to noise).

EQUATION is a pattern which relates a dependent *attribute* to independent attributes in the form
of a mathematical functional equation.

FUNCTIONAL RELAT!ONSHIPEXTRACTION METHOD discovers the existence and/or
equation of a functional relationship. Typically *search spaces*of terms connected by
m~matical operations are " generated ~d piocessed to identif3~ equations. In some *application
dommns*, it is useful to const~ct the Space of terms from predefined component terms.

-STATISTICAL PATTERN describes significant *concepts*. The significancy of a concept is
verified by a statistical test based On a hypothesis on the concept*Statistical dependency patterns*
are a main subtype.

STATISTICAL DEPENDENCY PATTERNS are *statistical patterns*, for which the hypothesis
on a *concept* relates to the distribution Of adependent *attribt~te* in the c0ncevt Subtvves of this
pattern are given by distinguishingthe*attribute type* of the de~ndent *at’~bute*"and some
distribution .parameters, The,concept (resp, the dlstnbutlon) can be related to the whole range*.
Theconcept can also be compared e.g. for different time points.

STATISTICAL PATTERN EXTRACTION METHOD operates on a *search space* of
conf, epts.

7. Search

DISCOVERY FOCUSSING is a major *discovery task* which has the aim to fix an individual
discovery problem; The main specifications resulting from this task relate to selecting a subset of

data to be analysed andto *extraction goalS*. Discovery ~ussing is primarily done by the user
of a *discovery system*. However; a system tan transform more global and nontechnical
specifications of the user into its technical constructs.

SEARCH is the central approach for *pattern extraction*. Search is performed in a *search space*
us ual!Y by exp!oiting some structure in this space. Different *.search strategies* can be applied by
pattern, extraction memoos to gene~te and process the search spaCe. Search can be arranged in
several search phases or iterations. *Search refinement* can be provided to refine the results of a
preliminary search.

SEARCH SPACE is a one or multi-dimensional space with a partial ordering. The elements
(nodes) of a search space can correspond to * ttern instances* (e *rules*) or to com nents
i~attern instances (e.g. conjurict wifllin a *rul~ or single role witil~n a system of ruleslPnnode of
~tree*, or terra of an *equati0n*). Search spaces have to be constructed by a *pattern extraction*

,method according to *discOvery focussing*. Search spaces can be constructed statically before
search or dynamically during search.

Page 472 AAAI-94 Workshop on Knowledge Discovery in Databases KDD-94

SEARCH STRATEGIES are general approaches to construct and process *search spaces*. The
main strategies are *heuristic search*, *exhaustive search*, *,data driven search*, and *concept
driven search*.

HEURISTIC SEARCH is a *search strategy* applied to generate and/or process only a _part of a
total *search space* which includes all possible *pattern instances* or components ot pattern
instances. Heuristic Criteria determine, which parts are included into search. Typically heuristic
search generates a satisfying solution, but not an optimal solution, Often search spaces are so
large, that 0nly heuris’tic search can produce a solution in reasonable time. *One step optimal
search* and *beam search* belong to the main heuristic search approaches.

ONE STEP OPTIMAL SEARCH (or stepwise search) is a *heuristic search* strategy that
performed in several recursive steps. At each step, successor node(s) of a node are determined
which optimize a given local criterium.

BEAM SEARCH isa *heuristic search* strategy similar to *one step optimal search*. At each
step, the best n partial solutions are:determined according to the local optimizing criterium and
further processed.

EXHAUSTIVE SEARCH processes and evaluates all nodes of a *search space*, possibly
omitting those nodes which can be excluded as not *interesting*. Exhaustive search ensures an
optimal solution, but often is not realistic because of time consWaints.

DATA DRIVEN SEARCH organizes the major loop during *search* over the *records* of
data. Each record is accessed sequentially and associated toa node in the *search space*. This
node is updated according to therecord. Several pasSes on *data* may proceed. After each path,

~ some filter operation selects the best nodesin the search space according to some criterium and
¯ elaborates these nodes in the next pass. Datadriven search minimizes *data* accesses and can

result in time efficient discovery.

CONCEFF DRIVEN SEARCH organizes the major loop during *search* around the structure
(e.g. partial ordering) of the *search space*. When a node of the search space is processed, the
associated subset of *data* is accessed! If these accesses are performed randomly to *external
dam*, time efficiency of discovery may be a problem.

SEARCH REFINEMENT refines the results of a previous ,search* phase. E.g.. search granu-
larity can be increased to search in the neighbourhood of a previously identified node. *Pruning*
is another refinement technique.

PRUNING cuts search spaces. This can be done after search (postpruning) or during search.
Eg., a *tree((can be Cut, to eliminate overspecializations.

DOMAIN EXPLORATION is a major *discovery task*

KDD-94 AAAI-94 Workshop on Knowledge Discovery in Databases Page 473

