From: AAAI Technical Report WS-96-01. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

A Compositional Modeling Language

Daniel Bobrow*, Brian Falkenhainer**, Adam Farquhar® Richard Fikes*, Kenneth Forbus?$,

Thomas Gruber &, Yumi Iwasaki#, Benjamin Kuipers?

*Xerox Corporation Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304
bobrow @parc.xerox.com

#Knowledge Systems Laboratory
Gates Bldg. 2A, M/C 9020
Department of Computer Science
Stanford University
Stanford, CA 94305
{axf, fikes, iwasaki } @ksl.stanford.edu

&Colloquy Systems Inc.
5150 El Camino Real, Suite D-21
Los Altos, CA 94022
gruber @colloguy.com

Abstract

This document describes a compositional modeling
language, CML, which is a general declarative modeling
language for logically specifying the symbolic and
mathematical properties of the structure and behavior of
physical systems. CML is intended to facilitate model
sharing between research groups, many of which have long
been using similar languages. These languages are based
primarily on the language originally defined by Qualitative
Process theory [Forbus 1984) and include the languages
used for the Qualitative Physics Compiler (QPC)
[Crawford 1990; Farqubar 1993; Farquhar 1994],
compositional model formulation [Falkenhainer 1991}, and
the Device Modeling Environment (DME) [Low and
Iwasaki 1993]. CML is an attempt to synthesize and
provide a clean redesign of these languages.

1. Introduction

Compositional modeling is an effective paradigm for
formulating a behavior model of physical system by
composing descriptions of symbolic and mathematical
properties of individual system components. This paper
describes Compositional Modeling Language (CML),
which is a general declarative modeling language for
representing physical knowledge required for
compositional modeling.

CML is intended to facilitate model sharing between
research groups, many of which has long been using

12 QR-96

**Xerox Wilson Center
800 Philips Rd., M/S 128-51E
Webster, NY 14580
falken@wrc.xerox.com

$Qualitative Reasoning Group

The Institute for the Learning Sciences

Northwestern University
1890 Maple Avenue
Evanston, IL 60201
forbus@ils.nwu.edu

%University of Texas at Austin
Department of Computer Science
Austin, TX 78712
kuipers@cs.utexas.edu

similar languages. These languages are based primarily on
the language originally defined by Qualitative Process
Theory [Forbus 1984] and include the languages used for
the Qualitative Physics Compiler [Farquhar 1994],
compositional model formulation [Falkenhainer 1991}, and
the Device Modeling Environment [Low and Iwasaki
1993]. CML is an attempt to synthesize and provide a
clean redesign of these languages. The specification of
CML has been formulated by researchers involved in those
projects.

CML was designed with efficiency, expressiveness and
ease of use in mind. The language is restricted enough to
allow efficient implementation of procedures to predict
behavior. The syntax is simple and readable so that a
person familiar with the domain will be able to read and
easily understand an expression of knowledge of the
domain in the language. The language supports lumped
parameter ordinary differential equations that are common
in engineering modeling. Finally, the language supports a
variety of different approaches to representing physical
phenomena; it allows the definition and use of domain
theories that use components, process, bond graphs,
kinematic pairs, etc., and also supports both relational and
object-oriented specification styles.

CML specifies a set of top-level forms for defining
models and an ontology of primitive functions, relations,
and constants. CML is intended to be an open, evolving
language, of which this document describes the base
language. Various extensions will undoubtedly be defined

as they naturally arise in the course of its use by different
people. An important goal in designing the base language
is to support as much sharing as is reasonably possible.
Also, to facilitate sharing the content of CML knowledge
bases, CML is fully translatable to the knowledge

interchange format1 (KIF)[Genesereth and Fikes 1992],
and we have adopted conventions established by KIF
wherever possible.

1.1. Patterns of Use

A typical implementation supporting CML might be used
as follows: To predict the behavior of a physical system in
some domain, knowledge about the physics of the domain
is captured in a general purpose domain theory that
describes classes of relevant objects, phenomena and
systems. The domain theory of chemical processing plants,
for example, might include physical phenomena such as
mass and heat flows, boiling, evaporation, and
condensation; it would also include chemical reactions, the
effects of catalysts, and models of components such as
reaction vessels, pumps, controllers, and filters. A domain
theory in CML consists of a set of quantified definitions,
called model fragments, each of which describes some
partial piece of the domain's physics, such as processes
(e.g., liquid flows), devices (e.g., transistors), and objects
(e.g., containers). Each definition applies whenever there
exists a set of participants for whom the stated conditions
are satisfied. A specific system or situation being modeled
is called a scenario. A model of the scenario consists of
fragments that logically follow from the domain theory and
the scenario definition.

For example, consider the situation depicted in Figure 1.
A scenario representing this situation would state that there
is a can containing some water placed over a gas heater. In
addition, the scenario may also state whether or not the gas
heater is initially on, the initial temperature and volume of
the water and so on. In order to reason about this situation,
the domain theory must contain the definitions of a can,
contained water, a gas heater, as well as the definitions of
relevant physical processes such as heat flow and
evaporation. The definitions of these objects and processes
must specify their numeric and non-numeric attributes,
such as water-level and flame-lit-p. The types of values
such attributes take, for example "a numeric, time-
dependent quantity whose dimension is length" must also
be specified in the domain theory.

Once the domain theory has been constructed, it can be
used to model many different physical devices under a
variety of different conditions. The user specifies a
scenario that defines an initial configuration of the device,
the initial values of some of the parameters that are relevant
to modeling it, and perhaps conditions that further

' KIF provides a standard encoding and semantics for a
first order logic with set theory and some minor extensions
such as a restricted quote and the ability to refer to relations
directly.

characterize the system. The CML implementation would
automatically identify model fragments that are applicable
in the scenario. These model fragments would be
composed into a single model that comprises both a
symbolic description as well as a set of governing
equations. The equations may be solved or simulated to
produce a behavioral description. Because the conditions
under which the model fragments hold are explicit in the
domain theory, the system would be able to construct
automatically additional models that describe the device as
it moves into new operating regions.

Figure 1: An example situation
with a can of water and a heater

1.2. Notation and Syntax

The CML syntax is based on the Common Lisp standard
[Steele 1990]; a sequence of characters is a legal CML
expression only if it is acceptable to the Common Lisp
reader with standard settings. In this document, we will
adopt the following notational conventions: Variables are
marked with a ? prefix, to distinguish them from object and
relation constants. Where the syntax allows for a finite
series of items indexed from I to n, the first item of the
sequence is given with the subscript / and the remaining n-
1 items are abbreviated by "...n". For example,

((participant; :type typej) ...n)

is the notation for
((participant; :type type;) ...
(participant, :type typep)).

2. General Semantics

The goal of CML is to provide a common syntax with a
well-defined semantics so that different implementations,
with different internal representations and inference
procedures, will be able to accurately parse the same
domain theory. The syntax and semantics of CML top-
level forms is presented in Section 3. The semantics of a
set of CML top -level forms is provided by translating them
into first order logic such as defined in KIF, and CML
inherits the logic's model-theoretic semantics. In this
section, we describe the general semantics of relations,
individuals and quantities underlying the definitions of the
top-level forms.

Bobrow 13

2.1. Quantities

CML is designed to model time-varying physical systems,
such as the movement of a mechanical device or the
process of a chemical reaction. In engineering models, the
properties and state of such systems are described by
variables, parameters, coefficients, and constants. In CML,
the term quantity encompasses these notions. A quantity is
either a constant or a unary function whose argument is a
time.

In the syntax of CML, time is left as an implicit
parameter to time-dependent quantities, functions, and
relations. All non-constant quantities are restricted to have
a finite number of critical points or discontinuous changes
over any finite interval. This restriction rules out certain
classes of poorly behaved systems, such as oscillators with
infinite frequency, that pose problems for numeric
integration and qualitative simulation techniques.

Quantities may be numeric or non-numeric. Non-
numeric quantities are simply constants or unary functions
of time satisfying the above finite-change requirement.
Their values are unrestricted. A numeric quantity is
associated with a single physical dimension, given by the
function dimension.

CML specifies a core set of fundamental physical
dimensions: the seven defined by the System Internationale
(mass, length, time, charge, temperature, amount, and
luminosity) plus a dimension for dimensionless numbers.
Real numbers are dimensionless constant quantities. CML
also provides a top-level form to allow definition of any
other dimensions. A dimension is a property that is used to
distinguish incompatible quantities. Quantities of the same
dimension can be compared, added, and so on. These
operations are not defined for quantities of different
dimensions.

A mathematical relation holds on non-constant quantities
if it holds on their values at each time that they are defined.
A numeric time-dependent quantity is a function of time
whose values all have the same dimension. The value of a
numeric time-dependent quantity is a numeric constant
quantity.

The magnitude of a numeric constant quantity is
specified in units of measure. A unit of measure is itself a
constant quantity used as a reference for a given dimension.
For example, the meter is a unit of measure for the length
dimension and the second is a unit of measure for the time
dimension. The magnitude of a constant quantity depends
on the unit in which it is requested. The binary function
magnitude maps a constant quantity and a unit of the same
dimension to a real number. For example, the magnitude
of I2g in grams is /2 and its magnitude in ounces is about
4.23. A unit of measure defines an absolute scale with a 0
value for quantities of a particular dimension. The real
number 0 is dimensionless and therefore is different from
other quantities whose magnitude is 0, such as 0 Newtons
or 0 feet.

14 QR-96

CML supports everywhere continuous quantities,
piecewise continuous quantities, step quantitiesl, and
count quantitiesz.

2.1.1. Handling implicit dependence on time

One important aspect of translating the semantics of
quantities into logic is the representation of time. A time-
quantity is a numeric, everywhere continuous quantity
whose dimension is the time-dimension. All time-
dependent quantities and relations in CML have a time-
quantity as an implicit argument. In the translation of
CML into logic, time is handled in three steps:
1. Every time-dependent relation is augmented with a
first argument, which must be a time-quantity.
2. Every time-dependent quantity, g, is uniformly
translated with the following form, where value-at is
a function of two arguments, a quantity and a time,
and returns the value of the quantity at the time:

(lambda (?t1) (f (= 7t1 7t) (value-at q 2t1)). 7
3. Every mathematical function that typically applies to
numbers (constant quantities) is polymorphically

extended to apply to function quantities as well.
Every mathematical operation that t)gpically applies to

numbers must be extended similarly ™.

3. Language Definition

A domain theory in CML is a finite se of the following
top-level forms:
defRelation for defining logical relations.
defQuantityFunction for defining quantities used in the
domain theory.
defModelFragment for describing the behavior of
modeled entities under explicitly specified conditions.
Model fragments are used to describe phenomena that
arise out of the interactions of a composite set of
objects (e.g., collisions or flows), or the behavior of a
single object (e.g., a resistor, pump, or valve).
defEntity for defining properties of persistent objects
(e.g., resistors, containers).
defScenario for defining initial value problems
consisting of a set of objects, their configuration, and
initial values for the quantities that describe them.

In addition, the forms defDimension, defUnit, and
defConstantQuantity are provided for defining new or

! Step quantities are piecewise continuous quantities that
are constant over every continuous interval.
2 Count quantities are step quantities that have non-
negative integer values and are dimensionless.

Note that such a mathematical relation is false when any
of its arguments is undefined.
4 Thus, implementations must allow for use before
definition.

derived dimensions, new or derived units, and universal
constants, respectively.

The general syntax of a form is the form identifier (e.g.,
defQuantityFunction), followed by its name, followed by
a series of keyword/value pairs. Some keywords are
optional, as indicated by the surrounding brackets in the
grammar (i.e., [:dimension}).

Wherever a keyword/value pair appears, an arbitrary
number of other, implementation specific, keywords are
allowed. If the domain theories employing such keywords
are to be portable, however, the following restriction must
be satisfied. If the keywords affect the behavioral
inferences entailed by the domain theory, then they should
only strengthen or annotate the behavioral inferences.
This allows other implementations to ignore the additional
keywords and still draw correct, if weaker conclusions.
Domain theories that employ an extension that satisfies this
criterion will be sharable across implementations.

The rationale is that various groups will want to add
fields that facilitate explanation tools or support software
engineering of large knowledge bases (e.g., short names,
authors, pointers to extended documentation, etc.). A
secondary purpose is to allow for local extensions to the
language as the need arises, without having to change the
common language specification. The impact such
extensions may have on sharability and the semantics of a
given domain theory is not addressed here. In some cases,
particularly qualitative simulation, the added information
may simply provide monotonic reductions in ambiguity. In
other cases, particularly in the presence of a closed world
assumption, the nature of the predicted behavior may be
fundamentally affected,

Table 1 shows the syntax for the top-level forms with
some examples. The definitions for the intermediate forms
used in this table are given in Table 2. The following
sections discuss each form in detail.

3.1 Relations and Functions

In the defRelation form, the symbol Name is a global
relation constant naming a relation of arity n; the x; are
logical variables, one for each argument of Name. All uses
of Name in the domain theory should be consistent with the
specified constraints.

=> The gsentence is a logical sentence that may mention
the variables x. If present, the sentence (=> (Name
X; ... Xn) gsentence) is true.

<=> The gsentence is a logical sentence that may
mention the variables x; If present, the sentence
(<=>(Name x;... x,) asentence) is true.

Function If function is true, then the relation Name is a
function. That is, the first n-1 arguments to Name
uniquely determines the nth and (Name x; ... x,.;)
may be used as a term denoting x,,.

time-dependent If time-dependent is true, then Name
is a time-dependent relation and appearances of Name
in a CML form must be handled specially.

3.2. Quantity Functions

The defQuantityFunction form defines a function that
maps a tuple of objects to a quantity. The quantity is itself
a function of time. In addition to being globally defined
via defQuantityFunction, quantity functions may also be
defined within model fragment and entity definitions in the
quantities clause.

The name is a function constant naming an n-ary
function that returns a time-dependent quantity. The x; ...
Xp, are logical variables.

=>The gsentence is a logical sentence that may mention
the variables x; It may be used to place restrictions
on the quantity’s values, or assert things, such as type
information, about the x;

Dimension The dimension expression (see
defDimension for the complete syntax) specifies the
dimension of the quantities returned by the quantity
function.

Non-numeric If non-numeric is true, then the
quantities returned by the function are non-numeric,
otherwise they are numeric.

Piecewise-continuous If piecewise-continuous is true,
then the quantities returned by the function are
piecewise-continuous.

Step-quantity If step-quantity is true, then the
quantities returned by the function are step-quantities.

Count-quantity If count-quantity is true, then the
quantities returned by the function are dimensionless
count-quantities. :

3.3. Model Fragments and Entities

This section defines the syntax and semantics for the key
CML forms defModelFragment and its restricted version
defEntity .

The defModelFragment form defines a class of
phenomena, which are described by a set of objects
involved, static attributes and time-dependent quantities. It
also defines consequences that hold only when an instance
of the class is active. The defModelFragment form may
define conditions sufficient to imply the existence of an
instance, in addition to the necessary consequences thereof.

The defEntity form is a restricted version of
defModelFragment that is used for defining properties of
a persistent object that are always true. The defEntity
form defines only necessary consequences of an object
being an instance of the class, not conditions sufficient to
imply the existence of an instance.

The defEntity and defModelFragment forms have been
designed to support an object-oriented style of defining
domain theories. Each form defines a class of objects
specified by sets of static attributes and time dependent
quantities. These attributes and quantities are effectively
slots defined on instances of the class. Furthermore, these
classes may be arranged in a hierarchy via the subclass-of
clause.

Bobrow 15

16

Szntax

snc—

| Examples

(defRelation Name (X1 ... Xp)
[:documentation string]
[:=> asentence
[:<=> asentence]
[:function boolean]
[:time-dependent boolean 1)

(defRelation contents (?x ?y)
:=> (and (container 7x)
(contained-stuff ?y))
:<=> (contained-in 7y 7x))
(defRelation fahrenheit (7t 7f)
<=> (==
(- (magnitude ?t rankine) 459.7))
:function true)
(defRelation above (?x ?y)
:time-dependent true)

(defQuantityFunction Name (X1 ... Xp)
[:documentation string]
[:=> asentence]
[:dimension dimension expression |
[:piecewise-continuous boolean]
[:step-quantity boolean]
[:count-quantity boolean]
[:non-numeric boolean 1)

(defQuantityFunction mass (7x)
:=> (physical-object 7x)
:dimension mass-dimension)
(defQuantityFunction density (?x)
:=> (physical-object 7x)
:dimension (/ mass-dimension
(expt length-dimension 3)))

(defModelFragment Name
[:documentation string]
(:subclass-of class | ...s]

(defModelFragment Contained-Stuff
:subclass-of (physical-object)
:participants

((sub :type substance)

[:particip.al.lts (ctnr :type fluid-container))
((participant [:type tpejl)...p)1l :conditions
[:conditions conditions] ‘ ((> (amount-of-in sub ctnr)
[:quantities ((quantity] keywords J) ...q)] (* 0 grams)))
[:attributes : :c}t(]pantmes
; . ressure
(aitribute) [:type attr tpe;))..-a)] :dimension pressure-dimension)
[:consequences conseguences]) (mass
:dimension mass-dimension))
:consequences
((==mass
(amount-of-in sub ctnr))))
(defEntity Name (defEntity Can
[:documentation string :subcl&sis-of (physical-object Container)
. i :quantities
[:subcla.sz's of class | :--s] ((height
[:quantities ((quantity] keywords J) ...q)] :dimension length-dimension)
[:attributes (diameter
((attribute] [:type attrtypej))...a)] :dimension length-dimension)
[:consequences consequences 1) (volume
:dimension volume-dimension))
:consequences

((== (volume :self)
(* PI (expt (/ diameter 2) 2)
height))))

Table 1: Syntax and examples of top-level forms

QR-96

[:documentation string |

[:=dimension expression])
(defUnit Name

[:documentation string }

[:= quantity expression]

{ :dimension dimension expression])
(defConstantQuantity Name

[:documentation string)

[:= quantity expression]

[:dimension dimension expression))

Syntax Examples
(defDimension Name (defDimension energy-dimension

:= (* mass-dimension length-dimension
(expt time-dimension -2)))
(defUnit inch
= (* 2,54 (* meter 0.01)))

(defConstantQuantity Pi
:= (acos -1))

(defConstantQuantity Boltzman-Constant
= (* 1.380658 (/ Joule Kelvin)))

(defScenario Ngme
[:documentation szring]
[:individuals ((individual [:type type])*)]
[:initially gsentences]
[:throughout gsentences)

(defScenario water-heating-example
:documentation '
"A can containing water is placed directly above a
gas-heater, which is initially lit."
:Individuals ’
((C :type Can)
(H :type Gas-heater)
(W :type Contained-water))
:initiatly
((> (amount-of-in W C) (* 0 grams)))
:throughout
((= (height A) (* 0.2 meter))
(= (diameter A) (* 0.15 meter))
(flame-lit-p H true)
(directly-above C H)))

Table 1: cont.

Additional Syntax
quaniity expression ;=

asentence ::= (and literal*)
literal :=

dimension |

(* dimension expression +) |

(expt dimension expression number)|

(/ dimension expression dimension expression)

unit | quantity |
(mathop quantity expression +)

(relconst term*)|
(not (relconst term *))

Table 2: Some Additional Syntax

Name The name of the model fragment or entity, name,

is a relation constant naming the class of instances.

Subclass-of The subclass-of clause allows a hierarchy

to be defined. Each class_is the name of a model
fragment or entity definition. An instance of name is
also an instance of each superclass. As a
consequence, all of the participant, quantity, and

attribute functions defined for each super are also
defined for name.

Participants The participants clause identifies the
objects that participate in the model fragment
instance. Each participant is a function constant that
names a unary function which may be applied to an
instance to access the corresponding participant; each
fype is a relation constant that names a class (unary
relation) of which the participant is an instance.

Conditions The conditions clause specifies the
conditions under which an instance of a model
fragment is active. If the conditions hold over the
specified participants, then an instance of the model
fragment exists with the specified quantities and
attributes. Conditions is an implicit conjunction of
literals. The binary relations same and different may
be used in the conditions to state that two participants
are the same or different from each other.

Attributes The attributes clause may be used to define
static attributes of an instance. Each attribute is a
symbol naming a function that is totally defined for
instances of name. The attributes are polymorphic,
that is, an attribute of the same name may be defined
for another unrelated form with a different type.

Bobrow 17

Quantities The quantities clause may be used to locally
define quantities that describe an instance. The QF
keywords are the keyword options defined for
defQuantityFunction, except that => is not allowed.
Such implications may be placed in the consequences
clause. The quantities are polymorphic, that is, a
quantity of the same name may be defined for another
unrelated model fragment, but have different
properties. Nonetheless, quantity functions defined in
a quantities clause must be consistent with any of the
constraints imposed by a defQuantityFunction
definition of the same name. For example, entity
definitions Liquid and Sand can both define a
quantity called Amount-of with dimensions volume-
dimension and mass-dimension, respectively.
However, if there is a separate global definition of
Amount-of using the defQuantityFunction form,
which specifies the dimension to be volume-
dimension, the quantity definition of Amount-of in
Sand is disallowed since it is inconsistent with the
global definition

Consequences The consequences clause holds
whenever an instance is active. The conseguences is
an implicit conjunction of literals. The primary role
of the consequences is to establish equations that help
to define the behavior of the participants. In addition
to equations, other logical relations may also be
asserted.

3.3.1 Syntactic Sugar

In order to allow for more concise and readable definitions,
the defEntity and defModelFragment forms provide some
syntactic sugar.

Self The symbol self may be used to refer to the current
instance. Note that it may not be used in the
conditions clause of a model-fragment definition
with no superclasses, as this would place it outside of
the scope within which the instance exists.

Name The user provided symbol for the name of a
model fragment or entity may be used instead of self
and is completely equivalent.

Quantity The symbol for any guantity may be used to
refer to the appropriate quantity within the
consequences clause. This is completely equivalent
to the more verbose form (guantity self), which
may also be used.

Attribute The symbol for any gttribute may be used to
refer to the appropriate attribute within the
consequences clause. This is completely equivalent
to the more verbose form (gttribute self), which
may also be used.

Participant In a model fragment definition, the user
provided symbol for each participant may be used to
refer to that participant. Outside of the conditions,
the more verbose form (participant self) may also
be used.

18 QR-96

34. Semantics

The full semantics of the CML forms are defined in
(Falkenhainer, Farquhar et al. 1994]. We provide an
informal account of them here, starting with the simpler
defEntity form.

The defEntity form defines a class of objects. If any
object is a member of the class, then the quantities and
attributes defined in the form apply to it, and the
consequences are true for them. Entities may be structured
into a hierarchy using the subclass-of clause; all quantities,
attributes, and consequences that apply to a superclass also
apply to the subclass. That is, all inheritance is monotonic
— there is no way to over-ride default values that are
inherited.

A defModelFragment form without any superclasses is
also simple to understand. If the participants exist and
satisfy the time-independent conditions, then an instance of
the model fragment exists. At any moment that the time-
dependent conditions hold, the model instance is active and
the consequences hold. If the time-dependent conditions
do not hold, the consequences are not implied. A
defModelFragment form without superclasses defines
sufficient conditions for an instance to exist.

A defModelFragment form with superclasses is
somewhat more complex. If there is some object that is an
instance of all of the definition’s superclasses and the
definition’s participants exist and its time-independent
conditions hold, then that object is also an instance of the
definition. Activity and consequences are handled just as
for model fragments without superclasses. A
defModelFragment form with superclasses defines
necessary conditions for an object to be an instance.

The previous paragraphs describe CML as it has been
defined and is consistent with its predecessor languages.
This scheme is extremely useful for providing additional
information about concrete physical phenomena in a
library. For instance, a library might include one definition
for fluid-flow that held whenever there were two containers
connected by a port. Subclasses of fluid-flow might
include laminar flow, turbulent flow, and so on.

This scheme, however, has an important shortcoming
that it does not allow abstract model fragments to be
defined. To understand this difficulty, consider an example
of a library of chemical reactions. Such a library might
include model fragments for binary chemical reactions,
such as oxidation, between substances. There are a few
things that can be said about all binary chemical reactions
such as "there are two distinct reactants”. Thus, Binary-
reaction, the class of all binary reactions, may have two
participants, Reactant-1 and Reactant-2 and a condition that
they are distinct. It is not natural, however, to specify
furthere conditions under which a generic binary reaction
occurs. This is much easier to say about a specific
chemical reaction. Oxidation, a subclass of Binary-
reaction, may have the condition that Reactant-1 is an
oxidant, and Reactant-1 and Reactant-2 are in contact.
Given a situation involving three chemical substances, A,

B, and C, such that only A is an oxidant, and A and B are
in contact with each other, one would expect existance of
only one binary chemical reaction, which is also an
oxidation reaction, to be inferred. However, from the
semantics of the model fragments described above, there
would be six instances of abstract binary reactions, one for
each possible combinarion of A, B, and C. Although the
current interpretation is coherent and logically consistent, it
poses a practical problem that it enables a large number of
uninteresting model fragment instances to be inferred. We
are currently considering an alternate scheme that supports
abstract model fragments with or without superclasses.

3.5. Dimensions, Units, and Constants

The vocabulary used to describe quantities varies from one
domain to another. For this reason, it is essential to be able
to define new dimensions and units. Often, these will be
derived from the base set of SI dimensions and units (e.g.,
an electro-magnetic domain theory might define a
dimension for magnetic-flux and its SI derived unit, the
Weber). If the new dimension is reducible to other
dimensions, the dimension expression must be provided.
The top-level forms defDimension and defUnit provide
this facility. The form defConstantQuantity is also
provided for defining global named constants.

Every CML implementation should have a built-in
library of definitions for the basic SI dimensions and units:
time-dimension, length-dimension, temperature-
dimension, mass-dimension, luminosity-dimension,
charge-dimension, amount-dimension (usually measured
in moles), and dimensionless. The library should also

include the definitions for the common SI units including

the base units, meter, kilogram, second, ampere, Kelvin,
mole, as well as the derived units Hertz, Newton, Pascal,
Joule, Watt, Coulomb, volt, Farad, ohm, Siemens,
Weber, Tesla, and Henry.

Except for dimensionless, dimensions are, by
convention, named by affixing -dimension to the standard
English word. This makes it straightforward to distinguish
between dimensions and similarly named quantity
functions.

If a defUnit lacks the = argument, then it defines a
fundamental unit. A fundamental unit definition must have
either a dimension (as in the meter example) or a quantity
expression, in which case the dimension is inferred from
that of the guantity expression. If the expression is
complex, it may be more informative to provide the
dimension explicitly.

The defConstantQuantity form is identical to defUnit,
except that = must be provided.

3.6. Scenarios

The defScenario form is used for setting up problems in
which the behavior of a system is to be predicted from a set
of initial conditions.

Individuals The individuals clause specifies a set of
named objects that are assumed to exist initially. The
domain theory may imply the existence of other
individuals. The individugl is an object constant
denoting an object, not a relation or function.

Initially The initially clause specifies conditions that
initially hold in the scenario. It is an implicit
conjunction of literals. It may specify relations
between quantities, time-dependent relations, and
perhaps an assignment for the quantity time.

Throughout The throughout clause specifies
conditions that hold throughout the scenario. It is a
list of literals under an implicit conjunction.

4. Equations

CML provides a base set of mathematical functions and
operators that can be used in the consequences and
conditions of model fragment and entity definitions as well
as initially and throughout clauses of scenario definitions.
The mathematical functions and relations can be applied to
time dependent variables as well as time independent ones.
The relations on quantities included: <, <=, >=, >, ==,
positive, negative, zero, integer, odd, even. CML includes
mathematical functions as defined in the Common Lisp
standard (+, -, *, /, abs, acos, acosh, asin, asinh, atan,
atanh, cos, cosh, exp, expt, log, max, min, mod, signum,
sin, sinh, sqrt, tan, tanh); the time derivative d/dt; the
qualitative relations M+, M- M+0, M-0, Q=; and the
composable equations C+, C-, Qprop+, Qprop+0, Qprop-0,
I+, I. The full semantics of these functions and relations
are defined in [Falkenhainer, Farquhar et al. 1994]. Table
3 summarizes the derivative, qualitative constraints, and
composable equations.

5. Conclusion

In this paper, we have presented CML, the knowledge
representation language for the compositional modeling
paradigm. The main advantage of compositional modeling
is its modularity. Writing model fragments, each
describing a single phenomenon, is a much easier task than
composing a complete model for every possible system and
query. Even so, constructing such a domain theory is a
substantial undertaking. Thus, the major goal of CML is to
support the interchange and reuse of such theories. To
enable sharing of knowledge stated in CML, the semantics
of CML is fully defined in KIF.

The language presented here is the base language of CML,
which all the implementations of modeling systems using
CML are expected to support. Various extensions to the
base language will undoubtedly be needed to accommodate
domain-specific representational needs. Some of such
extensions that we are considering are the following:

Bobrow 19

Forms Examples Meaning

(d/dt x) (> (d/dt (location m) 0) The time derivative of x,

(d/idtx y) (d/dt (pos m) (vel m)) The time derivative of x is y.

(M+y x) (M+ (level w) (pressure w)) The quantity y is a in(de)creasing monotonic

M-y x) (M- (vol w) (space ¢)) function of x.

M+0y x) (M+0 (level w) Y is a monotonic in(de)creasing function of x, but

-0y x) (pressure w)) passes through the origin.

Q=xy) X and y and their derivatives have the same sign.
A somewhat weaker statement than M+0.

(C+yx) (C+ (netc)(in 1 c) Composable addition and subtraction. X

(C-yx) (C- (netc) (outc)) in(de)crements y. Note that these can be mixed
with Qprops.

(Qprop+ y x) (Qprop+ (size (drain c)) Composable qualitative proportionalities. Note that

(Qprop- y x) (out c)) these can be mixed with C+, C-. Qprop+ is
equivalent to a C+ chained to an M+.

(Qprop+0 y x) (Qprop+0 (current w) Similar to Qprop, but if all of the composed

(Qprop-0y x) (conductance w)) equations on y are C+, C, Qprop+0, Qprop-0, then

=0 when the x’s are 0.

(C*yx) (C* (magnification scope) Similar to C+, C-, but x multiplies (divides) into y.

(C/y x) (magnification lens))

(correspondence y v (correspondence If there is a function f such that y=f(x{ ... x) then

X]Vi...XpVp) (level c) top when xj=vj y=v. The xj are quantity functions, and
(volume c) full) the vj are values.

Table 3: Qualitative Relations and Compositional Equations

» Extension to the representation of quantities to
include vectors and matrices.

» Extension to the notion of mathematical functions to
include mathematical relations represented by
arbitrary external data structures such as databases
and foreign procedures.

* Expansion of the mathematical vocabulary to include
partial differential equations.

* Generalization of the model fragment representation
to represent non-numeric and discontinuous changes.

* Representation of procedural specifications such as
prescribed operator procedures.

The detailed specification of the syntax and semantics of
the language along with discussions of design rationale and
implementation considerations can be found in
[Falkenhainer, Farquhar et al. 1994]. To facilitate
construction of domain theories in CML, we have
implemented a web-based CML editor for browsing,
creating and editing CML domain theories. The editor,
which is publicly accessible on the WWW, provides a full,
distributed collaborative editing environment. We are also
in the process of implementing a model formulation and
simulation system, which will make use of the CML
library. The system will be also publicly accessible as a
service on the WWW. We hope that the availability of
these services will facilitate development of a significant
public library of domain theories by this research
community and that it will spur further research and
development in the field.

20 QR-96

Acknowledgement

The authors thank Vijay Saraswat for useful comments on
the language specifications. The research by the authors
are supported in part by the following agencies: Forbus by
the Office of Naval Research, Farquhar, Flkes, Gruber, and
Iwasaki by ARPA and NASA/ARC under contract NAG2-
581 (ARPA order 8607), and Kuipers by NSF grants IRI-
9216584 and IRI-9504138 and by NASA grants NCC 2-
760 and NAG 2-994.

References

Crawford, J., Farquhar, A., and Kuipers, B. (1990). QPC: A

Compiler from Physical Models into _Qualitative
Differential Equations. The Eighth National Conference on

Artificial Intelligence,

Falkenhainer, B., Forbus, K. (1991). “Compositional
modeling: finding the right model for the job.” Artificial

Intelligence 51(1-3):

Falkenhainer, B., Farquhar, A., Bobrow, D., Fikes, R.,
Forbus, K., et al. (1994). CML: A Compositional

Modeling Language. Technical report KSL-94-16,
Knowledge Systems Laboratory, Stanford University.

Farquhar, A. (1993). Automated Modeling of Physical
Systems in the Presence of Incomplete Knowledge. Ph. D.
thesis. University of Texas at Austin.

Farquhar, A. (1994). A_Qualitative Physics Compiler.

Proceedings, Twelfth National Conference on Artificial
Intelligence, Seattle, Washington, The AAAI Press/The
MIT Press.

Forbus, K. D. (1984). “Qualitative Process Theory.”
Anificial Intelligence 24(1-3):

Genesereth, M. R. and Fikes, R. E. (1992). Knowledge
Interchange Format, Version 3.0 Reference Manual.
Technical report Logic-92-1, Stanford University Logic
Group.

Low, C. M. and Iwasaki, Y. (1993). “Device modelling
environment: an interactive environment for modelling

device behaviour.” Intelligent Systems Engineering 1(2):
115-145.

Steele, G. L. (1990). Common Lisp: The Language. Digital
Press.

Bobrow

21

