
Self-Explanatory Simulators for Middle-School Science Education:
A Progress Report

Kenneth D. Forbus
Qualitative Reasoning Group

The Institute for the Learning Sciences
Northwestern University

1890 Maple Avenue
Evanston, IL, 60201, USA

Abstract
This essay describes a project in progress that is applying
qualitative physics to create new kinds of educational software.
We first outline why qualitative physics is an important
technology for science education. One architecture we are
developing, active illustrations, is described next. The rest of the
paper describes our progress towards making this software
available in schools.

Introduction
Creating new kinds of educational software has been one

motivation for qualitative physics. Our research has
brought us to the stage where we are now creating such
software, and focusing some of our efforts on investigating
how its educational benefits can be optimized. This essay
describes one architecture of the three that we are
developing: The incorporation of self-explanatory
simulators into active illustrations, systems that provide an
environment for guided experimentation. We start by
examining why qualitative physics is useful for science
education, and then describe the active illustrations
architecture. We then discuss some of the issues that have
arisen in moving our software from laboratory to
classroom, and our plans for deployment.

Why Qualitative Physics is Useful for Science
Education

There are many motivations for research in qualitative
physics, ranging from improving our understanding of
human cognition to making new kinds of software systems
for various applications. While there are many important
applications for qualitative physics, we believe that
educational software, particularly for science education,
constitutes an extremely important application area, for two
reasons:

Qualitative physics represents the right kinds of
knowledge. Much of what is learned about science in
elementary, middle, and high school consists of causal
theories of physical phenomena: What happens, when does
it happen, what affects it, and what does it affect. The
representational issues that are the central concern of
qualitative physics are exactly those which must be

addressed by domain content providers for science
education software.

Qualitative physics represents the right level of
knowledge. The prevailing attitude about engineering
education is that it must be heavily mathematical.
Whether or not one agrees that that is how it should be, it is
impossible to make such claims about pre-college science
education. Students learn calculus, at best, at the end of
high school, and algebra at the beginning of high school.
Making students memorize differential equations in the
guise of teaching them science simply isn’t an option, and
even formal algebraic models are not feasible for
elementary and middle school students. The qualitative
mathematics developed in qualitative physics provides the
right level of language for expressing relationships between
continuous properties for pre-college science students.

We see qualitative physics as essential for creating a new
generation of educational software and activities for
science education. We believe such software should have
the following properties:
¯ It should be articulate. The software should have

some understanding of the subject being taught, and be
able to communicate both its results and reasoning
processes to students in comprehensible forms.

¯ It should be supportive. It should include a mentoring
component consisting of coaches and tutors that
scaffold students appropriately, taking care of routine
and unenlightening subtasks and helping students learn
how to approach and solve problems.

¯ It should be generative. Students and instructors
should be able to pose new questions and problems,
rather than just selecting from a small pre-stored set of
choices.

¯ It should be customizable. Instructors must be able to
modify, update, and extend the libraries of phenomena,
designs, and domain theories used by the software,
without needing sophisticated programming skills.
This simplifies maintenance and provides scalability.

52 QR-96

From: AAAI Technical Report WS-96-01. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



The Active Illustrations Architecture
The power of illustrative examples is well-known in

education. Traditional media offer high authenticity but
low interactivity. Textbook illustrations and posters can
provide thought-provoking pictures, tables, charts, and
other depictions of complex information. Movies and video
can provide gripping dynamical displays. But none of
these media provide interaction. A student intrigued by a
picture of a steam engine in a textbook (or a movie of 
steam engine) cannot vary the load or change the working
fluid to see what will happen. They cannot ask for more
details about explanations that they don’t understand. They
cannot satisfy their curiosity about how efficiency varies
with operating temperatures by testing the engine over
ranges of values. The Active Illustrations architecture uses
AI techniques to provide such interactive services. An
active illustration can be thought of as a hands-on museum
exhibit, consisting of a virtual artifact or system, and a
guide who is knowledgeable about the exhibit and
enthusiastically helps you satisfy your curiosity about it.
Active illustrations support student explorations, by
allowing students to change parameters and relationships to
see what happens. They are articulate, in that students can
ask why some outcome occurred or some value holds, and
receive understandable explanations that ultimately ground
out in fundamental physical principles and laws.

For dynamical systems, an active illustration can be
viewed as a self-explanatory simulator (Forbus 
Falkenhainer, 1990, 1995; Iwasaki & Low, 1992; Amador,
Finkelstein, & Weld, 1993) combined with visualization
tools, an explanation presentation system, and a coach.
The visualization tools provide graphing and report
generation services. The explanation presentation system
filters and translates the conceptual and mathematical
explanations provided by the self-explanatory simulator
into terms appropriate for the student. The coach helps the
student set up and interpret the simulation results, using the
explanation system of the simulator as its domain
knowledge and using an explicit task model of student
activities (e.g., predicting a value, constructing a causal
theory).

The domain we are using to explore this architecture is
middle-school Earth Science, focusing on the processes
that underlie the weather. We are building a sequence of
active illustrations, starting with laboratories for exploring
fundamental processes such as evaporation and phase
changes, and expanding to system-level models of the
hydrological cycle and the atmosphere. These systems will
be field-tested in the DODEA school system, a collection
of schools run by the US military for the children of
personnel stationed abroad, under the auspices of
DARPA’s Computer-Aided Education and Training
Initiative (CAETI).

Example: The Evaporation Laboratory
Suppose a student is interested in how evaporation

works. Since evaporation happens in everyday
circumstances, the student begins to set up different jars of
water, varying in width and amount of water, and measures
their initial level. The student places these jars on the
window ledge in the classroom, and looks for something
else to do while waiting for the outcome of the experiment.
Seeing a free machine, the student starts up a simulation lab
on evaporation, to try to gain some insights in minutes
instead of days.

(It should be noted that we are not arguing that simulated
laboratories can or should substitute completely for
physical labs. We believe that each has its role in
education. Without physical labs, simulated labs seem
pointless: Physical labs provide an environment where an
instructor can link abstract concepts to their manifestation
in the physical world. Experiments in the physical world
ground classroom learning. But on the other hand, physical
experiments can be expensive, time-consuming, and
dangerous. Simulation labs enable students to experiment
with ranges of phenomena that they simply couldn’t in
physical labs. Moreover, simulation labs offer
opportunities for students to receive additional instruction
from software-based coaches, which can help reinforce
what happens in the classroom and support distance
learning.)

The student’s interaction with the simulation laboratory
starts with setting up a scenario. The student selects, from
an on-screen catalog, a cup to use in an experiment. The
cups are all the same shape and size, but they are made
from a variety of materials, ranging from Styrofoam to tin
to titanium and even diamond. The student chooses a
styrofoam cup, since such cups are common in their
environment. From another catalog, the student selects an
environment to place the cup in. Since it is hot outside, the
student selects Chicago in the summer, and sets the
simulator to run for four hours of virtual time. A few
moments later, the simulation is finished. The student
notices, by plotting how the level of water in the cup
changes over time, that there is a slow but measurable
decline. Using the explanation system, the student finds the
following summary of the behavior:
Between 0.0 and 14400.0 seconds:

evaporation from Cup occurs
flow of heat from Atmosphere to water in Cup

occurs
there is water in liquid form in Cup

water in Cup touches the atmosphere

The student follows up by using the hypertext facilities
of the explanation system:
In Styrofoam cup in Chicago,

mass of water in Cup can be affected by:
water loss via evaporation from Cup

In Styrofoam cup in Chicago,

Forbus 53



water loss via evaporation from Cup can be

affected by:

vapor pressure of Atmosphere
saturation pressure of Atmosphere

surface area of water in Cup
temperature of water in Cup

At this point the student conjectures that higher
temperature should lead to more evaporation. To confn-m
this conjecture, the student runs a second simulation, using
a diamond cup this time to increase the flow of heat from
the atmosphere. Qualitatively the behavior is the same, but
the higher thermal conductivity of diamond means that the
temperature of the diamond cup is closer to ambient, and
indeed leads to increased evaporation (Figure 1).

level of water in Cup
Diamond cup in Chicago-
Styrofoam cup in Chicago,

4.

4

4

4

4

4

4 6c.
0 ~,000 10.000 15,000

Figure 1: Comparison of evaporation from
Styrofoam and diamond cups, summertime in Chicago

The student might continue their explorations by
deciding to see what happens with the same cup on the top
of a mountain, where it would be very cold, or in the
tropics, where the temperature could be adjusted to be the
same as on the desert, but with a much higher relative
humidity. These explorations can be accomplished in
minutes, with reports produced for further comparison and
refieetion.

From Laboratory to Classroom
Anyone who has tried to transform research software

into a fielded application knows that many of the issues
that arise bear little relation to the issues that motivated the
research. This project is no exception.

One issue we are exploring is the different settings in
which this architecture can be instantiated. The most
obvious is stand-alone soRware, where our software is the
only software the student is interacting with and it is
running directly on the student’s machine. However, there
are two other settings for this architecture that are worth
exploring, because of their potential impact on education
and training. The first setting is embedding active

54 QR-96

illustrations in other kinds of software. Active illustrations
are a natural type of media for hypermedia systems, for
example. Similarly, when combined with knowledge of
operating procedures and appropriate peripherals, active
illustrations could provide more intelligent training
simulators. The second setting is integrating active
illustrations into shared virtual environments, to create
learning spaces that students can use to interact with both
the software and other students, who may be distributed in
different locales. Because interaction is computer-
mediated, such spaces provide additional opporttmities for
sothvare-based coaching and assessment of student
progress. Such learning spaces could also facilitate
distance learning, since they enable the formation of
communities of interest that are less limited by
geographical boundaries. The creation of such learning
spaces is an important goal of the CAETI community.

The need to explore these different settings raises some
interesting software engineering issues. Our solution is to
produce self-explanatory simulator runtime libraries which
can be incorporated in different kinds of sottware. The
first library is written in C++, in the form of a Windows
dynamic linked library (DLL), for producing small-
footprint systems. The second library is written in
Common Lisp, to maximize flexibility and to provide
cross-platform portability. Our SIMGEN Mk3 compiler
(Forbus & Falkenhainer, 1995) produces Common Lisp
simulators that can be used directly with the Lisp runtime
library, and also produces C++ source code for a simulator,
again in the form of a Windows DLL for easy embedding.

We have created two "shells" which use these libraries.
The first is a GUI-based shell, written in C++, which
provides a small memory footprint stand-alone system.
The second is a client/server shell, with transactions
mediated via MCP~, so that the student/simulator
interactions can be broadcast through a MUD, and thus
available for coaching, tutoring, and evaluation software.

In both shells so far, the visualization capabilities we
provide are simple plotting routines. This appears
adequate for our target tasks. The explanation presentation
system has a set of fixed policies, based on the needs of
middle-school students. We heavily filter access to the
information available in the self-explanatory simulator’s
explanation system by limiting the types of queries
allowed. For instance, the only questions one can ask
about a parameter are what can affect it and what can it
affect. This filtering is important to avoid distracting or
confusing students - while the explanation system can
produce the set of differential equations that held at any
point during a simulation, showing this information to
students at that age would generally be a mistake. Instead,

MUD Communications Protocol, a message protocol
for software which needs to interoperate with MUDs. See
http://jhm.ccs.neu.edu:7043/help/subject!mcp for details.



we focus on the kind of causal information that they are
supposed to be learning. The answers to questions about
parameters, for instance, concern the existence of
influences, e.g. "x by..."can be affected in the
example dialog. While the explanation system knows the
type and sign of the influence, this information is
suppressed because it is something that the student should
be learning, along with the relative magnitudes of various
effects.

Coaching raises a variety of issues. An important
problem is creating explicit models of the learning tasks
that students might engage in with this architecture, so that
a software coach can recognize what they are doing and
provide assistance as appropriate. For instance, three
kinds of experiments that a student might perform using a
simulation are
¯ What happens experiment: Look at the process

structure in the simulation and see how it evolves over
time. (Example: "What happens to water in a diamond
cup in Las Vegas?")

¯ Factor relevance experiment: Run the simulator to
create a baseline history. Then vary one factor,
without varying others. Run the simulator again with
the new set of initial conditions, to create a new
history. Compare the baseline and the new history to
assess the impact of the change. (Example: "How does
air temperature affect evaporation?")

¯ Achieve result experiment: Figure out the difference
between a baseline history and the desired history.
Use the causal account so far of the phenomena to
figure out which parameters can be perturbed in order
to bring this change about. Explore the space of such
changes to find a set of perturbations from the baseline
initial state so that the simulator generates a history
with the desired properties. (Example: "How can 
make water in Chicago evaporate faster than in Las
Vegas?")

Explicit representations of these and other types of
experiments will provide the information needed for a
coach to communicate with a student about their goals, and
to gauge the student’s activities against their stated goals.
We are collaborating with other members of the CAETI
community to create coaches, exploiting the "opening up"
of the simulator/interface link provided by the client/server
model to simplify experimentation.

Another issue which arises in fielding simulators to be
used by students is the problem of initialization. Providing
a large menu of numerical and logical parameters, even in
the cleanest, well-organized GUI, can easily lead to
bewilderment. We simplify this process by using a
metaphor from drama - the idea of a prop. A prop on a
stage represents something in the imagined world being
created on-stage. In our simulators, props represent a
coherent subset of the simulator’s parameters that naturally

make sense to consider together. Each simulator has a set
of catalogs, each catalog containing props that impose
different constraints on a particular subset of the
simulator’s parameters. In the Evaporation Laboratory,
for instance, there are two catalogs of props, cups and
environments. The choice of cup constrains the shape and
dimensions of the cup, as well as its thermal conductivity
(e.g., the thermal conductivity of diamond is orders of
magnitude higher than just about anything else). The
choice of environment constrains the temperature and
pressure and vapor pressure of the atmosphere, as well as
the limits over which these parameters can be varied.
(While it is possible in theory for Las Vegas to get colder
than the top of Mt. Everest, it would be very surprising,
and providing constraints that prevent two props from
being identical in the simulator helps maintain the
suspension of disbelief.) In addition to solving the
technical problem of setting up a simulation, props should
also provide pedagogical benefits, by helping the student
see the mapping between physical objects and
circumstances and their properties. It also provides a
simple path to customization: Adding props representing
familiar objects and situations (e.g., a student’s favorite cup
or their home town) also provides a simple form of
customization that can make software more engaging.

Finally, there are still interesting qualitative physics
issues that must be addressed. First, the need to make
robust self-explanatory simulators that operate over a wide
variety of conditions has required richer domain theories,
and we expect this enrichment to continue. Second, in the
process of creating domain theories, the constraints of
flexibility and explanatory simplicity are often in
opposition. Ideally the domain modeler should ignore
explanatory simplicity and focus on flexibility, and the
explanation presentation system would take care of
suppressing unnecessary detail. In practice this can be
difficult. Finally, the model formulation algorithm we are
using currently is very simple, and cannot handle automatic
selection of temporal grain size or spatial resolution.
Creating such algorithms will require improvements in
compositional modeling, along the promising directions
explored by Rickel (Rickel & Porter, 1994) and by the
KSL group (Levy, Iwasaki, & Fikes, 1995).

Deployment and Other Plans
The Evaporation Laboratory was demonstrated at a

CAETI meeting in March 1996. The client/server version
of the software was used, with communications routed to a
MUD so that evaluation agents and other software could
listen in. The stand-alone version of the Evaporation
Laboratory is being delivered to the CAETI testing
facilities in April, as part of the process of migrating the
software to DODEA test schools. If all goes well, the
stand-alone system will be in use as of September 1996.

Forbus 55



In addition to extending our domain theory and creating
new simulators, there are two other activities we are
conducting in the development of this architecture:

TUI software bots. Today’s MUDs are almost entirely
text-based. Limitations in communications bandwidth over
most of the planet, and limited education budgets, means
that many MUD-based learning spaces will continue to be
text-based for years to come. Consequently, providing a
Text-based User Interface (TUI) for active illustrations, in
the form of a MUD-based software robot, can open up this
technology to an even broader audience. We also suspect
that text-based bots could provide some advantages that
complement those available with GUIs. First, text provides
higher-resolution imagery than graphics, assuming that the
student’s imagination is engaged. Second, the metaphors
for interaction with bots are different: the bot can take on
the role of an assistant, carrying out experiments in a
virtual environment, or as a purveyor of phenomena,
helping to spark a student’s interest. We are creating such
a sottbot, using Sibun’s Salix natural language generation
techniques to provide explanations. A key issue in
creating a useful soltbot is handling discourse well enough
in a MUD-based environment to keep students engaged.

Authoring Environment for Active Illustrations. To
make this technology widely available requires getting
ourselves out of the loop in creating new active
illustrations. Our goal is to make an authoring environment
that is friendly enough that curriculum developers and
experienced teachers can create new active illustrations,
using off-the-shelf domain theories. If we succeed, it could
fundamentally change the economics of using simulation in
science education, and hopefully help improve science
education substantially.

Acknowledgments
This work is sponsored by Advanced Research Projects

Agency of the US Department of Defense, under the
Computer Education and Training Initiative. The basic
research on self-explanatory simulators and compositional
modeling is supported by the Computer Science Division
of the Office of Naval Research. Aaron Thomason is
responsible for C++ programming, Penelope Sibun is
responsible for explanation generation and softbot design.

References
Amador, F., Finkelstein, A., & Weld, D. (1993). Real

Time Self-Explanatory Simulation. Proceedings of AAAI-
93___~. 562-567.

Forbus, K., & Falkenhainer, B. (1990). Self Explanatory
Simulations: An integration of qualitative and quantitative
knowledge. Proceedings of AAAI-90. 380-387.

Forbus, K., & Falkenhainer, B. (1995). Scaling up Self-
Explanatory Simulators: Polynomial-time compilation.
Proceedings of IJCAI-95. 1798-1805.

Iwasald, Y. & Low, C.M. (1992). Device Modeling
Environment: An Integrated Model Formulation and
Simulation Environment for Continuous and Discreet
Phenomena. Proceedings of CISE-92.

Levy, A., Iwasaki, Y., Fikes, R. (1995) Automated
Model Selection based on Relevance Reasoning. KSL
Technical Report KSL-95-76. Stanford University,
November, 1995.

Rickel J., & Porter, B. (1994). Automated Modeling for
Answering Prediction Questions: Selecting the Time Scale
and System Boundary. Proceedings of AAAI-94. 1191-
1198.

Sibun, P. (1992) Generating Text without Trees.
Computational Intelligence 8(1 ) 102-122.

56 QR-96




