90

From: AAAI Technical Report WS-94-04. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved.

Automated Support for Requirements Negotiation

William N. Robinson Stephen Fickas
Department of Computer Science Department of Computer Science
Oregon State University University of Oregon
Corvallis, OR 97331 Eugene, OR 97403
wnr@cs.orst.edu fickas@cs.uoregon.edu

Keywords: Conflict resolution, Resolution generation, Design, CSCW, Tool support.

Abstract

Developing requirements from a group of analysts and system users is a difficult task. In addi-
tion to the usual problems of individual requirements acquisition, group requirements acquisition
entails conflict detection, resolution generation, and resolution choice. In essence, requirements
must be negotiated.

In this paper, we summarize our model for requirements negotiation and its automated support.
The model calls for the independent representation of user requirements followed by their negotia-
tion. The model centers around three themes: user participation, resolution generation, and negotia-
tion records. To support these themes, we have built a tool, called Oz, which provides: (1)
automated methods for conflict detection and resolution generation, (2) an interactive resolution
choice procedure, and (3) records of the negotiation process. This paper overviews our negotiation
method and tool support.

1 Introduction

Requirements negotiation is a common and difficult problem for software developers. Varied system perspectives
must be understood, their conflict and common ground recognized and developed. Systems analysts need support in
guiding this process.

Requirements negotiation consists of three basic processes: (1) conflict detection, (2) resolution generation, and
(3) resolution choice. Such processes arise in all requirements methodologies, but are addressed with varying sophis-
tication at a variety of points during the development process. Herein, we present our automated support for these
processes.

Our tool, called Oz, assists an analyst in deriving conflict free requirements. The tool assists analysts by: (1)
detecting conflicts between requirement sets, (2) generating similar but conflict free requirements, called resolution
alternatives, and (3) depicting the value of resolution alternatives so as to aid resolution choice. Oz supplies such sup-
port within the context of our multi-perspective requirements model.

As an example, suppose that an analyst is specifying a university library system. Using our multi-perspective
model, the analyst develops the requirements using alternative requirement sets based on shared themes, or stakehold-
ers. In this way, alternative requirements perspectives are formally represented at the outset. Some likely library
stakeholders are: administrators, patrons, managers, accountants, and even lawyers; each has its own formal perspec-
tive on how the final library system should function. Some stakeholders may be in direct conflict with each other. For
instance, patrons may like 24 hour service and extensive on-line search. In contrast, library administrators worry
about holding costs down. Other stakeholders may seem to be in accordance—faculty and students both want access
to library resources—but a more detailed analysis may show them to also be in conflict; each has different uses of
resources, and hence different requirements.

Once the library stakeholder perspectives are represented, Oz can detect conflicts and generate resolutions. For
example, Oz can detect a conflict between patrons and administrators over library service hours. Next, Oz will gener-
ate resolution alternatives. Standard resolutions are: (1) one of the given conflicting values (e.g., the administration’s
service hour requirement), or (2) a compromise value between the conflicting values. Oz can also generate resolutions
by using domain knowledge. For example, Oz can generate a resolution containing a relaxed patron requirement of 10
hour service, and to compensate for the patron’s loss, a 24 hour computer dial-up service. This resolution is derived

91

using the negotiation strategy of compensation, i.e., give a “losing” stakeholder alternative satisfaction. Such strate-
gies can generate relevant resolutions by using Oz’s knowledge of relationships among requirements and the func-
tions which achieve them. After their generation, Oz presents such resolutions with measures of satisfaction
calculated from each stakeholder perspective. Then, the analyst can choose resolutions knowing how much satisfac-
tion will be lost or gained by each stakeholder. Through such choices, a conflict free requirements set can be derived.

Providing automated negotiation support is the major focus of this research. We are exploring how to represent
stakeholder perspectives and how to reason about their interactions. We are exploring how to automatically detect
conflicts, generate resolution alternatives, and present them to a human analyst. Our representations and methods are
part of an overall negotiation framework which emphasizes human-computer interaction.

1.1 Our Negotiated Requirements Perspective

Our requirements perspective is derived from our attempt to support the way groups actually interact. The philos-
ophy is: understand how teams work and provide needed automation. Currently, we know teams: work from common
goals, work independently, diverge from their group goals, recognize conflicts, modify goals, and integrate work. We
know this from studies of specification teams[12]{46]. These studies support the many behavioral studies which point
to conflict resolution as a cornerstone of group behavior[34].

In addition to supporting collaboration, we want to achieve our requirements engineering goals of: (1) accurate
assessment and (2) rational negotiation. It is important to accurately reflect what stakeholders actually want so we can
derive systems which they can use. Of course it is necessary to provide stakeholders with feedback concerning what
is feasible. Part of this process is recognizing the interaction of stakeholder requirements and rationally dealing with
_conflicts. We believe conflicts which are resolved using informed negotiation methods will produce better systems.

One difficulty that exacerbates negotiated requirements development is stakeholder (non-) rationality. In our
model, we assume stakeholders have bounded rationality. Stakeholders are not omniscient, nor do they have complete
knowledge of a domain. Consequently, their requirements at the outset will typically differ from those they hold after
system specification, construction, or maintenance. We address the problem of bounded rationality in requirements
development with interactive perspectives.

1.2 Interactive Stakeholder Perspectives

Oz stakeholder perspectives are interactive in that they can be modified during specification derivation and
requirements negotiation. During specification, a stakeholder can modify requirements in response to improved
understanding of the derived specification; understanding gained by seeing the actual functions employed and analy-
sis of their interactions. In fact, independent specification construction is part of the Oz development process specifi-
cally to aid stakeholder requirements understanding. Only after each stakeholder has a derived specification does
requirements negotiation begin.l Even then, stakeholders can modify their requirements in response to improved
understanding of other stakeholder needs.

Oz uses three mechanisms to support accurate acquisition using interactive perspectives:

M Independent specifications. For each stakeholder perspective, a complete idealized specification is derived
which maximally achieves the stakeholder’s requirements. This allows stakeholders to understand functional
implications of their requirements.

B Abstract specifications. Each specification is constructed by composing cataloged components. The catalog
consists of domain-specific abstraction hierarchies which support composition and refinement. Specification
refinement is only carried down to the level of specificity required by a perspective. In this way, stakeholders
are freed from making arbitrary decisions which can lead to unnecessary conflict.

B Requirements negotiation via specification integration. Independent specifications are integrated into a sin-
gle specification using negotiation techniques. This allows stakeholders to modify their requirements during
negotiation while understanding functional consequences concerning their own, and others’, requirements.

These mechanisms address the problem of operational uncertainty inherent in abstract requirements[50]. Operational
uncertainty stems from the variety of operators which can be used to satisfy stakecholder requirements and their inter-
actions. Goals may appear to conflict when, in fact, they do not. Do the goals achieve(x) and achieve(~x) contlict?

1. Oz can be applied dircctly to perspectives without going through the specification process; however, then its contlict interfer-
ence processes cannot be applied[37].

92

Figure 1. Oz screen depiction of group requirements and specification development.

They may not, if their achievement can vary in time or place. Goals “conflict” if, and only if, all known ways to
achieve them conflict[55]{59]. Hence, there is a trade-off between unnecessarily creating specifications for goals
which will be dropped or compromised, versus unnecessarily negotiating nonconflicting goals—and possibly com-
promising. In Oz, we wait and see if specifications conflict before engaging in negotiation.

2 The Oz Requirements Negotiation Tool

Oz was constructed to address negotiated requirements development. It provides: (1) a requirements language, (2)
a specification language, (3) a plan-based specification constructor, and (4) negotiation tools consisting of: (i) a con-
flict detector, (ii) a conflict characterizer, (iii) a conflict resolver, and (iv) an interactive resolution chooser. Oz is
experimental. It has nor been applied by real-life analysts; nor would that be appropriate yet! However, Oz does pro-
vide an environment for negotiated requirements development.

To convey a sense of how Oz works, we present the following integration example drawn from the library
domain. The example concerns resource loan periods and overdue notices for the University of Michigan General
Library[7].2 The problem involves a conflict between two representative stakeholders trying to specify a portion of
the circulation system: a librarian who wishes to reduce loan periods and minimize the number of overdue notices
sent out, and a patron who wishes to maximize loan periods and maximize the number of overdue notices sent out.

2.1 Processes in the Oz Model

Our rederivation will proceed as follows:
(1) Modeling. An analyst represents librarian and patron requirements in the Oz requirements language.
(2) Specification. From the requirements, the Oz plan-based specification constructor derives individual func-
tional specifications for the librarian and patron.
(3) Integration. Using the individual specifications, Oz engages the librarian and patron perspectives in require-
ments negotiation.
Figure 1 shows an Oz depiction of library development. Rectangles depict the generic library requirements model,
and specific patron and librarian requirements for the example. Circles linked below the requirements depict derived
specifications. The trapezoid depicts the integration process; it records negotiation information. Below it are the
negotiated requirements and specification.
In applying Oz to the example, Oz: (1) detects the loan period and overdue notice conflicts, and (2) generates a
variety of resolutions. During generation, the analyst chooses resolutions matching those found in the UM analysis.
Finally, an integrated specification is derived.

2. A more complete analysis of this example is found in[36].

93

.Req’s/Goals Planner
——»] Abstractions
object, operator, relation

7
D __ Plan strategies

Req’s/Spec

Conflict Detector
Goal matcher
Plan (spec) slicer

Conflict categories
object, operator, relatioE

XVaY ZAARZN
Conflict characterizer

Conflict Req’s/
Spec. slice

Resolution Generator
,,,,, e Analytic multi-criteria max

,,,,,,,,,,,,,,, / Heuristic reformulation

Figure 2. Oz system components.

2.2 Oz Architecture

Oz provides support through three basic knowledge-based components. Figure 2 illustrates these components.

B Planner. The planner takes system requirements as input and outputs a plan achieving those requirements.
During planning, it makes use of a domain model consisting of operator, object, and relation abstraction hier-
archies. For example, abstract operators are inserted into a plan achieving systems requirements. As plan-
ning continues, these operators are refined until a complete plan satisfying all preferences and system goals
is obtained. The operators from the complete plan form a functional specification.

W Conflict detector. The conflict detector takes specifications and their associated requirements as input. It out-
puts two types of conflicts: (1) syntactic differences between “similar” requirements and (2) operational in-
terference between specification-level components.

M Resolution generator. The resolution generator take conflicts as input and outputs resolutions. Resolution
generation is based on two methods: (1) analytic multi-criteria goal maximization (compromise within a
constraint space) and (2) heuristic reformulation. Heuristic reformulation makes use of the planner’s abstrac-
tion hierarchies to reformulate conflicting system requirements into similar non-conflicts requirements,
thereby “dissolving” conflicts[37][59].

2.3 Integration

Requirements negotiation is instigated through the process of specification integration. Requirements and specifi-
cations of the two stakeholders are compared, conflicts are noted, and then requirements are negotiated within the
context of the specifications. The five processes of integration are described below in the context of the UM example.

(1) Conflict detection. As in the UM library study, Oz detects the loan period and overdue notice requirements
conflicts.

(2) Conflict characterization. The conflicts are characterized as: (i) object attribute conflicts, a syntactic conflict
category of the requirements language; and (ii) interfering, a category of specification level plan interac-
tions.

(3) Conflict resolution. Using the conflicts, Oz is able to apply three basic methods of resolution generation:

(a) Replanning. Oz conjoins the conflicting loan period requirements of the patron and librarian and sends
them to the planner to determine if alternative functions can achieve both requirements. In this case, Oz

94

does not have a function in its library domain model which can achieve both requirements. Similarly, al-
ternative functions cannot be found for the overdue notice requirements.

(b) Compromise. Oz generates compromises for both the loan period duration and overdue notice conflicts.
Each compromise value must be within ranges specified in the generic domain model and must not vio-
late any constraints. In the UM problem, loan period duration compromises range from 0 to 365 days
and overdue notice numbers range from 0 to 5. Both ranges were specified in the generic library model
and no other constraints apply.

(¢) Reformulation. Oz reformulates conflicting requirements through: (i) generalization, (ii) specialization,

and (iii) augmentation. For example, the conflicting loan period requirements concerning borrow(pa-
trons, loan_period, resources) can be specialized to borrow(faculty, loan_period, resources) &
borrow(undergraduate, loan_period, resources), where the conflicting values of 365 and 14 are as-
sociated with the specialized loan periods for faculty and undergraduates, respectively. Hence, a conflict
may be dissolved by specializing a requirement and distributing conflicting values over the resulting set.
Conversely, if there were already such specialized patron borrow requirements, the generalized require-
ment of borrow(patrons, loan_period, resources) with a single blanket loan period value could be
generated.3 In general, Oz can reformulate requirements by substituting or augmenting related require-
ments for conflicting requirements. In the UM example, Oz can generate resolutions containing require-
ments of patrons buying, recalling, or renewing resources. These can be substituted for the borrow
requirement; for example, the library could become a bookstore. Similarly, the new requirements can
augment the original ones; for example, the 14 day loan periods will be applied, but resource selling and
recalling will be added to compensate for poor patron satisfaction.
The following table presents some reformulations. For example, the first specialization was generated
by finding on_loan in the relation hierarchy and moving down one link to the specializations of patron
(student and faculty). Additionally, the conflicting loan_period.duration values have been distributed
over the relation specializations.

Method Resolution

Specialization | on_loan(student resource loan_period.duration=14)
on_loan(faculty resource loan_period.duration=365)

Specialization |on_loan(patron periodical loan_period.duration=14)
on_loan(patron book loan_period.duration=365)

Specialization | on_loan(undergrad book loan_period.duration=14)
on_loan(faculty periodical loan_period.duration=365)

Generalization| own(patron book)

Generalization| recall(graduate periodical)

Generalization| renew(facuity book)

The table also presents generalizations derived from the operator hierarchy. For example, given the on_-
loan relation, the own(patron resource) ~ own(library money) relations are generated through the
buy_resource operator.

(4) Resolution choice. Oz does not blindly apply all resolution methods to all conflicts. Instead, a human analyst
chooses which methods to apply to which conflicts and in what order. For example, the analyst could direct
the specialization of the loan period conflict, producing requirements for faculty and undergraduates. Then,
the analyst could apply generalization to the new requirements to produce requirements for faculty and un-
dergraduate renewal. Thus, all generation methods can be applied to the original conflicts and the subsequent
resolutions. This allows the human analyst to incrementally explore alternative resolutions.* Finally, the an-
alyst selects the requirements to include in the integrated perspective. In our strict rederivation of the UM
study, we choose a blanket 21 day loan duration requirement and two overdue notices. Later, we produced a

3. Given such specializations as input, Oz can detect them as *potential conflicts”, meaning that they represent varying but non-
interfering requirements. Sometimes it is useful to negotiate such requirements, as they indicate special-case policies rather than
blanket policies. Hence, Oz presents all requirements differences for negotiation.

4, This also finesses automating the difficult processes of: (1) resolution generation contro}, (2) resolution choice, and (3) resolu-
tion feasibility. As an example of resolution feasibility, note that Oz currently does not have to determine whether substituting a
renewal requirement for a loaning requirement is a good choice—it is not.

95

specification containing specialized loan period requirements.

(5) Re-specification. Once the analyst has chosen the new requirements, Oz derives a single group perspective.
Original requirements from one perspective can be transformed (with a little effort) to produce the integrated
requirements by using the following formula:

original requirements - conflicting requirements + resolved requirements
The resulting perspective is then given to the planner which then derives the integrated specification.

3 Conclusions

While Oz is still a prototype, our experience leads us to conclude that negotiated requirements development can
be effectively supported through: (1) automated conflict detection, characterization, and resolution generation, and
(2) resolution decision-making support. The balance between automation and human interaction has been a key to
Oz’s success. Our model recognizes the bounded rationality of humans and allows for the acquisition of preferences
in the context of conflicting specifications. Additionally, our interactive resolution procedures fits within the more
general framework of interactive negotiation support:

M Stakeholder participation
M Resolution generation
B Negotiation records

4 References

[11 Adams, E., Fagot, R., A model of riskless choice, in: Eds. W. Edwards, A. Tversky, Decision making, (1967)
284-289.

[2] Adler, M., Davis, A., Weihmayer, R., and Worrest, R., Conflict-resolution strategies for nonhierarchical dis-
tributed agents, Morgan Kaufmann Publishers Inc.(1989).

[3]1 Anderson, J., Farley, A., Plan abstraction based on operator generalization, In Proceedings of the 1988 AAAI
Conference, Minneapolis

[4] Anderson, J., Fickas, S., Viewing Specification Design as a Planning Problem: A Proposed Perspective Shift,
In 5th International Workshop on Software Specification and Design, Pittsburgh, 1989 Also in Artificial Intel-
ligence and Software Engineering, D. Partridge (ed), Ablex, 1991

{5] Bazerman, M., Judgment in managerial decision making, John Wiley & Sons(1986).

[6] Burkhalter, B.R., Race, PA., An analysis of renewals overdues, and other factors influencing the optimal
charge-out period, In Case studies in systems analysis in a university library, 1968, The Scarecrow Press, Inc.,
Metuchen, N.J., 11-33.

(7] Bui, T., Co-0P: A group decision support system for cooperative multiple criteria group decision making,
Springer-Verlag, 1987

[8] Chen, M., Nunamaker, J., The Integration of GDSS and CASE: A Metasystem Approach, Proceedings of 2nd
International Workshop on CASE, 1988

[9]1 Conklin, J., Interissue dependencies in gIBIS, STP-091-89, MCC (February 10, 1989)

[10] Conry, S., Meyer, R., and Lesser, V., Multi-stage negotiation in distributed planning, Eds. A.H. Bond, L. Gas-
ser, Readings in distributed artificial intelligence, Morgan Kaufmann, San Meteo, California (1988) 367-384.

[11] Curtis B., Krasner H., Iscoe 1., A field study of the software design process for large systems, ACM, CACM, 31
(11) November 1988, 1268-1287.

[12] Easterbrooke S., Domain modeling with hierchies of alternative viewpoints, IEEE, International Symposium
on Requirement Engincering, January 4-6, 1993, 65-72.

[13] Festinger, L., Conflict, Decision, and Dissonance, Tavistock Publications, Ltd., London(1964).

[14] Fickas, S., Robinson, W., Feather, M., Conflict and compromise in specification design, In Proceedings of the
AAAI-88 Automated Software Development Workshop, Minneapolis, 1988

[15] Finkelstein, A., Fuks, H., Multi-party specification, 5th International workshop on software specification and
design, (1989) 185-195.

[16] Fuks, H., Negotiation using commitment and dialogue, Imperial College of Science Technology and Medi-
cine, London(February,1991)

(17]
(18]
[19]
(20]
(21]

(22}

(23]
(24]
[25]
(26]
[27]

(28]

[29]
[30]
[31]
[32]
[33]
[34]
[35)
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]

(45]

96

Janis, 1., Mann, L., Decision making : a psychological analysis of conflict, choice, and commitment, The Free
Press, New York(1979).

Keen, P, Scott-Morton, M., Decision support systems: an organizational perspective, Addison-Wesley, 1978
Keeney, R, Raiffa, H., Decisions with multiple objectives, John Wiley and Sons, New York(1976).

Klein, M., Supporting conflict resolution in cooperative design systems, IEEE, Transactions on Systems, Man,
and Cybernetics, 21 (6), November 1991, 1379-1390.

Kraemer, K., King, J., Computer-based systems for cooperative work and group decision making, Computing
Surveys Vol. 20 (June 1988) 115-146.

Kwa, J., Tolerant planning and negotiation ingenerating coordinated movement plans in an automated fac-
tory," Proceedings of the first international conference on industrial and engineering applications of artificial
intelligence, (1988)

Lander, S., Lesser, V., A framework for the integration of cooperative knowlege-based systems, Workshop on
integrated architectures for manufacturing, IJICAI, Detroit, Michigan (August 24, 1989)

Mazer, M., A knowledge-theoretic account of negotiated commitement," CSRI-237, Univerity of Toronto
(November 1989).

Mostow, J., Voigt, K., Explicit integration of goals in heuristic algorithm design, 1JCAI87 (January 1987)
Robbins, S., Organizational behavior: concepts, controversies, and applications, Prentice Hall, NJ(1983).
Robinson, W., Integrating multiple specifications using domain goals, 5th International workshop on software
specification and design, (1989) 219-226

Robinson, W., Negotiation behavior during requirement specification, Proceedings of the 12th International
Conference on Software Engineering, IEEE Computer Society Press, Nice, France (March 26-30 1990) 268-
276

Robinson, W., Automated negotiated design integrateion: formal representations and algorithms for collabora-
tive design, CIS-TR-93-10, University of Oregon, (April 1993).

Robinson, W.N., Fickas, S. Supporting Multi-Perspective Requirements Engineering, International Conference
on Requirements Engineering, IEEE, (April 18-22 1994).

Rosenschein, J., Genesereth, M., Deals among rational agents, Proceedings of the 1985 IJCAI, (August 1985)
91-99.

Rosenschein, J., Ginsberg, M., Genesereth, M., Cooperation without communication, Proceedings of AAAI-
86, Morgan Kaufmann Publishers, Inc. (1986) 51-57.

Rosenschein, J. Breese, J., Communication-free interactions among rational agents: a probabilistic approach,”
in: Eds. L. Gasser, M.N. Huhns, Distributed artificial intelligence, Morgan Kaufmann Publishers Inc. (1989)
Ross, D.T.,Structured Analysis (SA): A language for communicating ideas, IEEE, Transactions on Software
Engineering, 3 (1) January 1977, 16-34.

Sathi, A., Morton, T., Roth, S, Callisto: an intelligent project management system, Al Magazine, (Winter
1986) 34-52.

Sathi, A., Fox, M., Constraint-directed negotiation of resource reallocations, Eds. L. Gasser, M.N. Huhns,
Distributed Artificial Intelligence, Morgan Kaufmann Publishers Inc., San Mateo (1989) 163-193.

Scacchi, W., Bendifallah, S., Work structures and shifts: an emperical analysis of software specification team-
work, IEEE, 11th International conference on software engineering, May 1989,

Scacchi, W., Managing software engineering projects: a social analysis, IEEE, Transactions on software engi-
neering, 10 (1) January 1984, 49-59.

Shepard, R., On subjectively optimum selections among multi-attribute alternatives," Eds. W. Edwards, A.
Tversky, Decision making, (1967) 257-283.

Swartout, W., Balzer, R., On the inevitable intertwining of specification and implementation, CACM Vol. 25
(1982) 438-440.

Sycara, K., Resolving goal conflicts via negotiation, Proceedings of the AAAI-88, (1988) 245-250.

Wilensky R., Planning and understanding, Addison-Wesley, 1983.

Werkman, K., Knowledge-based model of using shareable perspectives, Proceedings tenth international
conference on distributed artificial intelligence, (October 1990) 1-23.

Yakemovic, K., Conklin, J., Experience with the gIBIS model in a corporate setting, Proceedings of CSCW 90,
Los Angeles, 1990

Zeleny, M., Multiple criteria decision making, McGraw-Hill(1982).

